
A Multi-attribute Data Structure with Parallel

Bloom Filters for Network Services�

Yu Hua1,2 and Bin Xiao1

1 Department of Computing
Hong Kong Polytechnic University, Kowloon, Hong Kong

{csyhua, csbxiao}@comp.polyu.edu.hk
2 School of Computer Science and Technology

Huazhong University of Science and Technology, Wuhan, China

Abstract. A Bloom filter has been widely utilized to represent a set of
items because it is a simple space-efficient randomized data structure. In
this paper, we propose a new structure to support the representation of
items with multiple attributes based on Bloom filters. The structure is
composed of Parallel Bloom Filters (PBF) and a hash table to support
the accurate and efficient representation and query of items. The PBF is
a counter-based matrix and consists of multiple submatrixes. Each sub-
matrix can store one attribute of an item. The hash table as an auxiliary
structure captures a verification value of an item, which can reflect the
inherent dependency of all attributes for the item. Because the correct
query of an item with multiple attributes becomes complicated, we use a
two-step verification process to ensure the presence of a particular item
to reduce false positive probability.

1 Introduction

A standard Bloom filter can represent a set of items as a bit array using several
independent hash functions and support the query of items [1]. Using a Bloom
filter to represent a set, one can query whether an item is a member of the set
according to the Bloom filter, instead of the set. This compact representation is
the tradeoff for allowing a small probability of false positive in the membership
query. However, the space savings often outweigh this drawback when the false
positive probability is rather low. Bloom filters can be widely used in practice
when space resource is at a premium.

From the standard Bloom filters, many other forms of Bloom filters are pro-
posed for various purposes, such as counting Bloom filters [2], compressed Bloom
filters [3], hierarchical Bloom filters [4], space-code Bloom filters [5] and spectral
Bloom filters [6]. Counting Bloom filters replace an array of bits with counters
in order to count the number of items hashed to that location. It is very useful

� This work is partially supported by HK RGC CERG B-Q827 and POLYU A-
PA2F, and by the National Basic Research 973 Program of China under Grant
2004CB318201.

Y. Robert et al. (Eds.): HiPC 2006, LNCS 4297, pp. 277–288, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

278 Y. Hua and B. Xiao

to apply counting Bloom filters to support the deletion operation and handle a
set that is changing over time.

With the booming development of network services, the query based on mul-
tiple attributes of an item becomes more attractive. However, not much work
has been done in this aspect. Previous work mainly focused on the represen-
tation of a set of items with a single attribute, and they could not be used to
represent items with multiple attributes accurately. Because one item has mul-
tiple attributes, the inherent dependency among multiple attributes could be
lost if we only store attributes in different places by computing hash functions
independently. There are no functional units to record the multiple attributes de-
pendency by the simple data structure expansion on the standard Bloom filters
and the query operations could often receive wrong answers. The lost of depen-
dency information among multiple attributes of an item greatly increases the
false probability. Thus, we need to develop a new structure to the representation
of items with multiple attributes.

In this paper, we make the following main contributions. First, we propose
a new Bloom filter structure that can support the representation of items with
multiple attributes and allow the false positive probability of the membership
queries at a very low level. The new structure is composed of Parallel Bloom
Filters (PBF) and a hash table to support the accurate and efficient represen-
tation and query of items. The PBF is a counter-based matrix and consists of
multiple submatrixes. Each submatrix can store one attribute of an item. The
hash table captures a verification value of an item, which can reflect the in-
herent dependency of all attributes for one item. We generate the verification
values by an attenuated method, which tremendously reduces the items colli-
sion probability. Second, we present a two-step verification process to justify the
presence of a particular item. Because the multiple attributes of an item make
the correct query become complicated, the verification in the PBF alone is insuf-
ficient to distinguish attributes from one item to another. The verification in the
hash table can complement the verification process and lead to accurate query
results. Third, the new data structure in the PBF explores a counter in each
entry such that it can support comprehensive data operations of adding, query-
ing and removing items and these operations remain computational complexity
O(1) using the novel structure. We also study the false positive probability and
algebra operations through mathematic analysis and experiments. Finally, we
show that the new Bloom filter structure and proposed algorithms of data op-
erations are efficient and accurate to realize the representation of an item with
multiple attributes while they yield sufficiently small false positive probability
through theoretical analysis and simulations.

The rest of the paper is organized as follows. Section 2 introduces the related
work. Section 3 presents the new Bloom filter structure, which is composed of the
PBF and hash table. Section 4 illustrates the operations of adding, querying and
removing items. In Section 5, we present the corresponding algebra operations.
Section 6 provides the performance evaluation and Section 7 concludes our paper.

A Multi-attribute Data Structure with Parallel Bloom Filters 279

2 Related Work

A Bloom filter can be used to support membership queries [7], [8] because of
its simple space-efficient data structure to represent a set and Bloom filters have
been broadly applied to network-related applications. Bloom filters are used to
find heavy flows for stochastic fair blue queue management scheme [9] and sum-
marize contents to help the global collaboration [10]. Bloom filters provide a
useful tool to assist the network routing, such as route lookup [11], packet clas-
sification [12], per-flow state management and the longest prefix matching [13].

There is a great deal of room to develop variants or extensions of Bloom
filters for specific applications. When space is an issue, a Bloom filter can be an
excellent alternative to keeping an explicit list. In [14], authors designed a data
structure called an exponentially decaying bloom filter (EDBF) that encoded
such probabilistic routing tables in a highly compressed manner and allowed for
efficient aggregation and propagation.

In addition, network applications emphasize a strong need to engineer hash-
based data structure, which can achieve faster lookup speeds with better worst-
case performance in practice. From the engineering perspective, authors in [15]
extended the multiple-hashing Bloom filter by using a small amount of multi-port
on-chip memory, which can support better throughput for router applications
based on hash tables.

Due to the essential role in network services, the structure expansion of Bloom
filters is a well-researched topic. While some approaches exist in the literature,
most work emphasizes the improvements on the Bloom filters themselves. Au-
thors in [16] suggested the multi-dimension dynamic bloom filters (MDDBF)
to support representation and membership queries based on the multi-attribute
dimension. Their basic idea was to represent a dynamic set A with a dynamic
s×m bit matrix that consists of s standard Bloom filters. However, the MDDBF
lacks a verification process of the inherent dependency of multiple attributes of
an item, which may increase the false positive probability.

3 Analytical Model

In this section, we will introduce a novel structure, which is composed of PBF
and a hash table, to represent items of p attributes. The hash table stores the
verification values of items and we provide an improved method for generating
the verification values.

3.1 Proposed Structure

Figure 1 shows the proposed structure based on the counting Bloom filters. The
whole structure includes two parts: PBF and a hash table. PBF and the hash
table are used to store multiple attributes and the verification values of items,
respectively. PBF uses the counting Bloom filters [2] to support the deletion
operation and can be viewed as a matrix, which consists of p parallel submatrixes

280 Y. Hua and B. Xiao

H[1][1](a1)
H[1][2](a1)

H[1][q](a1)

.

.

4 0 0 1
1 3 0 0

4 0 0 3

H[2][1](a2)
H[2][2](a2)

H[2][q](a2)

1 0 0 1
0 2 0 0

1 0 0 3

H[p][1](ap) 0 0 0 6

.

.

m

H[p][q](ap) 3 0 0 1

.

.

H[p][2](ap) 1 3 1 1

.

.

.

.

.

.

v1=F(*)

a

a1

a2

ap

.

.

1

.

.

.

.

v2=F(*)

vp=F(*)

∑
=

=
p

i
ia vV

1

…

…

Hash TableParallel Bloom Filters

Fig. 1. The proposed structure based on counting Bloom filters

in order to represent p attributes. A submatrix is composed of q parallel arrays
and can be used to represent one attribute. An array consists of m counters and
is related to one hash function. q arrays in parallel are corresponding to q hash
functions. Assume that ai is the ith attribute of item a. We use H[i][j](ai)(1 ≤
i ≤ p, 1 ≤ j ≤ q) to represent the hash value computed by the jth hash function
for the ith attribute of item a. Thus, each submatrix has q × m counters and
PBF composed of p submatrixes utilizes p × q × m counters to store the items
with p attributes.

The hash table contains the verification values, which can be used to verify
the inherent dependency among different attributes from one item. We measure
the verification values as a function of the hash values. Let vi = F (H[i][j](ai))
be the verification value of the ith attribute of item a. The verification value of
item a can be computed by Va =

∑p
i=1 vi, which can be inserted into the hash

table for future dependency tests.

3.2 Role of Hash Table

The fundamental role of the hash table is to verify the inherent dependency
of all attributes for an item and avoid the query collision. The main reason
for the query collision in terms of multiple attributes is that the dependency
among multiple attributes is lost after we insert p attributes into p independent
submatrixes, respectively. Then, the PBF only knows the existence of attributes
and cannot determine whether those attributes belong to one item. Meanwhile,
the verification based on PBF itself is not enough to distinguish attributes from
ne item to another. Therefore, the hash table can be used to confirm whether
the queried multiple attributes belong to one item.

A Multi-attribute Data Structure with Parallel Bloom Filters 281

Thus, if a query receives answer True, the two-step verification process must
be conducted. First, we need to check whether queried attributes exist in PBF.
Second, we need to verify whether the multiple attributes belong to a single item
based on the verification value in the hash table.

3.3 Verification Value

Traditionally, the hash values computed by hash functions are only used to
update the location counters in the counting Bloom filters. In the proposed
structure, we utilize the hash values to generate the verification values, which
can stand for existing items.

The basic method of generating the verification value is to add all the hash
values and store their sum in the hash table. For example, the value of variable
vi is vi = F (H[i][j](ai)) =

∑q
j=1 H[i][j](ai) for the ith attribute of item a. In this

case, the function F is a sum operation. Then, the verification value of item a
is Va =

∑p
i=1

∑q
j=1 H[i][j](ai). Thus, Va can be inserted into the hash table and

stands for an existing item a. However, in the basic method, the values computed
by different hash functions are possible to be the same and their sums might be
the same, too. Thus, different items might hold the same verification values in
the hash table and this will lead to the verification collision.

The improved method utilizes the sequential information of hash functions
to distinguish the verification values of different items. We allocate different
weights to sequential hash functions in order to reflect the difference among
hash functions. As for the ith attribute of item a, the value from the jth hash
function in the ith submatrix is defined as H[i][j](ai)

2j , which is similar to the idea of
the Attenuate Bloom Filters [17]. In attenuate Bloom filters, higher filter levels
are attenuated with respect to earlier filter level and it is a lossy distributed
index. Therefore, as for the item a, the verification value of the ith attribute is
defined as vi = F (H[i][j](ai)) =

∑q
j=1

H[i][j](ai)

2j . The verification value of item a

is Va =
∑p

i=1

∑q
j=1

H[i][j](ai)

2j . This verification value of item a can be inserted
into the hash table.

4 Operations on Data Structure

Given a certain item a, it has p attributes and each attribute can be represented
using q hash functions as shown in Figure 1. We denote its verification value by
Va, which is initialized to zero. Meanwhile, we can implement the corresponding
operations, such as adding, querying and removing items, with a complexity of
O(1) in the parallel Bloom filters and the hash table.

4.1 Adding Items

Figure 2 presents the algorithm of adding items in the proposed structure. We
need to compute the hash values of multiple attributes by hash functions and

282 Y. Hua and B. Xiao

then generate the verification values based on the improved method. Meanwhile,
the values of corresponding location counters in PBF are incremented and cor-
responding operations are denoted by PBF [H[i][j](ai)] + +. Finally, we insert
the verification value of item a into the hash table.

Add Item (Input: Item a)

Initialize Va = 0
for (i = 1; i ≤ p; i + +) do

for (j = 1; j ≤ q; j + +) do
Compute H[i][j](ai)

Va = Va +
H[i][j](ai)

2j

PBF [H[i][j](ai)] + +
end for

end for
Insert Va into the hash table

Fig. 2. The algorithm of adding an item with multiple attributes

4.2 Querying Items

Figure 3 shows the multi-attribute query algorithm, which realizes the two-step
verification process. After computing the hash values of multiple attributes, we
need to check whether the attributes exist in PBF. If any PBF [H[i][j](ai)] is 0 for
item a, the query returns answer False in order to show that the queried item a
does not exist. Otherwise, the hash values are added to generate the verification
value Va. If the value Va is also in the hash table, we can determine that item a
exists.

4.3 Removing Items

The operation of removing items needs to remove both the attributes in PBF
and the verification values in the hash table. Figure 4 shows the algorithm for
removing an item. As for an item a, we compute the hash values of its attributes
and subtract 1 from the values of corresponding location counters in order to
remove multiple attributes in PBF. Afterwards, the verification value of item a,
Va, is also removed from the hash table.

5 Algebra Operations

The algebra operations of Bloom filters are helpful to implement the represen-
tation and membership query of items from different sets. The operations, such
as union and intersection, are still applicative in the PBF structure. We first
introduce the union and intersection operations of standard Bloom filters and
then describe the corresponding operations of PBF and hash table. We illustrate

A Multi-attribute Data Structure with Parallel Bloom Filters 283

Membership Query Item (Input: Item a)

Initialize Va = 0
for (i = 1; i ≤ p; i + +) do

for (j = 1; j ≤ q; j + +) do
Compute H[i][j](ai)
if PBF [H[i][j](ai)]==0 then

Return False
end if
Va = Va +

H[i][j](ai)

2j

end for
end for
if Va is in the hash table then

Return True
end if
Return False

Fig. 3. The algorithm for querying an item with multiple attributes

Remove Item (Input: Item a)

Initialize Va = 0
for (i = 1; i ≤ p; i + +) do

for (j = 1; j ≤ q; j + +) do
Compute H[i][j](ai)

Va = Va +
H[i][j](ai)

2j

PBF [H[i][j](ai)] −−
end for

end for
Remove Va from the hash table

Fig. 4. The algorithm of removing an item with multiple attributes

these operations in an example. Finally, we compare the false positive probability
of the standard Bloom filter and our proposed structure with respect to union
and intersection operations.

5.1 Standard Bloom Filter

A set S can be represented as a Bloom filter using a mapping relation: S →
BF (S). We use two Bloom filters BF (A) and BF (B) to represent sets A and B
with the same number of bits and hash functions.

Definition 1. The union of two Bloom filters, BF (A) and BF (B), can be rep-
resented as BF (A ∪ B) by logical OR operation of their bit vectors.

Theorem 1. The false positive probability of BF (A ∪ B) is larger than that of
BF (A) or BF (B).

284 Y. Hua and B. Xiao

Proof. We use |A|, |B| and |A∪B| to represent the numbers of the sets A, B and
A ∪ B. Thus, we have |A ∪ B| ≥ max{|A|, |B|}. The false positive probability
of set A ∪ B is (1 − (1 − 1

m)k|A∪B|)k, which is larger than the false positive
probability of sets A or B, (1 − (1 − 1

m)k|A|)k or (1 − (1 − 1
m)k|B|)k.

Definition 2. The intersection of two Bloom filters, BF (A) and BF (B), can
be represented as BF (A ∩ B) by logical AND operation of their bit vectors.

Theorem 2. The false positive probability of BF (A ∩ B) is smaller than that
of BF (A) ∩ BF (B) with probability

(1 − (1 − 1
m

)k|A−(A∩B)|)(1 − (1 − 1
m

)k|B−(A∩B)|)

Proof. Intuitively, a bit is set in both filters if it is set by items in A ∩ B, or in
A − (A ∩ B) and B − (A ∩ B) [7]. In fact, we have

BF (A) ∩ BF (B) = BF (A ∩ B) ∪ BF (A − (A ∩ B)) ∩ BF (B − (A ∩ B))

Meanwhile, the items in A ∩ B produce the same bits for filters BF (A ∩ B)
and BF (A) ∩ BF (B). Thus, we can conclude that BF (A ∩ B) is smaller than
that of BF (A) ∩ BF (B) when BF (A − (A ∩ B)) ∩ BF (B − (A ∩ B)) = 1.

Given a standard Bloom filter and from the conclusion in [7], we know P (BF
(A − (A ∩ B)) = 1) = 1 − (1 − 1

m)k|A−(A∩B)|, and P (BF (B − (A ∩ B)) = 1) =
1 − (1 − 1

m)k|B−(A∩B)|. Thus, the event that the false positive probability of
BF (A ∩ B) is smaller than that of BF (A) ∩ BF (B) occurs with probability

(1 − (1 − 1
m

)k|A−(A∩B)|)(1 − (1 − 1
m

)k|B−(A∩B)|)

5.2 Practical Operations for PBF

Although the union and intersection operations of PBF are similar to those of
standard Bloom filters, they are different because PBF is counter-based filters.
The counter-based Bloom filters utilize the one-way hashed computation. Be-
cause we cannot accurately know the actual relationship between two data sets
represented by two Bloom filters, the union operation result is possible not to
exhibit the actual effects very accurately. Hence, we consider the conservative
viewpoint as the policy of our union operation in order to statistically display
the approximate result. The union operation in PBF obtains the bigger counter
values from two arrays in the corresponding positions. On the contrary, the in-
tersection operation in PBF obtains the smaller counter values.

Given the new structure to represent items with multiple attributes, the union
and intersection operations will get an updated hash table to store verification
values. The union operation integrates the verification values of two hash tables
into a new one. The intersection operation maintains the verification values,
which appear at both hash tables, in the new hash table. Figure 5(a) and (b)
show an example to realize the union and intersection operations of PBF and
hash tables respectively.

A Multi-attribute Data Structure with Parallel Bloom Filters 285

………

………

4 2 1 3 0

0

1

1 2 0 0 2

………4 2 2 3 0 2

PBF(A)

PBF(B)

PBF(A B)∪

Parallel Bloom Filters

………

………

4.25 20.516.25 32.5

50.25 20.5 32.5 80.5

………20.532.5

Hash Table

4.25 16.25 50.25 80.5

(a) Union Operation

………

………

4 2 1 3 0

0

1

1 2 0 0 2

………0 1 1 0 0 1

PBF(A)

PBF(B)

PBF(A B)

Parallel Bloom Filters

………

………

4.25 20.516.25 32.5

50.25 20.5 32.5 80.5

………20.5 32.5

Hash Table

∩

(b) Intersection Operation

Fig. 5. The union and intersection operations of PBF for multiple attributes

5.3 Comparisons of False Positive

We compare the false positive probability applying the union and intersection
operations in both the standard Bloom filter and the newly proposed structure.
We can compute the false positive probability of union and intersection oper-
ations for multiple attributes, which are shown in Figure 6 (Note that PBF
refers to the whole structure including PBF and the auxiliary hash table). We
carry out the comparison by the false positive probability of BF (A) ∪ BF (B)
minus that of PBF (A) ∪ PBF (B) in Figure 6(a) and BF (A) ∩ BF (B) mi-
nus PBF (A) ∩ PBF (B) in Figure 6(b) respectively. We set the parameters as
m = 1280 and k = 6.

0

0.2
0.4

0.6
0.8

1

0

0.2

0.4

0.6

0.8

1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Size of set A (x1000)Size of set B (x1000)

False positive probability of

minus)()(BBFABF ∪)()(BPBFAPBF ∪

(a) Union Operation

0

0.2
0.4

0.6
0.8

1

0

0.2

0.4

0.6

0.8

1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Size of set A (x1000)Size of set B (x1000)

False positive probability of

minus)()(BBFABF ∩)()(BPBFAPBF ∩

(b) Intersection Operation

Fig. 6. The false positive probability of union and intersection operations for multiple
attributes

Figure 6(a) displays that the false positive probability of PBF (A)∪PBF (B)
is less than that of BF (A)∪BF (B), especially when the set size becomes larger.
Figure 6(b) displays that the false positive probability of PBF (A)∩PBF (B) is
also much lower than that of BF (A)∩BF (B). The PBF structure fully supports
algebra operations and maintains low errors. For example, we can realize the
intersection operation based on PBF in order to know the common items of two
data sets. Similarly, we use the union operation to get the total information of
two data sets.

286 Y. Hua and B. Xiao

6 Performance Evaluation

We simulate the basic and improved methods of generating verification values
and compare the false positive probability for Standard Bloom Filter (SBF) and
PBF in terms of increasing number of items. In order to make the multi-attribute
operations feasible in the SBF, we can concatenate multiple attributes into one
parameter as the input to MD5 hash functions. Thus, the SBF in this paper
uses the concatenated multiple attributes as an input of hash functions and the
approach is an extension to the Bloom filters in [7] for items with multiple
attributes.

6.1 Verification Values

We compare the false positive probability of Basic Method (BM) with that of
Improved Method (IM) based on the same hash functions and available space
sizes. Each item has four attributes and each attribute is computed by six hash
functions, i.e., p = 4 and q = 6, respectively. Figure 7 illustrates the simulation
results. Compared with the basic method, the improved method can obtain
the smaller false positive probability under different space sizes. As a result of
considering the sequential information of hash functions, the improved method
can distinguish the hash values of attributes of items very well. Thus, the average
false positive probability of IM can be bounded by 0.002, which is much smaller
than BM.

0 500 1000 1500 2000 2500 3000
1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

IM
BM

the Number of Items

F
al

s
e
 P

o
s
it

iv
e

P
ro

b
a
b

il
it

y

(a) Results when m = 320

0 500 1000 1500 2000 2500 3000
1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

IM
BM

the Number of Items

F
a
ls

e
 P

o
s
it

iv
e
 P

ro
b

a
b

il
it

y

(b) Results when m = 640

Fig. 7. The false positive probability of Basic and Improved Methods

6.2 Parallel Bloom Filters

In this simulation, we use the MD5 as the hash function for its well-known
properties and relatively fast implementation. The value of an attribute can be
hashed into 128 bits by calculating the MD5 signature. Then, we divide the 128
bits into four 32-bit values and utilize the modulus of each 32-bit value by the
filter size m.

A Multi-attribute Data Structure with Parallel Bloom Filters 287

0 400 800 1200 1600 2000 2400 2800 3200 3600 4000
1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

SBF
PBF

the Number of Items

F
a
ls

e
 P

o
s
it

iv
e
 P

ro
b

a
b

il
it

y

(a) Results when m = 1280

0 400 800 1200 1600 2000 2400 2800 3200 3600 4000
1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

SBF
PBF

the Number of Items

F
a
ls

e
 P

o
s
it

iv
e
 P

ro
b

a
b

il
it

y

(b) Results when m = 2560

Fig. 8. The results of comparisons between SBF and PBF

Figure 8 shows the false positive probability of SBF and PBF in terms of
different space sizes. Note that PBF in this figure stands for the new data archi-
tecture, which consists of PBF and the hash table. We set three attributes for
each item and each attribute is computed by seven hash functions, i.e., p = 3
and q = 7. Meanwhile, the space sizes available are m=1280, 2560 counters,
respectively. It can be seen that given a certain number of items, the bounds on
the PBF are always smaller than the bounds on the SBF. The upper probability
of PBF is much smaller than that of SBF. Meanwhile, the variation trends of
PBF are smooth in terms of the increasing number of items. The main reason is
that the verification step based on the hash table can enhance the accuracy and
efficiency of PBF, which can support the operations with multiple attributes.
Therefore, although we use the simple method of attributes concatenation to
realize the attributes-based operations in SBF, the PBF shows that its false
positive probability is much lower than that of SBF.

7 Conclusion

Bloom filter is a kind of space-efficient data structure and can be widely used for
information representation and membership query in current network environ-
ments. The space efficiency is achieved with certain false positive probability in
membership query. The standard Bloom filter cannot efficiently support the rep-
resentation and query of multiple attributes for the burgeoning and higher-level
network services.

In this paper, we have presented a novel structure and practical algorithms
which outperform the conventional standard Bloom filters algorithms by using
the two-step verification process. Our proposed architecture extends the stan-
dard Bloom filters to efficiently support the membership query with multiple
attributes. By using the verification values in the hash table, we illustrate how
the false positive probability of the proposed structure can be reduced signifi-
cantly. Meanwhile, the operations on both Bloom filters and the hash table have
the complexity of O(1). Hence, the total complexity of our proposed structure

288 Y. Hua and B. Xiao

is of the order O(1). Through theoretical analysis and simulations, we further
show that the novel architecture can be efficiently applied in network services
for its small space requirement and very low false positive probability.

References

1. Bloom B.: Space/time Trade-offs in Hash Coding with Allowable Errors. Commu-
nications of the ACM, 13 (1970) 422–426

2. Fan L., Cao P., Almeida J., Broder Z.A.: Summary cache: a scalable wide area web
cache sharing protocol. IEEE/ACM Transaction on Networking, 8 (2000) 281–293

3. Mitzenmacher M.: Compressed Bloom filters. IEEE/ACM Transaction on Net-
working, 10 (2002) 604–612

4. Zhu Y.F., Jiang H., Wang J.: Hierarchical Bloom Filter Arrays (HBA): A Novel,
Scalable Metadata Management System for Large Cluster-based Storage. Proceed-
ings of the 5th IEEE International Conference on Cluster Computing (Cluster),
(2004) 165–174

5. Kumar A., Xu J., Wang J., Spatschek O., Li L.: Space-Code Bloom filter for efficient
per-flow traffic measurement. Proceedings of the IEEE INFOCOM, 3 (2004) 1762–
1773

6. Saar C., Yossi M.: Spectral Bloom filters. Proceedings of the ACM SIGMOD,
(2003) 241–252

7. Broder A., Mitzenmacher M.: Network applications of Bloom filters: a survey.
Internet Mathematics, 1 (2005) 485–509

8. Xiao B., Chen W., He Y.X., Sha E.H.M.: An active detecting method against SYN
flooding attack. Proceedings of the 11th International Conference on Parallel and
Distributed Systems (ICPADS), 1 (2005) 709–715

9. Feng W.C., Kandlur D.D., Saha D., Shin K.G.: Stochastic Fair Blue: A Queue Man-
agement Algorithm for Enforcing Fairness. Proceedings of the IEEE INFOCOM,
3 (2001) 1520–1529

10. Cuenca-Acuna F.M., Peery C., Martin R.P., Nguyen T.D.: PlantP:Using gossip-
ing to build content addressable peer-to-peer information sharing communities.
Proceedings of the 12th IEEE High Performance Distributed Computing, (2003)
236–246

11. Broder A., Mitzenmacher M.: Using multiple hash functions to improve IP lookups.
Proceedings of the IEEE INFOCOM, 3 (2001) 1454–1463

12. Baboescu F., Varghese G.: Scalable packet classification. Proceedings of the ACM
SIGCOMM, (2001) 199–210

13. Dharmapurikar S., Krishnamurthy P., Taylor D.E.: Longest Prefix Matching Using
Bloom Filters. Proceedings of the ACM SIGCOMM, (2003) 201–212

14. Kumar A., Xu J., Zegura E.W.: Efficient and scalable query routing for unstruc-
tured peer-to-peer networks. Proceedings of the IEEE INFOCOM, 2 (2005) 1162–
1173

15. Song H.Y., Dharmapurikar S., Turner J., Lockwood J.: Fast Hash Table Lookup
Using Extended Bloom Filter: An Aid to Network Processing. Proceedings of the
ACM SIGCOMM, (2005) 181–192

16. Guo D.K., Wu J., Chen H.H., Luo X.J.: Theory and Network Application of Dy-
namic Bloom Filters. Proceedings of the IEEE INFOCOM, (2006)

17. Rhea S.C., Kubiatowicz J.: Probabilistic location and routing. Proceedings of the
IEEE INFOCOM, 3 (2002) 1248–1257

	Introduction
	Related Work
	Analytical Model
	Proposed Structure
	Role of Hash Table
	Verification Value

	Operations on Data Structure
	Adding Items
	Querying Items
	Removing Items

	Algebra Operations
	Standard Bloom Filter
	Practical Operations for PBF
	Comparisons of False Positive

	Performance Evaluation
	Verification Values
	Parallel Bloom Filters

	Conclusion

