
Fundamental Research 4 (2024) 651–659

Contents lists available at ScienceDirect

Fundamental Research

journal homepage: http://www.keaipublishing.com/en/journals/fundamental-research/

Article

An efficient labeled memory system for learned indexes

Yuxuan Mo, Jingnan Jia, Pengfei Li, Yu Hua

∗

Huazhong University of Science and Technology, Wuhan 430074, China

a r t i c l e i n f o

Article history:

Received 5 December 2021

Received in revised form 7 May 2022

Accepted 9 May 2022

Available online 8 June 2022

Keywords:

Heterogeneous memory system

Cache hierarchy

Data movement

Resource contention

Learned index

a b s t r a c t

The appearance and wide use of memory hardware bring significant changes to the conventional vertical memory

hierarchy that fails to handle contentions for shared hardware resources and expensive data movements. To deal

with these problems, existing schemes have to rely on inefficient scheduling strategies that also cause extra

temporal, spatial and bandwidth overheads. Based on the insights that the shared hardware resources trend to be

uniformly and hierarchically offered to the requests for co-located applications in memory systems, we present

an efficient abstraction of memory hierarchies, called Label , which is used to establish the connection between

the application layer and underlying hardware layer. Based on labels, our paper proposes LaMem, a labeled,

resource-isolated and cross-tiered memory system by leveraging the way-based partitioning technique for shared

resources to guarantee QoS demands of applications, while supporting fast and low-overhead cache repartitioning

technique. Besides, we customize LaMem for the learned index that fundamentally replaces storage structures

with computation models as a case study to verify the applicability of LaMem. Experimental results demonstrate

the efficiency and efficacy of LaMem.

1

h

a

o

s

a

o

f

o

o

w

f

b

t

g

c

t

p

c

c

s

i

t

H

d

p

t

c

t

l

[

g

o

D

i

c

d

s

t

(

t

t

C

m

t

h

2

B

. Introduction

Memory architectures are tightly related with significant changes in

ardware ecosystems [1] . Memory-related hardware technologies such

s Dynamic Random Access Memory (DRAM), and Non-Volatile Mem-

ry (NVM) have been introduced to meet the performance demands of

ystems and applications, which introduce more complex memory hier-

rchies. Two important issues need to be addressed to achieve resource

ptimization and energy saving in memory systems, i.e., the contentions

or shared hardware resources and data movements among hierarchies.

Resource Contentions. Due to the wide use of heterogeneous mem-

ry devices, say DRAM, SSD and NVM, the significant changes of mem-

ry hierarchies increase the number of shared hardware resources,

hich intensifies the resource contention. The use of multi-core plat-

orms is helpful to enhance the system performance and throughput,

ut it still suffers from the quality of service (QoS) challenge due to

he contention for various shared hardware resources [2] . In order to

uarantee the QoS of applications, we need to mitigate the resource

ontention that is non-trivial [3] , due to the difficulties in achieving

he resource isolation. Specifically, the contention causes unpredictable

erformance variability and uncertainty [4] due to the disability to ac-

urately determine the system performance and the interference among

o-located applications running on the same platform. Moreover, the

hared memory hierarchies encounter the contention problem [5] . Ex-

sting way-based (e.g., Intel CAT technique [6]) and page-coloring par-
∗ Corresponding author.

E-mail address: csyhua@hust.edu.cn (Y. Hua) .

ttps://doi.org/10.1016/j.fmre.2022.05.016

667-3258/© 2022 The Authors. Publishing Services by Elsevier B.V. on behalf of Ke

Y-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
itioning techniques [7] are used to mitigate the resource contention.

owever, the way-based technique easily leads to performance degra-

ation [3] and doesn’t support cache capacity repartitioning, and the

age-coloring partitioning technique incurs extra overheads of reparti-

ioning.

Data Movements. The significant changes in memory hierarchies in-

rease the complexity of data movements among hierarchies. To bridge

he I/O performance gap between memory and CPU, the hierarchical

evels in memory systems increase via adding new hardware devices

8] . However, this leads to expensive data movements among hetero-

eneous hardware devices [9] . In the meantime, each tier of the mem-

ry system is independent and requires case-by-case designs to manage.

ata may be cached or replicated in multiple tiers, or stored only once

n a single tier [1] . Hence, automatic data movements among tiers be-

ome important for both systems and users. To decrease unnecessary

ata movements between memory and CPU, recent advances in 3D-

tacked memory technology [10,11] move processing elements closer

o the data and use the logic layer to perform processing-in-memory

PIM). However, some design issues arise when adding compute logics

o the memory device [12] . For example, the PIM processing logic fails

o quickly access involving address translation and cache coherence in

PU, which are generally helpful for programmers.

It is challenging to achieve resource isolation and reduce data move-

ents in memory systems. First, high-level QoS demands of applica-

ions and underlying hardware resources are unaware of each other in
Ai Communications Co. Ltd. This is an open access article under the CC

https://doi.org/10.1016/j.fmre.2022.05.016
http://www.ScienceDirect.com/science/journal/26673258
http://www.keaipublishing.com/en/journals/fundamental-research/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.fmre.2022.05.016&domain=pdf
https://cstr.cn/BRID-09580.00.59361
mailto:csyhua@hust.edu.cn
https://doi.org/10.1016/j.fmre.2022.05.016
http://creativecommons.org/licenses/by-nc-nd/4.0/

Y. Mo, J. Jia, P. Li et al. Fundamental Research 4 (2024) 651–659

m

b

h

d

(

s

a

c

t

p

c

m

m

t

i

d

o

t

a

o

d

h

a

w

p

t

d

f

o

l

l

w

t

s

l

e

a

e

a

i

b

•

p

a

v

t

•

d

o

m

t

•

i

L

p

•

o

s

a

i

a

Fig. 1. The hierarchical memory systems. (a) DRAM-based memory system.

(b) Hybrid DRAM/NVM memory system. (c) Logical memory hierarchy.

Fig. 2. The cross-application contentions and multi-tier data movements.

(a) The IPC of gcc. (b) The throughput of learned indexes. Multi simulates both

LLC and DRAM layers; LLC simulates only LLC layer; DRAM simulates only

DRAM layer; None doesn’t simulate any cache layers.

2

2

t

e

f

m

t

m

b

p

t

q

r

t

b

s

t

m

p

s

s

r

a

s

l

o

t

c

e
odern memory systems. This enables the shared hardware resources to

e uniformly accessed by the requests of co-located applications, which

owever incurs resource contentions. Second, it is difficult to accurately

etermine the partition sizes for applications to achieve design goals

e.g., QoS or fairness). Third, existing schemes fail to fully exploit the

hared resources to reduce the data movements.

In practice, due to the lack of considerations for memory hierarchies

nd the heterogeneous shared hardware resource contentions in multi-

ore systems, existing schemes fail to achieve both resource optimiza-

ion and energy saving. To effectively schedule resources, a centralized

latform resource manager [2] is proposed as an embedded system-on-

hip that manages and monitors the hardware resources. A data place-

ent [13] utilizes all layers to perform memory, metadata, and com-

unication management in hierarchical buffering systems. Moreover,

o convey critical messages from the application layer to the underly-

ng hardware layer, existing designs [14,15] use labels to represent the

eadline of a batch job, compute available resources (e.g., the number

f CPU cores and the size of memories), or point to the data. However,

hese designs do not participate in handling complex data movements

mong memory hierarchies.

Unlike existing schemes, our paper proposes LaMem, a Labeled Mem-

ry system for alleviating shared hardware resource contentions and

ecreasing the data movements. LaMem presents an efficient software-

ardware abstraction, called label , to represent the resource demands of

pplications. The label allows high-level applications to communicate

ith underlying hardware resources. Based on the labels, LaMem im-

roves the memory system performance in two aspects, i.e., improving

he execution performance of applications and reducing the number of

ata movements.

Specifically, LaMem leverages the way-based partitioning technique

or shared resources to achieve resource isolation, while providing the

n-demand cache resource offering scheme and shortcut design to de-

iver differentiated levels of performance. Moreover, LaMem presents a

azy-repartitioning technique to support dynamic resource adjustment

ith low overheads.

Hence, LaMem shows how to use the simple yet effective partitioning

echnique and resource allocation scheme to enable a labeled memory

ystem to achieve high performance and reduced data movements. A

earned index [16] is able to support fast query operations and deliv-

rs high performance by using trained models. The high performance

ctually depends on the efficient accesses upon multi-layer memory hi-

rarchy. To verify the applicability, we exploit the characteristics of an

dvanced learned index named ALEX [17] and customize LaMem for

mproving system performance. Our paper makes the following contri-

utions:

 Significant performance improvements. We leverage the way-

artitioning to achieve resources isolation. Based on labels, we present

n effective resource allocation scheme and a shortcut design to pro-

ide differentiated levels of performance and QoS guarantee. The above

echniques deliver high performance in the labeled memory systems.

 Decreased data movements. We leverage the resources partitioning to

ecrease the data movements among co-located applications. Moreover,

ur proposed shortcut design is used for low-priority applications to

itigate the complexity of data movements among hierarchies. LaMem

hus reduces the amounts of data movements.

 Real case study. We choose a real-world application, i.e., the learned

ndex as a case study. We provide a shortcut scheme for ALEX in LaMem.

aMem efficiently improves the performance of ALEX according to ex-

erimental results.

 Implementation and evaluation. We implement a prototype of LaMem

n GEM5 [18] simulator. Through extensive experiments, we demon-

trate that LaMem achieves performance gains by about 2.1 × on aver-

ge, as well as reducing 43.2% of data movements compared with ex-

sting memory systems with unmanaged shared resources. LaMem thus

chieves better performance and fewer data movements.

h

652
. Background and motivation

.1. Cross-application contentions

In Fig. 1 a, 1b, we illustrate the DRAM-based memory system and

he holistic DRAM/NVM memory architecture. It is necessary to fully

xploit the benefits of DRAM and NVM technologies. There are two dif-

erent architectures, including flat-addressable and hierarchical hybrid

emory architectures [19] . The flat-addressable hybrid memory archi-

ecture contains DRAM and NVM in the flat-address space as the main

emory [20] . In the hierarchical hybrid memory architecture, DRAM

ecomes a cache layer of NVM to deliver high performance [21] .

Moreover, Fig. 1 c illustrates the logical memory hierarchy: user ap-

lications - cache hierarchies - DRAM cache layer - main memory. In

his hierarchy, the memory system needs to deal with interleaved re-

uests from different applications, which yields more shared hardware

esource contentions and data movements between adjacent layers (de-

ailed in Section 2.2). In this paper, we mainly focus on hierarchical hy-

rid memory architecture to exploit performance gains, i.e., maximizing

ystem throughput and guaranteeing the quality of service.

When applications are running concurrently in a multi-core system,

hey compete for various shared resources such as CPU cores, caches,

emory bandwidths, and network, called cross-application contention

roblem . This problem causes severe performance degradation and re-

ource wastes. We conduct a heuristic experiment to show how this is-

ue occurs when various applications compete for the shared hardware

esources in memory systems.

Motivating Example (i): To quantify the negative effects of cross-

pplication contentions, we perform the motivating evaluation on fully

hared LLC (Last Level Cache) that is widely used in multiple cores. We

everage the Gem5-NVMain [18,22] platform to evaluate the behaviors

f LLC with the gcc application from SPEC CPU2006 [23] . We run mul-

iple gcc applications at the same time and divide each instruction per

ycle (IPC) by the ideal IPC. Fig. 2 a shows the results when scaling the

valuation up to 8 concurrent applications, meaning that the sharing

urts the performance of gcc.

Y. Mo, J. Jia, P. Li et al. Fundamental Research 4 (2024) 651–659

2

a

c

s

t

t

t

w

s

r

t

m

t

t

i

f

u

t

t

n

n

u

2

a

r

t

z

fi

r

s

s

s

l

t

s

r

c

m

3

i

m

m

3

b

l

a

p

t

a

a

Fig. 3. Performing labels on requests.

Fig. 4. The structure of a labeled request.

w

s

s

w

l

t

t

s

i

l

p

c

f

o

F

d

e

a

l

r

r

s

(

o

u

e

d

h

t

t

M

m

l

o

w

w

t

3

g

t
.2. Data movements among multiple tiers

The wide use of heterogeneous devices, e.g., DRAM, NVM and SSD,

ims to meet the demands of systems and applications. Meanwhile, the

onfiguration space of multi-tier caching enables the design of complex

ystems but increases the complexity of data movements among multi-

ier structures, called multi-tier configuration problem . Beyond the tradi-

ional layer-to-layer view of caching, we need to coordinate the access

o these layers shared by multiple applications.

The learned index that supports insert operations needs to load the

hole data node to execute the model retraining process, which brings

ignificant data movements. The model retraining process can block the

equests from other applications, since the large data stream fills up

he cache space. With the increase of the hierarchical memory tiers, the

odel re-training process leads to many data movements. We evaluate

he performance of different operations of the learned index including

he lookup and insert under different multi-tier configurations.

Motivating Example(ii): To evaluate the performance of learned

ndexes under different multi-tier configurations, we use the same plat-

orm as Section 2.1 and carry out read-only and write-only learned indexes

nder the YCSB Benchmark [24] . Fig. 2 b shows the lookup and insert

hroughputs of the learned index under different multi-tier configura-

ions, which demonstrates that adding a cache layer becomes helpful, but

ot always . Therefore, in order to improve the overall performance, it is

ecessary for the learned index to explore an optimal multi-tier config-

ration.

.3. The need for labeled memory systems

In general, cross-application contentions and multi-tier configurations

re derived from the gap between high-level application semantics (e.g.,

esource demands) and underlying hardware in modern memory sys-

ems.

We argue that the cross-application contentions occur in the hori-

ontal direction of the shared hardware resources, and multi-tier con-

gurations occur in the vertical direction among the shared hardware

esources. In both directions, there are complex data movements and

evere performance degradation due to the unawareness of underlying

hared hardware resources.

To overcome these limitations, we propose a new labeled memory

ystem to convey high-level program semantics of applications to under-

ying hardware resources. In particular, we leverage labels to represent

he resource demands of applications so that the shared hardware re-

ources are aware of the high-level applications. Moreover, the label is

elated with the shared hardware resource partitioning, and each appli-

ation acquires sufficient shared hardware resources to achieve perfor-

ance improvements.

. The design of LaMem

In order to efficiently support high-level applications, LaMem mit-

gates the resource contentions and expensive data movements among

emory hierarchies. LaMem consists of three main components: label

echanism, resource partitioning, and dynamic resource adjustment.

.1. The label mechanism

In this section, we discuss the semantics and the initialization of la-

els. Moreover, we study how to perform labels on requests and how

abels propagate within the memory hierarchy.

The Initialization of Labels: We define a new hardware-software

bstraction, called label , which serves as the basic unit of expressing the

riority of application programs, to convey high-level resource demands

o the low-level system hardware. The shared hardware resources are

llocated for each application according to their labels. Hence, the label

bstraction is the cornerstone of our labeled memory system.
653
To allow underlying shared hardware resources to distinguish clients

ith different priorities, we add a label register into each CPU core to

tore its label (as shown in Fig. 3). The label register occupies small

pace (no more than 1B). Requests from each processor will be attached

ith corresponding labels before being sent to the cache layer.

The labels are initialized by the user in advance and written to the

abel-register through system software. The value of a label represents

he priority of an application. To enable the memory system to provide

he support for specified labels determined by users, we add one in-

truction into our labeled memory system, called lstore . This instruction

s called via < lstore reg, label > , where 𝑟𝑒𝑔 is the destination

abel register in the core, and the 𝑙 𝑎𝑏𝑒𝑙 represents the priorities of ap-

lications from users. Before applications run, the label register of each

ore stores the corresponding labels via predefined settings, and the de-

ault value is zero.

The Labeled Requests: The labeled request is the basic component

f LaMem. The individual fields of the labeled request are shown in

ig. 4 . The conventional fields for memory access include virtual ad-

ress, size, thread-id, read/write commands, and flags. Since the mod-

rn 64-bit memory bus has not been fully used up [25] , there are 16 bits

vailable in the virtual address, which can be exploited as the label.

Performing Labels on Requests: Once a core issues a request, the

abel stored in the label register will be appended to the corresponding

equest and travel along with entire lifetime. The appended label is not

elated with the execution correctness of requests, and only provides

upplemental information to enable more flexible resource allocation

details shown in Section 3.2). As the priority of each workload may vary

ver time, the labeled memory system needs to provide a dynamic label

pdate mechanism according to the characteristics of each workload for

fficient service.

Propagation in Memory Hierarchies: We need to address the main

esign issue: labeling multi-phase writeback requests in multi-tiered memory

ierarchies . In general, a write operation consists of multiple phases due

o the multi-tiered memory hierarchies. For instance, a dirty block of

he last level cache is selected to be evicted when a cache miss occurs.

oreover, the memory system writes this evicted block back to the next

emory layer. During this writeback phase, we cannot determine which

abel is appended to the writeback request. To address this problem, we

bserve that it is necessary to store the label message of each request

hen there are multi-phase writeback requests. The label will be stored

ith each cache block, and these extra bits are negligible compared with

he large size of cache blocks.

.2. Shared resource allocation

Conventional LRU-based shared cache replacement does not distin-

uish the data blocks of each client, which potentially causes cache

hrashing, unfairness and QoS problem, and increased data movements

Y. Mo, J. Jia, P. Li et al. Fundamental Research 4 (2024) 651–659

Fig. 5. Two partitioning schemes of the shared cache. (a) the traditional

cache partitioning scheme. (b) the way-based cache partitioning scheme.

a

a

a

t

t

F

o

o

i

p

c

o

o

t

o

i

t

s

v

a

c

o

s

a

a

3

t

W

r

n

3

t

a

t

t

t

o

t

c

Fig. 6. The flush-based resource repartitioning process .

Fig. 7. Processing read/write requests before the dynamic adjustment .

T

d

p

d

t

t

o

t

e

p

3

s

t

m

t

r

l

f

❶

i

a

t

t

r

w

t

r

v

n

t

a

c

mong cache layers. We present an efficient cache isolation technology

nd on-demand resource offering scheme to mitigate the interference

mong different clients, thus obtaining energy savings and improving

he quality of services.

We utilize the way-based partitioning scheme for the shared cache

o guarantee the cache resource isolation among clients. As shown in

ig. 5 , the cache partitioning scheme leverages the way (a way consists

f a data block and the valid and tag bits), and we distribute ways in

ne cache set to different clients according to their labels.

In many real-world scenarios, there is a trade-off between offer-

ng differentiated services and fairness-oriented services for clients. We

resent an on-demand cache resource offering strategy to coalesce both

lients’ resource demands and their priorities. We first meet the demands

f high-priority clients, and then process the requests from the lower pri-

rity clients. When the shared cache resources are insufficient to meet

he demands for all applications, we provide an on-demand resource

ffering strategy by implementing different allocating policies.

Priority-based Design : Given a set of labels with different prior-

ties, the resource allocator chooses applications to serve according to

he high-priority-first principle. All applications obtain their required re-

ource capacity in the priority order. The priority-based principle pro-

ides the flexibility to exhibit certain priorities for performance guar-

ntees on the system. This design aims to satisfy the QoS demands of

lients with high priority.

Proportion-based Design : For some applications with the same pri-

rity, if the remaining resources are insufficient to meet the clients’ re-

ource requirements, the remaining resource capacity will be divided

mong sharers in proportion according to their demands. This scheme

ims to guarantee the fairness of equal-priority applications.

.3. Dynamic resource adjustments

To guarantee real-time QoS, fast and low-overhead repartitioning

echniques are required to meet different clients’ timing requirements.

e describe the following two approaches: the flush-based baseline

epartitioning and our proposed low-overhead lazy-repartitioning tech-

iques.

.3.1. Flush-based repartitioning

Most of existing dynamic cache partitioning schemes are driven by

he underlying hardware (e.g., PARD [2] and QoSMT [26]), while some

re driven by the software (e.g., dCat [27]). However, they need to use

he flush-based approach to remove a cache partition after changing

he cache allocation explicitly. In flush-based resource repartitioning,

he dynamic adjustment among cache partitions will cause extra time

verhead and the performance slowdown. Fig. 6 shows the process of

he adjustment.

(a) Initial stage: Assuming that there are two clients (e.g., 𝐴 and 𝐵)

o-located in the memory system, sharing the cache resource equally.
654
hey respectively occupy partitions 𝑃1 and 𝑃2 that are filled with their

ata.

(b) Repartition beginning: 𝐴 needs more cache capacity to improve its

erformance and triggers the adjustment among 𝑃1 and 𝑃2 .

(c) Flushing operation: When reallocating part of the 𝑃2 ’s capacity and

istributing it to application 𝐴 , we need to flush the dirty cachelines to

he next cache layer or the backing memory, and then invalidate their

ags. This operation will block the process of 𝐵 and cause extra time

verhead.

(d) Repartition finished: We finally modify the records of each applica-

ions’ cache partition statistic table (CPST), which records the bitmask of

ach partition, and thus the flush-based resource repartitioning is com-

leted.

.3.2. Lazy-repartitioning

To address the limitations of the flush-based resource repartitioning

cheme, we propose the lazy-repartitioning approach to avoid the ex-

ra time overhead caused by flush operations, which relies on the label

echanism and CPST.

As shown in Fig. 7 , the cache utilizes the base field which records

he initial cache partition of each application to process read and write

equests before the dynamic adjustment. Fig. 7 a illustrates the cache

ookup operation when cache hits occur; each client correctly per-

orms cache read and write within its respective initial cache partitions.

When the memory access request is received, the label of this request

s used to index the cache partition recorded in the base field. ❷The

ddress is searched in the tag array as a conventional cache. ❸If the

ag hits, the request for data array will be served. Fig. 7 b illustrates

he cache eviction and insertion when cache misses occur; clients cor-

ectly perform possible data array evictions and the new entry insertion

ithin their respective initial cache partitions. For example, ❹when the

ag misses, a request is sent to the next cache layer. The label of the

eturned request is used to index the cache partition. ❺Meanwhile, the

ictim tag and its corresponding data array entry are evicted, and the

ew tag is inserted if there is not enough space there. ❻If not, the new

ag is inserted immediately. The data is returned to the requested cache

s soon as arriving. Inserting a new line into the cache increases the

ritical path since other cache access requests are involved.

Y. Mo, J. Jia, P. Li et al. Fundamental Research 4 (2024) 651–659

Fig. 8. Processing read/write requests during the dynamic adjustment pe-

riod .

a

o

c

t

m

e

fi

a

w

+

i

c

a

(

t

v

t

4

t

c

i

i

4

t

f

t

r

s

p

p

d

l

c

o

a

w

d

e

f

t

d

i

Fig. 9. The throughputs under different index sizes .

4

t

n

s

d

o

g

t

n

c

s

t

A

t

s

t

o

A

r

i

n

s

b

4

o

i

i

fi

e

p

l

a

e

e

W

a

d

c

q

t

m
The cache access behaviors during the dynamic adjustment period

re shown in Fig. 8 . The base field records the initial cache partition

f each client, and the add and del fields respectively record the in-

reased and decreased cache partition ranges over initial values. The

hree records support our proposed Lazy-Repartitioning dynamic adjust-

ent approach.

We first look up the data with the tag as shown in Fig. 8 a. The differ-

nce between Figs. 8 a and 7 a is step ❶. We adopt the lazy scheme, which

rst modifies the records of CPST while not achieving the real dynamic

djustment among cache partitions. Therefore, during the lookup phase,

e need to check all possible areas (i.e. bitmask_base + bitmask_add

 bitmask_del , ”+ ” means OR operation) indexed by the label. Fig. 8 b

llustrates the cache eviction and insertion when the tag misses the

ache, and the difference between Figs. 8 b and 7 b is step ❹.The newly

rrived data entry needs to be handled in its adjusted cache partition

i.e. bitmask_base + bitmask_add - bitmask_del , “- ” means XOR opera-

ion) indexed by the labels. If there is not enough space remaining, the

ictim segments are selected to make room for the new block, and their

ags are evicted. The block is finally inserted.

. Case study

We utilize the learned index as a case study to demonstrate the effec-

iveness of LaMem. We first introduce the learned index and exploit the

haracteristics of its different operations. We further demonstrate our

mplementation details and propose a shortcut scheme for the learned

ndex.

.1. The learned index

An index is generally used to reduce the high-latency I/Os, but the

raditional index structures suffer from the performance bottleneck of

requently and inefficiently accessing indexes in large-scale memory sys-

ems. Learned Index [16] is proposed to address this bottleneck, which

eplaces the index structure with the computation models. The key in-

ight is that the index structure can be viewed as a model that returns a

redicted position with a given key. When the fixed-length key-position

airs are sorted by the keys, this model approximates the cumulative

istribution function (CDF) that can be further represented by machine

earning models. By using the learned index, we can significantly de-

rease the query latency.

ALEX is a state-of-the-art learned index that is able to support update

perations, contains a tree-like structure, and preserves several gaps in

dvance to insert new data. ALEX structure is similar to the B+ tree,

hich only stores records in leaf nodes. When the filling ratio of the

ata node reaches the threshold, ALEX carries out the node split and

xpansion operations to acquire sufficient gaps. We choose the ALEX

or the case study due to achieving high performance and allowing run-

ime insertion. Since most learned indexes have similar structures and

ata processing flow [28–30] , LaMem is also applicable to other learned
ndexes. h

655
.2. The learned index characteristics

We leverage the learned index ALEX [17] to explore the characteris-

ics of different operations including lookup and insert. Specifically, we

eed to bulk load it with a batch of records first to initialize the index

tructure and further allow it to execute lookup or insert operations. The

etails about the experimental setup are shown in 5.1 .

Observation 1: Insertion requires more data accesses. For insert

perations, the learned index carries out the lookup operation with the

iven key. When failing to obtain the value, the index attempts to insert

he records to the predicted position. As a result, the insert operation

eeds to read more data from the cache and write more data to cache,

ompared with lookup operations.

Observation 2: The lookup performance is related with the data

ize of the index. We load the ALEX with one million, ten million,

wenty million, thirty million, forty million, and fifty million records.

fter the initialization, we send one hundred thousand lookup requests

o the learned index continuously and calculate the throughput. Fig. 9

hows that the lookup throughput of the learned index decreases with

he increase of database sizes.

Observation 3: The performance of insert is lightly related with

peration amounts. For Write-1, Write-2 and Write-3, we first load

LEX with one thousand, ten thousand, and one hundred thousand

ecords respectively, and then insert records into ALEX to reach the set

ndex size. We observe that the insert throughput is smooth when the

umber of insert operations increases as shown in Fig. 9 . We also ob-

erve that the insert throughput of Write 1 is slightly lower than others

ecause its index structure is more possible to be changed.

.3. Shortcut scheme

We use a shortcut scheme for the multi-client learned index based

n the above observations. We assume that each client runs one learned

ndex with a single operation in each core. Taking the following steps to

mplement LaMem for the learned index. (1) Before partitioning, LaMem

rst evaluates and collects the characteristics of the initial database of

ach client in an offline way. Specifically, LaMem gathers the through-

ut curves of clients with lookup operations under candidate cache al-

ocations. The insert operation contains a similar process as the lookup

t the beginning, and the insert performance is not affected by the op-

ration amount. Hence, it is reasonable to profile the clients through

xecuting lookup operations to obtain the approximate demands. (2)

e distribute the higher priority to the client with high write frequency

ccording to Observation 1. (3) For the read-only client with a smaller

ata size than the threshold, we bypass their data requests around the

urrent cache layer to save resources. But for clients with high write fre-

uencies and the initial data sizes are still under the threshold, we attach

hem with the modest priority. (4) Besides, if vacant space remains when

eeting all the needs of clients, we will distribute it to the clients with

igh priority. After that, we finish the implementation process.

Y. Mo, J. Jia, P. Li et al. Fundamental Research 4 (2024) 651–659

Table 1

The experimental configurations .

Hardware Configurations

CPU 8 8-issue In-Order X86 cores, 2GHz

L1 cache 32KB 2-way, hit = 2 cycles

L1 cache 1MB 8-way, hit = 10 cycles

Shared LLC 8MB 16-way, LRU, hit = 20 cycles

DRAM 256MB: FR-FCFS request scheduling

1 channel, 1 rank/channel, 8 banks/rank

Burst Length = 8, Row buffer = 1KB

70 ns read latency, 70 ns write latency

NVM-Memory 8GB: FR-FCFS request scheduling

4 channel, 1 rank/channel, 8 banks/rank

Burst Length = 8, Row buffer = 1KB

150 ns read latency, 300 ns write latency

Table 2

Applications of the LaMem (CS = Cache-Sensitive, ST = Streaming) .

Class Applications

CS soplex, omnetpp, lbm, gcc

ST milc, libquantum, hmmer, namd,

calculix, leslie3d, gromacs, bzip2

5

L

t

u

b

p

5

i

N

d

s

g

A

r

a

t

L

c

T

e

t

a

t

E

r

m

p

•

I

s

e

•

a

o

o

Fig. 10. Cache Allocation for gcc - mcf .

•

c

o

p

r

t

l

w

o

f

m

a

b

t

p

o

s

o

a

m

T

𝐵

h

(

1

5

u

g

3

q

t

m

c

m

p

o

a
. Evaluation and analysis

We evaluate the performance of the learned index implemented in

aMem compared with the performance in hierarchical memory struc-

ure with different resource management schemes. Besides, we also eval-

ate LaMem with 12 representative applications from SPEC benchmark,

ecause LaMem is general enough and can be customized to other ap-

lications.

.1. Experimental setup

We use Gem5-NVMain [18,22] platform to evaluate LaMem. NVMain

s a cycle-accurate main memory simulator for NVM technologies. The

VM system consists of x86-64 processors running at 2 GHz, 32 KB L1

ata and instruction caches, and 8 MB shared last level cache as de-

cribed in Table 1 . Without loss of generality, we model PCM technolo-

ies [31] with 8 GB capacity and DRAM cache with 256 MB [32] .

Applications. We utilize the open-sourced learned index

LEX [17] as the application used for this evaluation. Each core

uns a learned index executing different operations, including insert

nd lookup upon the YCSB dataset. We have also used 12 represen-

ative applications from the SPEC benchmark suite [23] to evaluate

aMem. As shown in Table 2 , these applications are classified into

ache-sensitive (CS) or streaming (ST), similar to prior works [3,33] .

he performance of the CS applications changes significantly over the

qual-share baseline as cache size varies. The applications belonging

o the ST category still achieve the same level of performance as using

ll cache resources when the resource contention exists. We execute

en different multiple programmed workloads (i.e., coalescence).

ach coalescence consists of 8 applications randomly selected (with

eplacement) from our pool of applications. They are co-located in the

emory system, and each application runs with ten billion instructions.

Comparisons. To demonstrate the performance gains from the pro-

osed techniques, we compare LaMem with the following schemes:

 A memory system with unmanaged shared cache allocation (SHARE) .

t refers to the baseline configuration, where the shared hardware re-

ources are left unpartitioned and shared by all applications pinned into

ach core.

 A scheme for equal-sharing cache allocation (SE) [34] . It demonstrates

n equally-partitioning technique of the shared cache capacity between

n-chip cores. The scheme guarantees fairness because all applications

btain the same capacity across different schedules.
656
 A scheme for proportional-sharing cache allocation (SP) [35] . Appli-

ations with different priority levels provide service differentiation as

pposed to fairness. Note that SE corresponds to a special case of

roportional-sharing when all applications have the same priority.

Metrics. We measure system performance using the following met-

ics: throughput metric, QoS metric and data movements metric.

Throughput Metric. Throughput metric is the number of operations

hat the learned index can process per second. Prior works focusing on

earned indexes view the throughput as the primary metric. In this work,

e calculate the average throughput to measure the performance gains

f the leaned index.

QoS Metric. We use equal-share cache allocation to define the per-

ormance bottom line for QoS, which provides baseline QoS results for

ulti-processor users. The QoS metric is defined as the sum of per-

pplication performance slowdowns (as negative percentages) over this

aseline [34] . We use the throughput to evaluate the performance of

he learned index and the IPC (Instruction Per Cycle) to evaluate the

erformance of the SPEC benchmark.

Data Movements Metric. To quantify the impact of different schemes

n the complexity of data movements, we use the BPI (Bytes Per In-

tructions) metric for each coalescence, where 𝑆𝑖𝑛𝑠𝑡 represents the sum

f co-running instructions, 𝑆𝑐 𝑎𝑐 ℎ𝑒𝑙𝑖𝑛𝑒 and 𝑆𝑝𝑎𝑔𝑒 respectively represent the

mounts of 64 B cacheline and 4 KB pages movements. 64 B cacheline

ovements occur respectively in LLC and DRAM cache, LLC and NVM.

he 4 KB page movements occur between DRAM cache and NVM:

𝑃 𝐼 = 1
𝑆𝑖𝑛𝑠𝑡

(
𝑆𝑐 𝑎𝑐 ℎ𝑒𝑙𝑖𝑛𝑒 ⋅ 64 + 𝑆𝑝𝑎𝑔𝑒 ⋅ 4096

)
(1)

All the experiments run on a Linux server (Ubuntu 18.04.3), which

as two 26-core Intel(R) Xeon(R) Gold 6230R CPU @ 2.10GHz CPUs

each core with 32KB L1 instruction cache, 32KB L1 data cache, and

MB L2 cache), 32MB last level cache and 8GB DRAM.

.2. Lazy-repartitioning

To guarantee real-time QoS, fast and low-overhead repartitioning is

sed for meeting different application’s timing requirements.

We trigger the cache capacity adjustment between the application

cc and mcf. Before adjustment, gcc and mcf are allocated on average

 ways and 1 way of cache capacity respectively to better fit their re-

uirements. Temporal resource repartitioning occurs during simulation

ime 520 to 540 million cycles, when gcc enters a phase that needs

ore capacity. Fig. 10 shows the cache resources repartitioning pro-

ess. Flush-based repartitioning produces extra time overhead, which

eans that mcf only executes cacheline flush operations and blocks

rogram-mcf processing during this period, while producing extra time

verhead and waste of cache resources. However, lazy-repartitioning

dapts to this change quickly without time overhead, and the shaded

Y. Mo, J. Jia, P. Li et al. Fundamental Research 4 (2024) 651–659

Fig. 11. The change of IPC curve .

Fig. 12. The change of MPKI curve .

a

r

m

r

g

m

I

a

t

F

(

m

5

p

c

t

p

v

F

s

a

L

p

l

Fig. 13. The curves of the QoS guaranteed schemes .

Fig. 14. The throughput of learned indexes .

5

o

1

l

m

t

a

v

L

w

r

l

w

5

d

L

2

a

l

l

a

ments.
rea is the performance gains over flush-based repartitioning, since lazy-

epartitioning makes full use of reallocated resources during the adjust-

ent period.

The IPC curves under flush-based repartitioning and lazy-

epartitioning schemes are shown in Fig. 11 . Specifically, gcc -lazy and

cc -flush have almost the same IPC results because gcc is allocated

ore capacity without the interference of repartitioning. However, the

PC of mcf -lazy decreases more slowly than mcf -flush after triggering

djustment, since the reallocated capacity of mcf is fully used under

he lazy-repartitioning scheme during the adjustment period. Similarly,

ig. 12 depicts that mcf -lazy and mcf -flush have almost the same MPKI

Misses Per Kilo-Instruction) results, and the MPKI of mcf -lazy increases

ore slowly than mcf -flush after triggering adjustment.

.3. QoS Guarantee

QoS demonstrates the ability of the memory system to provide an ap-

lication with guaranteed baseline performance, and we use equal-share

ache allocation to define the performance bottom line for QoS within

he user-specified threshold (-5% in this paper). For each scheme, we

lot the percentage of applications or coalescences using QoS metric

alues (Fig. 13). These curves are essentially Cumulative Distribution

unctions (CDF), so that a higher curve indicates a better performing

cheme. We find that LaMem can guarantee the QoS for 80% of the

pplications, while only 30% in SHARE reach the QoS threshold, since

aMem can use labels to convey higher-level program semantics of ap-

lications to underlying hardware resources, to guarantee differentiated

evels of performance.
657
.4. System throughput

Eight learned indexes run concurrently, and each executes insert

r lookup operations. Read 1–4 execute lookup operations and Write

-4 execute insert operations. Fig. 14 shows the performance of each

earned index under different schemes. SHARE has comparable perfor-

ance to LaMem since not every learned index has been initialized at

he same time. We observe that LaMem achieves the best performance

nd is much better than SE because the shared cache resources are di-

ided according to their demands, and low priority requests bypass the

LC or DRAM cache layer. When the learned index becomes large-scale

ith frequent insert operations, it requires more memory resources and

esults in performance degradation. Simple resource partition scheme

ike SE can not meet their demands, while SHARE is unable to cope

ith resource contention problems.

.5. Decreased data movements

We count the amounts of data movements for four coalescences un-

er different schemes (Fig. 15). These results show that SE, SP and

aMem respectively reduce the amount of data movements by 21.5%,

7.3%, and 43.2% on average over SHARE scheme, since LaMem lever-

ges the resources partitioning to decrease the data movements of co-

ocated applications. Moreover, the proposed shortcut design is used for

ow-priority applications to mitigate the complexity of data movements

mong hierarchies. LaMem thus reduces the amounts of data move-

Y. Mo, J. Jia, P. Li et al. Fundamental Research 4 (2024) 651–659

Fig. 15. The decreased data movements .

6

d

f

p

s

w

s

I

a

H

P

s

f

m

m

c

n

3

e

l

n

f

p

i

m

v

s

c

7

t

h

i

f

w

o

d

a

r

p

C

d

w

d

e

c

[

w

c

r

m

H

t

n

r

o

m

8

m

e

t

i

r

m

t

e

s

w

D

w

A

d

R

. Related works

Resources-aware Scheduling: TPShare [14] proposes a vertically coor-

inated scheduling solution to enable the coordination of schedulers

rom different horizontal layers, which reduces resource waste and

erformance interference due to independent time-sharing or space-

haring scheduling of different layers under cloud application frame-

orks. LABIOS [15] presents a distributed, label-based I/O system to

upport many I/O workloads under a single storage system (unique

/O requirements lead to a proliferation of different storage devices

nd software stacks, many of which have conflicting requirements.).

owever, the scheduler in LABIOS fails to address the QoS problems.

ARD [2] presents a centralized platform with a resource manager in

torage systems to manage the shared resources. Unlike them, our work

ocuses on label-based resources management to decrease data move-

ents in memory systems.

Data Movements in Memory Hierarchy: Given the high cost of data

ovements in modern memory systems, the energy and performance

osts of moving data between memory and computation units are sig-

ificantly higher than the computation costs [9,36] . Recent advances in

D-stacked memory technology provide an opportunity to avoid unnec-

ssary data movements between memory and the CPU [37] . The logic

ayer [37] is used to perform processing-in memory (PIM), also known as

ear-data processing [10,11] , where some computations are transferred

rom the CPU to the logic layer underneath the memory layer. Promising

rogress has shown in in-memory and near-memory processing, reduc-

ng data movements by moving elements closer to the data. However,

any important issues arise when adding compute logic to memory de-

ices [12] . In our paper, LaMem presents an efficient resource allocation

cheme and mitigates the complexity of data movements among hierar-

hies.

. Discussion

While this paper demonstrates that LaMem can efficiently improve

he performance and decrease the data movements from the underlying

ardware layer, the following issues are needed to be discussed, includ-

ng:

(i). The prototype of LaMem. Each application is pinned to the dif-

erent core, and all requests from the located application of each core

ill be attached into the same label message, like [2,3,6] . The prototype

f LaMem can be optimized to support multiple threads or attached to

ifferent operations in the learned index. A more intelligent label mech-

nism will be implemented in future work.

(ii). Memory overhead. The memory overhead comes from the label

egister of the CPU and the cache partition statistics table (CPST). As
658
reviously discussed, the label register is tiny (1B) in each core, and

PST needs only 1KB for eight applications. The cache storage overhead

epends on the number of processor cores. For example, on a machine

ith a 16-cores processor, we only need 5 bits (4 bits for distinguishing

ifferent applications and 1 bit for setting priorities) to provide differ-

ntiated services, which introduces 0.98% (5/(64 × 8) = 0.0098) extra

ache resources compared with the original cache.

(iii). Comparisons with real hardware. PARD [2] and Labeled RISC-V

5] exist in the architecture level fully driven by the underlying hard-

are, which provide a new programming interface to convey an appli-

ation’s high-level information to the hardware to manage the shared

esources, and introduce a per-computer centralized platform resource

anager to control resource allocation and trigger resource adjustments.

owever, unlike them, our design in the system level enables new func-

ionalities, like middleware-supported differentiated services and dy-

amic resource adjustments in memory systems. LaMem aims to build a

esource-isolated and cross-tiered memory system with a fast and low-

verhead cache repartitioning technique to reduce the number of data

ovements.

. Conclusion

In order to mitigate resource contentions and expensive data move-

ents among increasing memory hierarchies, we present a simple yet

ffective hardware-software abstraction, called Label , which bridges

he semantic gap between the application layer and the underly-

ng hardware layer. Moreover, our proposed LaMem presents a lazy-

epartitioning technique to avoid the extra time overhead and perfor-

ance slowdown during the dynamic adjustment period. We also cus-

omize LaMem for a learned index as a case study to demonstrate the

fficiency and applicability of LaMem. Extensive experimental results

how that LaMem efficiently improves the performance of applications

ith few data movements compared with existing memory systems.

eclaration of competing interest

The authors declare that they have no conflicts of interest in this

ork.

cknowledgment

This work was supported in part by National Natural Science Foun-

ation of China (62125202) .

eferences

[1] G. Amvrosiadis, A. R. Butt, V. Tarasov, E. Zadok, M. Zhao, Data storage research

vision 2025(2019). https://dl.acm.org/doi/book/10.5555/3316807 .

[2] J. Ma, X. Sui, N. Sun, et al., Supporting differentiated services in computers via pro-

grammable architecture for resourcing-on-demand (pard), in: ACM SIGPLAN No-

tices, 50, 2015, pp. 131–143 .

[3] N. El-Sayed, A. Mukkara, P.-A. Tsai, et al., Kpart: A hybrid cache partitioning-sharing

technique for commodity multicores, in: 2018 IEEE International Symposium on

High Performance Computer Architecture (HPCA), 2018, pp. 104–117 .

[4] J. Mars, L. Tang, M.L. Soffa, Directly characterizing cross core interference through

contention synthesis, in: Proceedings of the 6th International Conference on High

Performance and Embedded Architectures and Compilers, 2011, pp. 167–176 .

[5] Z. Yu, J.M. Bowen Huang, N. Sun, et al., Labeled RISC-V: A new perspective on

software-defined architecture, Workshop on Computer Architecture Research with

RISC-V(CARVV), 2017 .

[6] C. Intel, Improving Real-time Performance by Utilizing Cache Allocation Technol-

ogy, Intel Corporation, 2015 .

[7] L. Liu, Z. Cui, M. Xing, et al., A software memory partition approach for eliminat-

ing bank-level interference in multicore systems, in: Proceedings of the 21st Inter-

national Conference on Parallel Architectures and Compilation Techniques, 2012,

pp. 367–376 .

[8] J. Bent, G. Grider, B. Kettering, et al., Storage challenges at los alamos national lab,

in: IEEE 28th Symposium on Mass Storage Systems and Technologies (MSST), 2012,

pp. 1–5 .

[9] A. Boroumand, S. Ghose, Y. Kim, et al., Google workloads for consumer de-

vices: Mitigating data movement bottlenecks, in: ACM SIGPLAN Notices, 53, 2018,

pp. 316–331 .

https://doi.org/10.13039/501100001809
https://dl.acm.org/doi/book/10.5555/3316807
http://refhub.elsevier.com/S2667-3258(22)00223-0/sbref0002
http://refhub.elsevier.com/S2667-3258(22)00223-0/sbref0003
http://refhub.elsevier.com/S2667-3258(22)00223-0/sbref0004
http://refhub.elsevier.com/S2667-3258(22)00223-0/sbref0005
http://refhub.elsevier.com/S2667-3258(22)00223-0/sbref0006
http://refhub.elsevier.com/S2667-3258(22)00223-0/sbref0007
http://refhub.elsevier.com/S2667-3258(22)00223-0/sbref0008
http://refhub.elsevier.com/S2667-3258(22)00223-0/sbref0009

Y. Mo, J. Jia, P. Li et al. Fundamental Research 4 (2024) 651–659

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

10] X. Tang, O. Kislal, M. Kandemir, et al., Data movement aware computation parti-

tioning, in: Proceedings of the 50th Annual IEEE/ACM International Symposium on

Microarchitecture, 2017, pp. 730–744 .

11] C. Xie, S.L. Song, J. Wang, X. Fu, et al., Processing-in-memory enabled graphics

processors for 3d rendering, in: 2017 IEEE International Symposium on High Per-

formance Computer Architecture (HPCA), 2017, pp. 637–648 .

12] S. Ghose, K. Hsieh, A. Boroumand, et al., Enabling the adoption of

processing-in-memory: Challenges, mechanisms, future research directions,

arXiv:1802.00320 (2018).

13] A. Kougkas, H. Devarajan, X.-H. Sun, Hermes: A heterogeneous-aware multi-tiered

distributed i/o buffering system, in: Proceedings of the 27th International Sympo-

sium on High-Performance Parallel and Distributed Computing, 2018, pp. 219–

230 .

14] Y. Wang, L. Li, Y. Wu, et al., TPShare: A Time-space sharing scheduling abstraction

for shared cloud via vertical labels, 2019 ACM/IEEE 46th Annual International Sym-

posium on Computer Architecture (ISCA), Phoenix, AZ, USA, 2019, pp. 499-512.

15] A. Kougkas, H. Devarajan, J. Lofstead, et al., Labios: A distributed label-based i/o

system, in: Proceedings of the 28th International Symposium on High-Performance

Parallel and Distributed Computing, 2019, pp. 13–24 .

16] T. Kraska, A. Beutel, E.H. Chi, et al., The case for learned index structures, in: Pro-

ceedings of the 2018 ACM SIGMOD, 2018, pp. 489–504 .

17] J. Ding, U.F. Minhas, J. Yu, et al., Alex: An updatable adaptive learned index, in:

Proceedings of the 2020 ACM SIGMOD, 2020, pp. 969–984 .

18] N. Binkert, B. Beckmann, G. Black, et al., The gem5 simulator, ACM SIGARCH Com-

put. Arch. News 39 (2) (2011) 1–7 .

19] H. Liu, Y. Chen, X. Liao, et al., Hardware/software cooperative caching for hybrid

dram/NVM memory architectures, in: Proceedings of the International Conference

on Supercomputing, 2017, p. 26 .

20] L.E. Ramos, E. Gorbatov, R. Bianchini, Page placement in hybrid memory systems,

in: Proceedings of the international conference on Supercomputing, 2011, pp. 85–95 .

21] M.K. Qureshi, V. Srinivasan, J.A. Rivers, Scalable high performance main memory

system using phase-change memory technology, in: ACM SIGARCH Computer Ar-

chitecture News, 37, 2009, pp. 24–33 .

22] M. Poremba, T. Zhang, Y. Xie, Nvmain 2.0: A user-friendly memory simulator to

model (non-) volatile memory systems, IEEE Comput. Arch. Lett. 14 (2) (2015)

140–143 .

23] J.L. Henning, Spec cpu2006 benchmark descriptions, ACM SIGARCH Comput. Arch.

News 34 (4) (2006) 1–17 .

24] B.F. Cooper, A. Silberstein, E. Tam, et al., Benchmarking cloud serving systems

with YCSB, in: Proceedings of the 1st ACM Symposium on Cloud Computing, 2010,

pp. 143–154 .

25] P. Guide, Intel® 64 and ia-32 architectures software developers manual, Volume 3B:

System programming Guide, Part 2 (2011) 5.

26] X. Jin, Y. Zhou, B. Huang, et al., Qosmt: Supporting precise performance control for

simultaneous multithreading architecture, in: Proceedings of the ACM International

Conference on Supercomputing, 2019, pp. 206–216 .

27] C. Xu, K. Rajamani, A. Ferreira, et al., dcat: Dynamic cache management for efficient,

performance-sensitive infrastructure-as-a-service, in: Proceedings of the Thirteenth

EuroSys Conference, 2018, pp. 14:1–14:13 .

28] C. Tang, Y. Wang, Z. Dong, et al., Xindex: A scalable learned index for multicore

data storage, in: Proceedings of the 25th ACM SIGPLAN Symposium on Principles

and Practice of Parallel Programming, 2020, pp. 308–320 .
659
29] A. Kipf, R. Marcus, A. van Renen, et al., Radixspline: A single-pass learned index, in:

Proceedings of the Third International Workshop on Exploiting Artificial Intelligence

Techniques for Data Management, 2020, pp. 1–5 .

30] A. Galakatos, M. Markovitch, C. Binnig, et al., Fiting-tree: A data-aware index struc-

ture, in: Proceedings of the 2019 ACM SIGMOD, 2019, pp. 1189–1206 .

31] H.-S.P. Wong, S. Raoux, S. Kim, et al., Phase change memory, Proc. IEEE 98 (12)

(2010) 2201–2227 .

32] N. Kurd, M. Chowdhury, E. Burton, et al., Haswell: A family of ia 22 nm processors,

IEEE J. Solid-State Circt. 50 (1) (2014) 49–58 .

33] D. Sanchez, C. Kozyrakis, Vantage: Scalable and efficient fine-grain cache partition-

ing, in: Proceedings of the 38th Annual International Symposium on Computer Ar-

chitecture, 2011, pp. 57–68 .

34] J. Chang, G.S. Sohi, Cooperative cache partitioning for chip multiprocessors, in:

ACM International Conference on Supercomputing 25th Anniversary Volume, 2007,

pp. 402–412 .

35] H. Cook, M. Moretó, S. Bird, et al., A hardware evaluation of cache partitioning to

improve utilization and energy-efficiency while preserving responsiveness, in: The

40th Annual International Symposium on Computer Architecture, ISCA’13, Tel-Aviv,

Israel, June 23-27, 2013, 2013, pp. 308–319 .

36] C. Lefurgy, K. Rajamani, F. Rawson, et al., Energy management for commercial

servers, Computer 36 (12) (2003) 39–48 .

37] D. Lee, S. Ghose, G. Pekhimenko, et al., Simultaneous multi-layer access: Improving

3d-stacked memory bandwidth at low cost, ACM Trans. Arch. Code Optim. 12 (4)

(2016) 63 .

Yuxuan Mo received the B.E degree from Huazhong Univer-

sity of Science and Technology (HUST) in 2021. She is cur-

rently a PhD student majoring in computer system and archi-

tecture at HUST. Her current research interests include learned

indexes, persistent memory systems and data deduplication.

Her work has received the Best Paper Award in IEEE HPCC

2021.

Yu Hua (BRID: 09580.00.59361) is a professor in Huazhong

University of Science and Technology. He obtained his B.E

and Ph.D degrees respectively in 2001 and 2005. His research

interests include storage systems, non-volatile memory archi-

tectures, etc. His papers have been published in major con-

ferences and journals, including OSDI , FAST , MICRO , ASP-

LOS , ACM TOS , ACM TACO , IEEE TC , IEEE TPDS . He serves

as PC (vice) Chairs in ICDCS 2021, ACM APSys 2019, and IC-

PADS 2016. He is the distinguished member of CCF, and se-

nior member of ACM and IEEE. He has been selected as the

Distinguished Speaker of ACM and CCF.

http://refhub.elsevier.com/S2667-3258(22)00223-0/sbref0010
http://refhub.elsevier.com/S2667-3258(22)00223-0/sbref0011
http://arxiv.org/abs/1802.00320
http://refhub.elsevier.com/S2667-3258(22)00223-0/sbref0013
http://refhub.elsevier.com/S2667-3258(22)00223-0/sbref0015
http://refhub.elsevier.com/S2667-3258(22)00223-0/sbref0016
http://refhub.elsevier.com/S2667-3258(22)00223-0/sbref0017
http://refhub.elsevier.com/S2667-3258(22)00223-0/sbref0018
http://refhub.elsevier.com/S2667-3258(22)00223-0/sbref0019
http://refhub.elsevier.com/S2667-3258(22)00223-0/sbref0020
http://refhub.elsevier.com/S2667-3258(22)00223-0/sbref0021
http://refhub.elsevier.com/S2667-3258(22)00223-0/sbref0022
http://refhub.elsevier.com/S2667-3258(22)00223-0/sbref0023
http://refhub.elsevier.com/S2667-3258(22)00223-0/sbref0024
http://refhub.elsevier.com/S2667-3258(22)00223-0/sbref0026
http://refhub.elsevier.com/S2667-3258(22)00223-0/sbref0027
http://refhub.elsevier.com/S2667-3258(22)00223-0/sbref0028
http://refhub.elsevier.com/S2667-3258(22)00223-0/sbref0029
http://refhub.elsevier.com/S2667-3258(22)00223-0/sbref0030
http://refhub.elsevier.com/S2667-3258(22)00223-0/sbref0031
http://refhub.elsevier.com/S2667-3258(22)00223-0/sbref0032
http://refhub.elsevier.com/S2667-3258(22)00223-0/sbref0033
http://refhub.elsevier.com/S2667-3258(22)00223-0/sbref0034
http://refhub.elsevier.com/S2667-3258(22)00223-0/sbref0035
http://refhub.elsevier.com/S2667-3258(22)00223-0/sbref0036
http://refhub.elsevier.com/S2667-3258(22)00223-0/sbref0037
https://cstr.cn/BRID-09580.00.59361

	An efficient labeled memory system for learned indexes
	1 Introduction
	2 Background and motivation
	2.1 Cross-application contentions
	2.2 Data movements among multiple tiers
	2.3 The need for labeled memory systems

	3 The design of LaMem
	3.1 The label mechanism
	3.2 Shared resource allocation
	3.3 Dynamic resource adjustments
	3.3.1 Flush-based repartitioning
	3.3.2 Lazy-repartitioning

	4 Case study
	4.1 The learned index
	4.2 The learned index characteristics
	4.3 Shortcut scheme

	5 Evaluation and analysis
	5.1 Experimental setup
	5.2 Lazy-repartitioning
	5.3 QoS Guarantee
	5.4 System throughput
	5.5 Decreased data movements

	6 Related works
	7 Discussion
	8 Conclusion
	Declaration of competing interest
	Acknowledgment
	References

