
Design and Implementation of Holistic
Scheduling and Efficient Storage for FlexRay

Yu Hua, Senior Member, IEEE, Xue Liu, Member, IEEE, Wenbo He, Member, IEEE, and
Dan Feng, Member, IEEE

Abstract—FlexRay is a new industry standard for next-generation communication in automotives. Though there are a few recent
researches on performance analysis of FlexRay, two important aspects of the FlexRay design have been overlooked. The first
is a holistic integrated scheduling scheme that can handle both static and dynamic segments in a FlexRay network. The second is
cost-effective and scalable performance. To address these aspects, we propose a novel holistic scheduling scheme, called HOSA,
which can provide scalable performance by using flexible and ease-of-use dual channel communication in FlexRay. HOSA is
built upon a novel slot pilfering technique to schedule and optimize the available slots in both static and dynamic segments.
Moreover, to achieve efficient implementation, we propose approximate computation, which can efficiently support cost-effective and
holistic scheduling by judiciously obtaining the tradeoff between computation complexity and available pilfered slots. HOSA hence
offers the salient feature of improving bandwidth utilization. Moreover, to deliver high performance and bridge the gap between
real-time communications in networks and storage management in end devices, we implement a deduplication-aware scheme
in a real SSD prototype that can reduce space overhead and extend SSD lifespan (by significantly reducing duplicate write
operations). The deduplication scheme meets the needs of message updates in FlexRay. Extensive experiments based on synthetic
test cases and real-world case studies demonstrate the efficiency and efficacy of HOSA.

Index Terms—Real-time scheduling, storage system, data deduplication

Ç

1 INTRODUCTION

MODERN automobiles involve large amounts of sensors,
actuators and Electronic Control Units (ECU) work-

ing together. This highly sophisticated interaction heavily
relies on a communication system that connects different
parts in an efficient manner [1], [2]. FlexRay [3] is an
automotive network communications infrastructure de-
veloped by the FlexRay Consortium. The FlexRay consor-
tium includes major car manufacturers such as BMW,
Daimler-Benz, General Motors, Freescale, NXP, Bosch, and
Volkswagen/Audi.

FlexRay has become one of the standards in the
automotive industry. It provides a communication infra-
structure for future generation high-speed X-by-wire
applications in vehicles. These applications are mostly
real-time and safety-critical [2]. FlexRay hence aims to
provide hard real-time capabilities through cycle-based
and time-triggered communications. The FlexRay standard
is being deployed in the major line of new vehicles. For
example, the 2007 BMW X5 is the first standard-production
vehicle in the world to use this leading-edge technology [4].
To support autonomous vehicles, FlexRay controls the

optical bus system of the Adaptive Drive chassis control
system, and is used in controlling the stabilisers and
electromagnetic valves of the dampers. This enables
adaptive drive to eliminate the effect of body roll on the
vehicle. It is envisioned in the near future that more and
more functionalities in the autonomous vehicles will make
use of the FlexRay bus system.

FlexRay provides two channels with a high bandwidth
of 10 Mb/s each and offers multiple benefits compared
with previous protocols, say Controller Area Network
(CAN) [5], across a wide range of automotive applications.
These benefits include high speed, fault tolerance, and a
deterministic cycle-based message transport, along with a
synchronized, common time base to all nodes in the
system.

FlexRay is an open standard. It aims to provide scalable,
deterministic and high performance communication for
automotive applications. However, to be practical in auto-
motive products and obtain significant performance im-
provements, we present three main observations below that
meanwhile gain useful insights and motivate our design.

Observation 1: The Isolation of Scheduling Static and
Dynamic Segments
FlexRay is a real-time system to schedule time-triggered
and event-triggered messages. FlexRay supports the trans-
mission of periodic messages in static segments (SS) and
priority-based scheduling of event-triggered messages in
dynamic segments (DS). Periodic messages are transmitted
in the unique static slots of SS according to time division
multiple access (TDMA). The operation of the FlexRay SS is
similar to the time-triggered protocol (TTP) [6]. Moreover,

. Y. Hua and D. Feng are with Wuhan National Laboratory for
Optoelectronics, School of Computer Science and Technology, Huazhong
University of Science and Technology, Wuhan, China. E-mail: {csyhua,
dfeng}@hust.edu.cn.

. X. Liu and W. He are with the School of Computer Science, McGill
University, Montreal, Canada. E-mail: {xueliu,wenbohe}@cs.mcgill.ca.

Manuscript received 6 May 2013; revised 22 July 2013; accepted 2 Aug. 2013.
Date of publication 14 Aug. 2013; date of current version 17 Sept. 2014.
Recommended for acceptance by X. Cheng.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TPDS.2013.205

1045-9219 � 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 10, OCTOBER 2014 2529

aperiodic messages are sent in the dynamic slots of DS that
is similar to ByteFlight [7] and employs a flexible TDMA
(FTDMA) approach. In both cases, the timely message
delivery depends on the message schedule that is statically
configured before the network starts to operate. The
scheduling computation involves assigning the static slots
for the periodic messages as well as the priority based
dynamic slots assignment for the aperiodic messages. A
message set is schedulable if a given message schedule
meets its deadline. Most existing work, however, only
considers the scheduling for either static segments [2], [8],
[9], and [10] or dynamic segments [11], [12], and [13]. This
isolated scheduling severely limits the performance in
terms of bandwidth utilization and transmission latency.

Observation 2: The Inefficiency of Fault Tolerance
In FlexRay networks, faults may be frequent and ubiqui-
tous due to radiation, interference and temperature
variation. Such faults can be classified into permanent
and transient faults [14]. Permanent faults are usually
caused by physical damages and lead to long-term
malfunctioning. Transient faults usually result in the mis-
calculations in the logic and data corruption and last for a
short duration. X-by-wire automotive applications are
safety-critical. They require data integrity even with the
occurrence of transient faults. Moreover, with the increas-
ing numbers of rich electronic devices in cars (e.g., around
2500 signals are exchanged among 70 ECUs of luxury cars
[5], [15]), handling transient faults demands efficient fault-
tolerant techniques to improve the system reliability. Fault
tolerance in an important feature of FlexRay. Existing work
offers fault tolerance mainly using scheduling and proba-
bilistic analysis. Although authors in [16] formulated the
scheduling problem as a mixed integer linear program-
ming algorithm, its design goal was to re-transmit as many
faulty messages as possible, which can not offer reliability
guarantee due to choosing the re-transmitted messages in
an ad-hoc manner. The re-transmission of faulty messages
can ameliorate the reliability with extra load in the
bandwidth and additional transmission latency. Recently,
authors in [9] used a systematic probabilistic analysis to
provide formal guarantee on desired reliability levels.
However, this work only considers the static segments of
FlexRay.

Observation 3: The Gap Between Real-Time
Communications in Networks and Storage Management
in End Devices
In general, FlexRay-based work mainly studies the ap-
proaches to optimize communication performance. In
practice, the performance also tightly depends upon the
storage management in end devices. Extending the end-to-
end transmission to the end devices is important to deliver
high performance and improve system reliability. To
address this problem and bridge the gap between real-
time communication and storage systems, we need to first
select a storage device that can meet the needs of the
transmission characteristics of FlexRay. Flash-based solid
state drive (SSD) is a good candidate. SSD is rapidly being
integrated into modern computer systems. It has the salient

properties of random addressing, high performance (read/
write), energy efficiency, small size and shock resistance.
While SSD offers space and cost advantages over DRAM
and performance and energy advantages over hard disks, it
in practice suffers from limited utilization [17], [18], [19],
and [20]. To alleviate the limited utilization of SSD (in
terms of lifespan and performance), we argue that
deduplication is an efficient solution that is actually
overlooked in FlexRay-based transmission systems.

Existing work fails to efficiently address the above
challenges. Specifically, although FlexRay has been widely
used as an in-vehicle communication network, its applica-
bility is severely hindered in high-speed safety-critical
X-by-wire systems [21]. FlexRay does not provide acknowl-
edgement or re-transmission schemes and hence there is
limited guarantee on message delivery for reliability.
Moreover, the authors in [16] formulated the scheduling
problem as a mixed integer linear programming algorithm,
but its design goal was to re-transmit as many faulty
messages as possible, which may fail to offer reliability
guarantee due to that the re-transmitted messages are chosen
in an ad-hoc manner. The re-transmission of faulty messages
can improve the reliability with extra loads in the bandwidth
and additional transmission latency. Recently, authors in [9]
uses systematic probabilistic analysis to provide formal
guarantee on desired reliability levels. However, this work
only considers the static segments of FlexRay.

To address the above challenges, we propose a novel
holistic scheduling scheme, called HOSA. HOSA considers
both SS and DS in the holistic scheduling design and can
support scalable fault tolerance, improve bandwidth
utilization and support efficient storage in end devices.
Specifically, we make the following contributions.

1.1 Holistic Scheduling
FlexRay is a high-bandwidth communication protocol with
a cyclic operation. Each FlexRay cycle consists of a static
segment and a dynamic segment. The former is designed
for the periodic transmission of real-time data, while the
latter supports the transmission of low-priority data and
event-triggered (aperiodic) real-time data. HOSA employs
a novel holistic scheme to schedule both static segments
and dynamic segments in a unified manner. Fast and
accurate slot computation allows HOSA to identify avail-
able static slots that can be pilfered by the task that
transmits dynamic messages. Idle slots are hence mini-
mized and HOSA achieves high bandwidth utilization.

1.2 Scalable Fault Tolerance

Scalable fault tolerance refers to the ability of the FlexRay
protocol to operate in the configurations that provide
various degrees of fault tolerance. HOSA is compliant with
existing schemes for scalable fault tolerance, and focuses
on flexibly scheduling dual channel communication and
efficiently optimizing bandwidth utilization. HOSA imple-
ments this through the design of a novel slot pilfering
technique. It further leverages approximation computation
to significantly reduce the complexity with slight impact on
the available pilfered slots.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 10, OCTOBER 20142530

1.3 Real System Implementation

To examine the performance of our proposed HOSA
scheme in FlexRay networks, we implement HOSA,
including SSD prototype and its deduplication-aware
FTL, in a real testbed. The prototype contains all the
mentioned components and functionalities. Since many of
the internal features, say, physical-page allocation and data
granularity, are hidden, existing work often considers SSD
as a black box. Based on our previous implementations in
SSD, including HAT [22] and SSDsim [23], we further
implement and improve the SSD prototype with the
content-based FTL to make it suitable to inline deduplica-
tion. In the meantime, the SSD parallelism is further
explored and exploited to support the operations. More-
over, we use synthetic test cases and real-world case
studies from the automotive industry to evaluate the
system performance in terms of overall running time,
bandwidth utilization, deadline miss ratio, transmission
latency and deduplication. Experimental results demon-
strate the efficiency and efficacy of HOSA. For instance,
compared with the existing industrial FlexRay implemen-
tation [3], HOSA obtains about 50 percent improvements
on bandwidth utilization and 61.5 percent reduction in
transmission latency.

The rest of this paper is organized as follows. Section 2
presents the FlexRay scheduling model. Section 3 describes
the holistic scheduling on both static and dynamic
segments. Section 4 presents the SSD based implementa-
tion to offer content-based management for inline dedu-
plication. We present the performance evaluation in
Section 5. Finally, we conclude our paper in Section 6.

Compared with our conference version [24], we make
significant improvements by extending the end-to-end
analysis to the end devices. We leverage deduplication-
aware SSD as a suitable storage device to meet the needs of
real-time FlexRay processing requirements. The extended
work also bridges the gap between real-time transmission
and storage management in FlexRay.

2 FLEXRAY SCHEDULING MODEL

2.1 FlexRay Cluster
A FlexRay cluster consists of the network nodes connected
by FlexRay communication channels as shown in Fig. 1.
FlexRay allows a cluster to be flexible configuration of

network topology, such as bus, star or hybrid connection. A
cluster is a communication system that contains multiple
nodes connected via at least one communication channel
directly in a bus topology or by star couplers in a star
topology. Moreover, each node in a FlexRay cluster consists
of a host and a communication controller (CC), which are
connected by a controller-host interface (CHI). The host is a
part of an Electronic Control Units (ECU) where the
application software is executed to handle incoming
messages and generates outgoing messages. The commu-
nication controller implements the FlexRay protocol ser-
vices. CHI serves as a buffer between the host and the CC.

To support real-time message communication, a bus
driver that has a transmitter and a receiver connects with
the communication controller to one communication
channel that supports the inter-node connection. The bus
driver also maintains clock synchronization with other
nodes, constructs and checks cyclic redundancy code
verification. The network nodes thus exchange periodic
and aperiodic real-time messages that are transmitted in
FlexRay communication cycles.

2.2 Static and Dynamic Segments
Static and dynamic segments are the structures of message
delivery in a FlexRay network. Static segment is a portion of
the communication cycle where the media access is controlled
via a TDMA scheme. FlexRay can determine the access to the
media in a static segment only by the progression of time.
Furthermore, the dynamic segment portion of the commu-
nication cycle makes use of Flexible Time Division Multiple
Access (FTDMA) to schedule the media access via a mini-
slotting scheme. The minislot is a time interval of the dy-
namic segment to support flexible timing configuration.
FlexRay then allows the dynamic segment access to the me-
dia based on a priority manner for the nodes to transmit data.

Static and dynamic segments demonstrate different
formats and functionalities in the communication slots.
Specifically, static communication slot is an interval of
time. The access to a communication channel is allowed
exclusively to a specific node for transmitting a frame with
a frame ID that corresponds to the slot. Each static
communication slot contains a constant number of macro-
ticks regardless of whether or not a frame is sent in the slot.
In the static segment, all communication slots are of
identical and static configuration.

Furthermore, dynamic communication slot contains one
or more minislots. The smallest time unit in a DS is the
minislot with a duration representation of gdMinislot. A
DS contains a maximum number of gNumberOfMinislots
(between 0 and 7986) minislots. Unlike a static communi-
cation slot, FlexRay allows the duration of a dynamic com-
munication slot to vary depending on the length of the
frame. A variable vSlotCounter contains the ID of the cur-
rent dynamic slot starting from a pre-configured value. In
each dynamic slot, a frame with the corresponding ID is
transmitted, and hence the duration of the dynamic slot is
determined by the length of the transmitted frame. If no
frame is sent, the duration of a dynamic communication
slot is equal to that of one minislot. In fact, frames are
transmitted within dynamic slots that are superimposed on
the minislots.

Fig. 1. Illustration of a FlexRay cluster.

HUA ET AL.: HOLISTIC SCHEDULING AND EFFICIENT STORAGE FOR FLEXRAY 2531

2.3 Dual Channel Design
Dual channel design in the FlexRay specification [3] offers
flexible transmission patterns for the static and dynamic
segments. Specifically, for scheduling static segments, each
network node maintains a slot counter variable
SlotCounterðAÞ for channel A and a slot counter variable
SlotCounterðBÞ for channel B. Both slot counters are
initialized with 1 at the beginning of each communication
cycle and further incremented at the end of each commu-
nication slot.

Fig. 2 illustrates the transmission patterns in a single
node that makes use of the static segments. The scheduling
on static segments depends upon the operations defined in
a schedule table. For example, in slot 1 the node transmits a
frame on channel A and a frame on channel B. In slot 2 the
node transmits a frame only on channel B. For scheduling
dynamic segments, each network node maintains two slot
counters, respectively for channels A and B, in scheduling
the dynamic segments. Fig. 3 illustrates the scheme of
scheduling the dynamic segments. Note that although the
slot counters for channel A and for channel B are
incremented simultaneously within the static segment,
their values can be incremented independently according
to the dynamic arbitration scheme.

Fig. 4 shows the periodic communication that has two
cycles of length in channel A and B. Each cycle contains
two time intervals with different access policies (a static
and a dynamic segment). They have different lengths that
are fixed over the cycles. Moreover, both the static and
dynamic segments have multiple slots. In the static
segment, FlexRay allows the slots number to be fixed.
The length of these slots are constant and equal, regardless
of whether static messages are sent or not in that cycle.

FlexRay uses the global configuration parameter
gdStaticSlot to specify the length of a static slot [3]. As
shown in Fig. 4, there are four static slots for the static
segment. Note that a FlexRay cycle generally contains a
symbol window and a network idle time. Since they are
actually not related with our scheduling analysis, for
simplicity, we ignore them in the examples.

The performance in practical FlexRay networks relies on
the definition of the dynamic segments’ lengths. FlexRay
specifies the length of the dynamic segment in the number
of ‘‘minislots’’, which is equal to gNumberOfMinislots.
During the transmission of dynamic segments, if there is no
message to be sent during a slot, the length of this slot
becomes very small. Otherwise, the dynamic slot offers a
transmission length, i.e., the number of minislots, to allow
for transmitting the whole message.

At the beginning of each communication cycle, the
communication controller of a node resets the counters of
slots and minislots for initialization configuration. More-
over, the controller also needs to check if there exist
messages to be transmitted, which will be further orga-
nized into the frames. As shown in Fig. 4, there exists an
assumption that all messages to be transmitted are ready
before the first bus cycle. In practice, due to different
schemes in scheduling static and dynamic segments, the
transmission scenarios would be different. Specifically,
static segments use a schedule table to select the messages
into static frames to transmit in the bus cycle. For example,
messages Ml and Mp are placed into the associated static
buffers in the CHI to be transmitted in the first bus cycle.

Fig. 2. Scheduling static segments.

Fig. 3. Scheduling dynamic segments.

Fig. 4. Dual channel scheduling on static and dynamic segments.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 10, OCTOBER 20142532

Moreover, transmitting a dynamic message is con-
strained and conditional. Only if there exist enough idle
slots until the end of the dynamic segment, the selected
messages can be transmitted during the dynamic segment
of the bus cycle. In the real implementations, when the
dynamic slot counter reaches the value of the Frame ID of
the transmitted message, FlexRay needs to check if the
current value of the minislot counter is smaller than a given
value pLatestTx. For each network node, the value
pLatestTx is fixed and depends upon the size of the largest
dynamic frame. For example, message Me prepares for
transmission before the first bus cycle starts. However,
after message mr is transmitted, there are not enough slots
left in the dynamic segment. This will delay the transmis-
sion of Me for the next bus cycle.

3 HOLISTIC SCHEDULING

This Section presents the holistic scheduling for both static
and dynamic segments with the aid of slot pilfering
technique.

3.1 FlexRay Node Architecture
A FlexRay network supports dual-channel communication
to offer the guarantee of transmission reliability. Fig. 5
shows the node architecture for scheduling static and
dynamic segments in the dual channel. Each node uses a
schedule table to maintain and schedule the messages to be
transmitted in the static segments, while using priority
queues for the dynamic segments. Here, we use capital letter
to represent the original messages and lower case for
corresponding redundant ones.

Static and dynamic segments have different scheduling
schemes to allow a message to be transmitted. First, for
scheduling static segments, a message in the schedule table
has a timing based sequence, i.e., the number of cycles and
slots. For example, the message Ma is transmitted on the
second slot of the first cycle, represented as ‘‘1/2’’. On the
other hand, for dynamic segments, we allocate the slot
number to each node and all messages in each priority
queue will be scheduled in the fixed priority way. For
example, node 1 sends the messages to slots 1 and 3 of
channel A. For each of these slots, CHI provides a buffer
that can be written by the host and read by the commu-

nication controller. At the beginning of each slot, the
communication controller needs to read the messages in
the buffers so as to facilitate the transmission of frames.

To significantly reduce the potential transmission colli-
sion and obtain the performance improvement, during any
communication slot, FlexRay only allows one node to send
messages on the bus. This node needs to transmit the
message with the frame ID that is equal to the current value
of the slot counter. We set two slot counters that
respectively correspond to the static and dynamic seg-
ments. In the design phase, we decide and allocate the
frame identifiers to nodes. Each node to send messages has
one or more static and/or dynamic slots.

For static and dynamic messages, we further leverage
different schemes to decide which messages are transmit-
ted during the allocated slots. For static messages, there
exists a schedule table with the transmission time in each
network node. When transmitting a static message starts,
a given message is placed into its associated static buffer
in the CHI. For example, static message Ma sent from
node 1 has an entry ‘‘1/2’’ in the schedule table specifying
that it should be sent in the second slot of the first static
cycle.

On the other hand, for scheduling dynamic messages,
there is an assumption that Frame ID is specified in
advance. For example, as shown in Fig. 5, dynamic message
Mh has the frame identifier ‘‘3’’. Moreover, FlexRay allows
a node to send different messages using the same dynamic
Frame ID. For example, messages Mj and Mh on node 1
have both Frame ID 3. If two or more messages with the
same frame ID prepare to be sent in the same bus cycle, a
priority scheme is used to decide which message will be
sent first. By considering the dual-channel transmission,
each dynamic message Mi or mi has their associated
priority, say priorityMi

or prioritymi
. Messages with the

same Frame ID will be inserted into a local output queue, in
which we order them based on their priorities. The
message from the head of the priority queue will be sent
in the current bus cycle. For example, message Mh will be
sent before Mj because it has a higher priority.

In addition, original and redundant messages may be
not identical in the receiver node, although this case occurs
with very small probability. In this case, the receiver node
will require a retransmission.

Fig. 5. Node architecture for static and dynamic segments in a dual channel.

HUA ET AL.: HOLISTIC SCHEDULING AND EFFICIENT STORAGE FOR FLEXRAY 2533

3.2 Holistic Scheduling Segments
To optimize the bandwidth utilization and offer substantial
performance improvements, we use holistic scheduling
upon the static and dynamic segments in the FlexRay
network. Specifically, we consider the transmission of
static and dynamic segments respectively as hard deadline
periodic and soft deadline aperiodic tasks. The design goal
is to schedule a mixture of periodic and aperiodic tasks in a dual
channel to guarantee that all periodic deadlines are met and the
response time for the aperiodic tasks can be as small as possible in
the FlexRay network. Holistic scheduling scheme hence
offers available time for completing the aperiodic tasks by
‘‘pilfering’’ all the time from the periodic tasks without
causing their deadlines to be missed.

The main idea behind slot pilfering comes from the
practical observations and long-term experiences. When an
aperiodic request arrives, the slot judiciously pilfers all the
available slots from periodic tasks, which are used to
satisfy the aperiodic requests. On the other hand, when
there are no pending aperiodic requests, we schedule the
periodic tasks as usual. We further formulate the slot
pilfering technique in a FlexRay network that contains n
periodic tasks, �1; �2; . . . ; �n.

Definition 1. Each task, �i ð1 � i � nÞ, is denoted by a 4-tuple
�i ¼ fCi; Ti; �i; dig, where Ci is the worst-case computation
requirement, Ti is a period, �i ð0 � �i � TiÞ is an offset
relative to time origin, and di ðdi � TiÞ is a hard deadline. We
assume that the parameters Ci, Ti, �i and di, are the known
deterministic quantities.

A fixed priority algorithm, say deadline monotonic
algorithm [25], can schedule these tasks. In the meanwhile,
the tasks with smaller value of di are allocated higher
priority.

We leverage differentiated representation for schedul-
ing the tasks of static and dynamic segments. For a periodic
task �i for the static segment, it leads to an infinite sequence
of jobs. We further consider the scheduling on aperiodic
tasks for dynamic segments as the problem of parameter
optimization. Specifically, we place an aperiodic task for a
dynamic segment into the queues based on deadline
orders. The slot value, associated with an enqueued
aperiodic task for the dynamic segment, demonstrates
how many available slots can be allocated to facilitate its
processing, while its deadline is still met. To achieve this
goal, we need to use the value of available slots to offer
transmission guarantee. New aperiodic tasks for dynamic
segments will not incur its deadline to be violated. At the
same time, all periodic deadlines for scheduling static
segments are also guaranteed. Therefore, the remaining
processing time can be competed between hard and soft
aperiodics. We further describe the aperiodic task for
scheduling a dynamic segment.

Definition 2. The aperiodic task Jk for scheduling a dynamic
segment is represented as a 3-tuple, Jk ¼ f�k; pk; Dkg,
where �k is the associated arrival time, pk is the
processing requirement and Dk is the hard deadline. To
support the retrieval of aperiodic tasks, HOSA defines that
0 � �k � �kþ1; k � 1.

Based on the above definitions, HOSA aims to
minimize the response time of Jk, represented as Rk.
Specifically, we consider W ðtÞ ¼

P
kj�k�t pk as a cumula-

tive aperiodic workload process. This process collects all
the aperiodic tasks. These tasks share the same property
of the arrival time within the interval ½0; t�. Moreover, a
cumulative aperiodic execution process, "t, is a contin-
uous function with the property of "t �WðtÞ, t � 0.
HOSA thus describes the completion time of Jk, as
Tk ¼ minftj"t ¼

Pk
i¼1 pig. Therefore, HOSA achieves

Rk ¼ Tk � �k.
To efficiently support the holistic scheduling on the

static and dynamic segments in the dual channel, we
need to determine the maximum processing time that can
be pilfered from hard deadline periodic tasks. FlexRay
communication system can use a slot pilferer to schedule
the static and dynamic segments. The slot pilferer can
efficiently address the problem of minimizing the
response times of soft aperiodic tasks, while offering
the guarantee that the deadlines of hard periodics are
also met.

For real-time networked systems, packets are usually
modeled as tasks. There are preemptive tasks and non-
preemptive tasks. Un-interruptible packets can be modeled
as non-preemptive tasks. In the context of our proposed
work, the performance metric we examine is the network
transmission time. We hence use the preemptive task
model. Even for the case when network transmission can
not be interrupted, we can recourse to non-preemptive task
models, through techniques such as adding blocking times
in the analysis [26].

4 COST-EFFECTIVE DEDUPLICATION IN
SSD-BASED END DEVICES

Deduplication functionality in FlexRay generally needs
to handle massive streaming data in a real-time manner,
while obtaining space savings. In practice, the index
structure of massive data easily overflows the DRAM
size and has to be stored on hard disk. The operations
upon index structure are thus limited by expensive and
slow seek and switch operations upon mechanical-based
disks. In the flash, different from disks, random read
operations are comparable to sequential read operations
due to no mechanical head movements. Since deduplica-
tion needs to be completed timely, it is desirable to obtain
high throughput in inline deduplication systems and
meet the needs of fast detecting duplicate segments. To
address this problem, SSD is a good candidate due to its
salient features with respect to system performance, such
as energy efficiency, read/write latency and shock
resistance.

To provide efficient data management, we need to
carefully design the data allocation scheme. The function of
allocation scheme is to decide the mapping between
physical page and logical page. When a new write request
arrives, the allocation scheme chooses a free physical page
based on the factors of idle/busy states of channels and
chips, the erased count of blocks and the priority order of
parallelism.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 10, OCTOBER 20142534

4.1 Design Principles
HOSA can work for inline deduplication. Inline deduplica-
tion refers that HOSA proactively examines the incoming
data and removes duplicate writes before committing a
write request to flash. To support inline deduplication in a
FlexRay network, HOSA is designed for running in an SSD
device that has limited memory space and computing
power. This matches the properties of FlexRay end devices.
Moreover, different from backup streams with high
redundancy, HOSA generally handles regular system
workloads that exhibit relatively lower duplication rate.
HOSA further offers high real-time data access perfor-
mance, rather than running during out-of-office hours in
backup systems.

To reduce write traffic to flash memory and obtain space
savings in SSD, HOSA eliminates unnecessary duplicate
writes, which further improves the efficiency of garbage
collection and wear-leveling. HOSA leverages chunk-
based deduplication approach, in which a fixed-sized
chunking is used. The reasons come from the observations
that in a FlexRay network, the sizes of sequential requests
are generally very small and the basic operation unit in
flash is a page (say 4 KB). The internal management policies
in SSDs, such as the mapping policy, are also designed in
units of pages. Hence, to avoid unnecessary complexity, we
leverage pages as the fixed-sized chunks for hashing
computation.

To accelerate the identification of duplicate writes,
existing approaches mainly rely on the exploration of
temporal and spatial localities [22], [27], [28], [29], [30], [31],
and [32]. For example, temporal locality helps buffer writes
to reduce duplicate writes to SSD. Spatial locality helps
aggregate multiple subpage writes into fewer page writes.
Unlike them, HOSA leverages content locality that prefer-
entially accesses some contents and facilitates data dedu-
plication. By exploiting and exploring the contents of data,
HOSA offers the content-aware FTL that mainly consists of
fingerprint generation, fingerprint lookup and mapping
management. The fingerprints of FlexRay segments are the
hash values that can summarize the content of written
segments. The generated fingerprints are then used for the
lookups of duplicate segments. The mapping management
handles the mapping between the host-viewable logical
addresses and physical flash addresses. Note that the

content-aware FTL in the HOSA design is an augmenta-
tion, rather than a complete replacement, to the existing
FTL designs. The content-aware FTL is orthogonal to the
other FTL policies, such as the garbage collection and wear
leveling policies.

4.2 Prototype Implementation
To implement the deduplication functionality, HOSA
intercepts incoming write requests at the SSD device level
and uses a hash function to generate fingerprints that can
summarize the content of updated data. By querying a
fingerprint storage space, which maintains the fingerprints
of stored data in SSD, HOSA can accurately and efficiently
eliminate duplicate writes to flash.

In general, SSD exposes an array of logical block addresses
(LBA) to the host and uses a mapping table to show the
mapping relationship between LBA and the physical block
address (PBA). Fig. 6 illustrates the deduplication-aware
process of handling a write request in HOSA. Specifically, if a
write request arrives:

. The incoming data is first temporarily maintained in
the on-device buffer;

. HOSA computes the hash value of each updated
page in the buffer, called fingerprint;

. Each fingerprint is looked up against a fingerprint
storage space, in which HOSA maintains the finger-
prints of data already stored in the flash memory;

. If a duplicate fingerprint is found, meaning that a
residing data unit contains the same content, the
mapping table that carries out the translation
between LBA and PBA is updated by mapping to
the physical location of the residing data. HOSA in
the meantime eliminates the write to flash;

. If a duplicate fingerprint is not found, HOSA executes
the write to the flash memory as a regular write.

HOSA attempts to identify and remove duplicate writes.
A byte-by-byte comparison is obviously slow and can not
meet the needs of real-time inline deduplication in FlexRay.
HOSA uses hash functions to compute a hash value as a
fingerprint. Duplicate data can be determined by compar-
ing fingerprints that summarize the contents of pages. We
use the SHA-1 hash function [33], [34] due to its practically
collision-resistant properties to index and compare pages.
For each page, we calculate a 160-bit hash value as its
fingerprint and store it as the page’s metadata in flash.

To comprehensively examine the performance of the
content-aware FTL, we implement it in a real SSD prototype,
which is event-driven, modularly structured, and multi-
tiered. It serves as an SSD hardware platform and executes
the proposed FTL schemes, allocation schemes, buffer
management algorithms and request scheduling algorithms.
The SSD prototype consists of three tiers, including the buffer
and request-scheduling module at the top, the FTL and
allocation module in the middle, and the low-level hardware
platform module at the bottom.

5 PERFORMANCE EVALUATION

In this Section, we show the experimental results of
implementing our proposed HOSA running on mixed
datasets (including static and dynamic segments).

Fig. 6. Deduplication workflow in HOSA.

HUA ET AL.: HOLISTIC SCHEDULING AND EFFICIENT STORAGE FOR FLEXRAY 2535

5.1 Experimental Configurations
Our experiments are performed using 10 FlexRay nodes that
are connected to a bus analysis tool that helps record the
information of message transmission in the FlexRay network.
The FlexRay nodes are implemented and configured by
multiple networked boards that consist of a 16-bit Flash-
based controller unit to support the FlexRay protocol
operations, 2 IP-modules for the dual-channel design, and
FlexRay-enabled transceivers to support the physical layer of
the FlexRay bus. SSD prototypes are connected with the
FlexRay end nodes and we examine their real performance.
To comprehensively test the performance, we initially set
cache size in SSD to be 64 KB, which is further dynamically
adjusted. Moreover, we use an independent module to
receive and maintain all messages that are transmitted on the
FlexRay bus, to facilitate real-time transmission analysis.

The experiments make use of the mixed datasets that
contain both static and dynamic segments. Specifically, for
the datasets of static segments, the datasets consist of
synthetic test cases and one real-world scenario. The
synthetic test cases were generated by varying message
parameters, such as periods and deadlines, to cover a wide
range of possible scenarios. The periods are varied between
2 ms and 50 ms. The deadlines are varied between 1 ms to
20 ms. The FlexRay communication cycle period is 5 ms
and the static cycle length is 3 ms, based on the experiences
from the industry [10]. The test cases contain a large
number of messages. Moreover, we consider a real-world
X-by-wire application, i.e., brake-by-wire, which has been
widely used in performance evaluation of the FlexRay-
based design. Table 1 shows the details of the associated
parameters.

For the datasets of dynamic segments, we configure the
parameters in each communication cycle. We set the values
of the parameters as shown in Table 2. The suitable timing
properties of aperiodic messages used in our experiments
are taken from a message set that is published by the
Society for Automotive Engineers [35]. Hence, we consider
aperiodic messages with a period (minimum inter-arrival

time) and a deadline of 50 ms. We use 30 aperiodic
messages with the IDs, from 81 to 110 or from 121 to 150,
respectively corresponding to the sequential numbers in 80
and 120 slots. The maximum number of their transmission
slots cSlotIDMax are 110 and 150, respectively.

We uniformly distribute the aperiodic messages in 10
FlexRay nodes. In each network node, an interrupt-based
routine running as the host process generates the aperiodic
messages. We use a 16-bit reload timer to count down the
time until the next generation of each message. Further-
more, for generating the event-based messages, a randðÞ
function in C standard library computes the next genera-
tion time. Furthermore, in real-time transmission perfor-
mance, we compare the HOSA scheme with the standard
implementation of FlexRay specification (FSPEC) [3] and
HOSA without the approximation for reducing computa-
tion complexity, in terms of overall running time, band-
width utilization, average transmission latency for static
and dynamic segments, and deadline miss ratio.

The minimum length of the dynamic segment is
determined by gNumberOfMinislots. We select the dy-
namic segments with 50 and 100 minislots in our evalua-
tion. To adjust the length of the dynamic segment, We vary
the value of parameter gNumberOfMiniSlots. To compen-
sate the modification of the dynamic segment length, we
change the parameter gdNIT (duration of network idle
time) so as to keep the frame cycle duration of 5000 �s as a
constant.

For evaluating deduplication performance, we compare
HOSA with state-of-the-art deduplication schemes,
ChunkStash [29] and SiLo [36]. SiLo is our previous work
and we can examine its performance in the real SSD
prototype. Since there are no open source codes of
ChunkStash, we choose to re-implement it. Specifically,
we have implemented the locality-based and exact-
deduplication of ChunkStash, while carefully considering
its design principles and algorithms [29], including the
inherent locality of backup streams and cuckoo hash based
indexing structure.

For fair comparisons, all schemes for comparisons use
the same running environments. Furthermore, the main
deduplication metrics include duplicate elimination, laten-
cy and throughput. The duplicate elimination is defined as
the percentage of duplicate data eliminated. The latency
records the overall consumption time of completing the
deduplication operations. The throughput is the rate at
which the streams are processed. It is worth noting that our
evaluation testbed is not a production-quality deduplica-
tion system, but a research prototype. The results hence

TABLE 1
Brake-by-Wire Message Parameters

TABLE 2
Configuration Parameters for Dynamic Segments

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 10, OCTOBER 20142536

should be interpreted as approximate and comparative
evaluation.

5.2 Deduplication Performance

5.2.1 The Percentage of Duplicate Elimination
Fig. 7 shows the percentages of duplicate data elimination.
We observe that HOSA can remove on average 88.8 percent
and 90.2 percent duplicate data respectively in brake-by-
wire and synthetic workloads, which are larger than those
of SiLo and ChunkStash. SiLo needs to exploit both
similarity and locality of data segments and ChunkStash
leverages cuckoo hashing that potentially leads to endless
loop. Their high computation complexity results in long
processing latency and the missing of continuous data
segments that often contain duplicates. Unlike them, by
leveraging content-aware FTL design, HOSA is able to
accurately identify duplicate data. In addition, there exists
slight difference between 50 and 100 minislots. The reason
is that the transmission in 50 minislots incurs relatively
higher deadline miss rate and more similar data are lost.
The deduplication percentage hence decreases.

5.2.2 Deduplication Latency
Fig. 8 shows the deduplication latency in SSD with various
cache sizes. The latency decreases when increasing the
cache sizes. We observe that the decrements of deduplica-
tion latency are limited when the cache size is larger than
128 KB. Even if the sizes continue to increase, the latency

has slight reduction. We argue that a suitable cache size is
important to obtain a good tradeoff between space
overhead and performance improvements. Moreover, the
synthetic dataset, that has larger numbers and sizes of data
segments than the brake-by-wire, incurs on average
10.5 ms that is larger than 4.2 ms in the latter.

HOSA obtains over 45.3 percent and 55.7 percent
smaller latency respectively than SiLo and ChunkStash in
50 minislots, thus meeting the needs of real-time proces-
sing. In contrast, ChunkStash needs to maintain at least
6 bytes for each new chunk, resulting in a very large cuckoo
hash table for fingerprints and consuming large fraction of
limited-size cache. SiLo needs to maintain a large index
structure to support the exploitation of similarity and
locality. More data accesses have to visit the low-speed
disks. We can obtain similar conclusion when executing
100 minislots.

5.2.3 Deduplication Throughput
Fig. 9 shows the deduplication throughput when executing
the data deduplication in SSD. Specifically, in the brake-
by-wire dataset, the average throughputs are 327.8 MB/s,
262.4 MB/s and 225.7 MB/s, respectively for HOSA, SiLo
and ChunkStash. Compared with SiLo and ChunkStash,
the advantages of HOSA come form its content-aware FTL
design and space-efficient index structure for segment
lookups. The similar observations can also obtained from
the synthetic dataset. HOSA hence can offer high through-
out for data deduplication and significantly improve the
utilization of SSD.

6 CONCLUSION

Providing scalable fault-tolerance is important to the
FlexRay networks. This paper proposes a cost-effective
scheme, called HOSA, that supports holistic scheduling on
both static and dynamic segments in the dual-channel
communication system. HOSA leverages a slot pilfering
technique to significantly minimize idle slots, improve
bandwidth utilization and decrease transmission latency.
HOSA efficiently handles the complexity of slot computa-
tion with the aid of a proper approximation approach.
Moreover, to bridge the gap between real-time transmis-
sion in networks and storage management in end devices,

Fig. 7. Percentage of duplicate data elimination.

Fig. 8. Deduplication latency.

HUA ET AL.: HOLISTIC SCHEDULING AND EFFICIENT STORAGE FOR FLEXRAY 2537

we implement a deduplication-aware SSD design in a real
prototype. Extensive experimental results based on syn-
thetic and real-world test cases demonstrate the efficiency
and efficacy of the proposed HOSA scheme.

ACKNOWLEDGMENT

This work was supported in part by National Basic Research
973 Program of China under Grant 2011CB302301; National
Natural Science Foundation of China (NSFC) under Grant
Nos. 61173043, 61025008, 61232004; the NSERC Discovery
Grant 341823; US National Science Foundation Award
1116606; NSERC Grant RGPIN 418521-12; Fundamental
Research Funds for the central universities, HUST, under
Grant 2012QN098.

REFERENCES

[1] I. Park and M. Sunwoo, ‘‘Flexray Network Parameter Optimiza-
tion Method for Automotive Applications,’’ IEEE Trans. Ind.
Electron., vol. 58, no. 4, pp. 1449-1459, Apr. 2011.

[2] H. Zeng, M. Di Natale, A. Ghosal, and A. Sangiovanni-Vincentelli,
‘‘Schedule Optimization of Time-Triggered Systems Communi-
cating Over the Flexray Static Segment,’’ IEEE Trans. Ind.
Informat., vol. 7, no. 1, pp. 1-17, Feb. 2011.

[3] The Flexray Communication System Specification, Version 2.1.
[Online]. Available: http://www.flexray.com.

[4] B. Brake System Relies on FlexRay. [Online]. Available: http://
www.automotivedesignline.com/news/218501196, July 2009.

[5] N. Navet, Y. Song, F. Simonot-Lion, and C. Wilwert, ‘‘Trends in
Automotive Communication Systems,’’ Proc. IEEE, vol. 93, no. 6,
pp. 1204-1223, June 2005.

[6] H. Kopetz and G. Bauer, ‘‘The Time-Triggered Architecture,’’
Proc. IEEE, vol. 91, no. 1, pp. 112-126, Jan. 2003.

[7] Cena, Gianluca, Valenzano, and Adriano, ‘‘Performance analysis
of Byteflight networks Proc. IEEE Int. Workshop Factory Commun.
Syst., pp. 157-166, 2004.

[8] K. Schmidt and E. Schmidt, ‘‘Message Scheduling for the Flexray
Protocol: The Static Segment,’’ IEEE Trans. Veh. Technol., vol. 58,
no. 5, pp. 2170-2179, June 2009.

[9] B. Tanasa, U.D. Bordoloi, P. Eles, and Z. Peng, ‘‘Scheduling for
Fault-Tolerant Communication on the Static Segment of Flex-
Ray,’’ in Proc. IEEE Real-Time Syst. Symp., 2010, pp. 385-394.

[10] M. Lukasiewycz, M. GlaQ, J. Teich, and P. Milbredt, ‘‘Flexray
schedule optimization of the static segment,’’ in Proc.
CODES+ISSS, 2009, pp. 1-10.

[11] E. Schmidt and K. Schmidt, ‘‘Message Scheduling for the Flexray
Protocol: The Dynamic Segment,’’ IEEE Trans. Veh. Technol.,
vol. 58, no. 5, pp. 2160-2169, June 2009.

[12] K. Schmidt, E.G. Schmidt, A. Demirci, E. Yuruklu, and
U. Karakaya, ‘‘An Experimental Study of the FlexRay Dynamic
Segment,’’ in Proc. Adv. Automot. Control, 2010, pp. 413-418.

[13] K. Jung, M. Song, D. Lee, and S. Jin, ‘‘Priority-Based Scheduling
of Dynamic Segment in FlexRay Network,’’ in Proc. Int’l Conf.
Control, Autom. Syst., 2008, pp. 1036-1041.

[14] H. Kopetz, R. Obermaisser, P. Peti, and N. Suri, ‘‘From a
Federated to an Integrated Architecture for Dependable Real-
Time Embedded Systems,’’ Technische Univ. Vienna, Vienna,
Austria, Tech. Rep., 2004.

[15] A. Albert, ‘‘Comparison of Event-Triggered and Time-Triggered
Concepts with Regard to Distributed Control Systems,’’ in Proc.
Embedded World, 2004, vol. 2004, pp. 235-252.

[16] W. Li, M. Di Natale, W. Zheng, P. Giusto, A. Sangiovanni-
Vincentelli, and S. Seshia, ‘‘Optimizations of an Application-
Level Protocol for Enhanced Dependability in Flexray,’’ in Proc.
Design, Autom. Test Eur., 2009, pp. 1076-1081.

[17] Y. Wang, D. Liu, Z. Qin, and Z. Shao, ‘‘An Endurance-Enhanced
Flash Translation Layer Via Reuse for Nand Flash Memory
Storage Systems,’’ in Proc. DATE, 2011, pp. 1-6.

[18] Y. Hua, B. Xiao, D. Feng, and B. Yu, ‘‘Bounded LSH for Similarity
Search in Peer-to-Peer File Systems,’’ in Proc. 37th ICPP, 2008,
pp. 644-651.

[19] Z. Qin, Y. Wang, D. Liu, and Z. Shao, ‘‘Real-Time Flash
Translation Layer for Nand Flash Memory Storage Systems,’’
in Proc. IEEE RTAS, 2012, pp. 35-44.

[20] Z. Qin, Y. Wang, D. Liu, and Z. Shao, ‘‘A Two-Level Caching
Mechanism for Demand-Based Page-Level Address Mapping in
Nand Flash Memory Storage Systems,’’ in Proc. IEEE RTASfs,
2011, pp. 157-166.

[21] Y. Sedaghat and S. Miremadi, ‘‘Categorizing and Fnalysis of
Activated Faults in the Flexray Communication Controller
Registers,’’ in Proc. IEEE Eur. Test Symp., 2009, pp. 121-126.

[22] Y. Hu, H. Jiang, D. Feng, L. Tian, S. Zhang, J. Liu, W. Tong, Y. Qin,
and L. Wang, ‘‘Achieving Page-Mapping FTL Performance at
Block-Mapping FTL Cost by Hiding Address Translation,’’ in
Proc. IEEE MSST, 2010, pp. 1-12.

[23] Y. Hu, H. Jiang, D. Feng, L. Tian, H. Luo, and S. Zhang,
‘‘Performance Impact and Interplay of SSD Parallelism Through
Advanced Commands, Allocation Strategy and Data Granular-
ity,’’ in Proc. ACM ICS, 2011, pp. 96-107.

[24] Y. Hua, X. Liu, and W. He, ‘‘HOSA: Holistic Scheduling and
Analysis for Scalable Fault-Tolerant Flexray Design,’’ in Proc.
IEEE INFOCOM, 2012, pp. 1233-1241.

[25] J. Lehoczky, L. Sha, and Y. Ding, ‘‘The Rate Monotonic
Scheduling Algorithm: Exact Characterization and Average
Case Behavior,’’ in Proc. Real-Time Syst. Symp., 1987,
pp. 166-171.

[26] X. Liu, Q. Wang, W. He, M. Caccamo, and L. Sha, ‘‘Optimal
Real-Time Sampling Rate Assignment For Wireless Sensor
Networks,’’ ACM Trans. Sensor Netw. (TOSN), vol. 2, no. 2,
pp. 263-295, 2006.

[27] D. Andersen and S. Swanson, ‘‘Rethinking Flash in the Data
Center,’’ IEEE Micro, vol. 30, no. 4, pp. 52-54, 2010.

[28] G. Wu and X. He, ‘‘Delta FTL: Improving SSD Lifetime Via
Exploiting Content Locality,’’ in Proc. EuroSys, 2012, pp. 253-266.

Fig. 9. Deduplication throughput.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 10, OCTOBER 20142538

[29] B. Debnath, S. Sengupta, and J. Li, ‘‘ChunkStash: Speeding Up
Inline Storage Deduplication Using Flash Memory,’’ in Proc.
USENIX ATC, 2010, pp. 1-16.

[30] J. Kim, C. Lee, S. Lee, I. Son, J. Choi, S. Yoon, H.U. Lee, S. Kang,
Y. Won, and J. Cha, ‘‘Deduplication in SSDS: Model and
Quantitative Analysis,’’ in Proc. MSST, 2012, pp. 1-12.

[31] A. Gupta, R. Pisolkar, B. Urgaonkar, and A. Sivasubramaniam,
‘‘Leveraging Value Locality in Optimizing Nand Flash-Based
Ssds,’’ in Proc. FAST, 2011, p. 7.

[32] F. Chen, T. Luo, and X. Zhang, ‘‘CAFTL: A Content-Aware Flash
Translation Layer Enhancing the Lifespan of Flash Memory
Based Solid State Drives,’’ in Proc. FAST, 2011, pp. 1-14.

[33] X. Wang, Y. Yin, and H. Yu, ‘‘Finding Collisions in the Full Sha-1,’’
in Proc. Adv. Cryptology-CRYPTO, 2005, pp. 17-36.

[34] C. De Canniere and C. Rechberger, ‘‘Finding Sha-1 Character-
istics: General Results and Applications,’’ in Proc. Adv. Cryptology-
ASIACRYPT, 2006, pp. 1-20.

[35] ‘‘Class C Application Requirements, SAE J2056/1,’’ in SAE
Handbook, vol. 2. Warrendale, PA, USA: SAE, June 2013,
pp. 23.366-23.371.

[36] W. Xia, H. Jiang, D. Feng, and Y. Hua, ‘‘SiLo: A Similarity-
Locality Based Near-Exact Deduplication Scheme With Low Ram
Overhead and High Throughput,’’ in Proc. USENIX ATC, 2011,
pp. 26-28.

Yu Hua received the BE and PhD degrees in
computer science from the Wuhan University,
China, in 2001 and 2005, respectively. He is an
Associate Professor at the Huazhong University
of Science and Technology (HUST), China. His
research interests include computer architec-
ture, cloud computing and network storage. He
has more than 50 papers to his credit in major
journals and international conferences including
IEEE Transactions on Computers (TC), IEEE
Transactions on Parallel and Distributed Systems

(TPDS), USENIX ATC, INFOCOM, SC, ICDCS, ICPP and MASCOTS.
He has been on the organizing and program committees of multiple
international conferences, including INFOCOM, ICPP and IWQoS. He is
a Senior Member of the IEEE, and a member of ACM and USENIX.

Xue Liu received the BS degree in mathematics
and M.S. degree in automatic control both from
Tsinghua University, China, and the PhD in
computer science from the University of Illinois at
Urbana-Champaign, Champaign, IL, USA, in 2006.
He is an Associate Professor in the School of
Computer Science at McGill University. His
research interests are in computer networks
and communications, smart grid, real-time and
embedded systems, cyber-physical systems,
data centers, and software reliability. His work

has received the Year 2008 Best Paper Award from IEEE Transactions
on Industrial Informatics, and the First Place Best Paper Award of the
ACM Conference on Wireless Network Security (WiSec 2011). He
serves as an associate editor of the IEEE Transactions on Parallel and
Distributed Systems (TPDS) and editor of the IEEE Communications
Surveys & Tutorials. He is a member of the ACM and IEEE.

Wenbo He received the PhD degree from
University of Illinois at Urbana-Champaign,
Champaign, IL, USA, in 2008. He is currently
an Assistant Professor in School of Computer
Science at McGill University. She was an
Assistant Professor in Department of Electrical
Engineering at University of Nebraska-Lincoln
from 2010 to 2011. She was with the Department
of Computer Science at University of New
Mexico from 2008 to 2010. Her research focuses
on Pervasive Computing, and Privacy-preserving

Techniques, etc. During August 2000 to January 2005, he was a
software engineer in Cisco Systems, Inc. Dr. He received the Mavis
Memorial Fund Scholarship Award from College of Engineering at
UIUC in 2006, and the C.W. Gear Outstanding Graduate Award in 2007
from the Department of Computer Science at UIUC. She is also a recipient
of the Vodafone Fellowship from 2005 to 2008, and the NSF TRUST
Fellowship in 2007 and 2009. She is a member of the IEEE.

Dan Feng received the BE, ME, and PhD
degrees in computer science and technology
from the Huazhong University of Science and
Technology (HUST), China, in 1991, 1994, and
1997, respectively. She is a Professor and Vice
Dean of the School of Computer Science and
Technology, HUST. Her research interests
include computer architecture, massive storage
systems, and parallel file systems. She has more
than 100 publications to her credit in journals
and international conferences, including IEEE

Transactions on Parallel and Distributed Systems (TPDS), JCST,
USENIX ATC, FAST, ICDCS, HPDC, SC, ICS and ICPP. She servers
as the program committee member of SC 2011, 2013 and MSST 2012.
She is a member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

HUA ET AL.: HOLISTIC SCHEDULING AND EFFICIENT STORAGE FOR FLEXRAY 2539

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

