
SecPM: a Secure and Persistent Memory
System for Non-volatile Memory

Pengfei Zuo, Yu Hua
Huazhong University of Science and Technology, China

10th USENIX Workshop on Hot Topics in Storage and File Systems (HotStorage’18)

Persistence Issue

The non-volatility of NVM enables data to be
persistently stored into NVM
Data may be incorrectly persisted due to crash
inconsistency
– Modern processors and caches usually reorder

memory writes
– Volatile caches cause partial update

Caches (volatile) NVM (non-volatile)
Bus (64bits)

Consistency Guarantee for Persistence

Durable transaction: a commonly used solution
– NV-Heaps (ASPLOS’11), Mnemosyne (ASPLOS’11), DCT

(ASPLOS’16), DudeTM (ASPLOS’17), NVML (Intel)
– Enable a group of memory updates to be performed in an

atomic manner
Enforce write ordering
– Cache line flush and memory

barrier instructions
Avoid partial update
– Logging

TX_BEGIN
 do some computation;
 // Prepare stage: backing up the data in log
 write undo log;
 flush log;
 memory_barrier();
 // Mutate stage: updating the data in place
 write data;
 flush data;
 memory_barrier();
 // Commit stage: invalidating the log
 log->valid = false;
 flush log->valid;
 memory_barrier();
TX_END

Security Issue

Traditional DRAM: volatile
– If a DRAM DIMM is removed from

a computer
• Data are quickly lost

NVM: non-volatile
– If an NVM DIMM is removed

• An attacker can directly stream out
the data from the DIMM

• Unsecure

Memory Encryption for Security

Counter mode encryption
– Hide the decryption latency
– Generate One Time Pad (OTP) using a per-line

counter
• Counters are buffered in an on-chip counter cache

Decryption

Time

(a) Traditional encryption

Memory Access

Memory Access

One Time Pad

(b) Counter mode encryption

Reduced latency
AES-ctr

LineAddr Counter

Key +
Plaintext Plaintext

+
Ciphertext Ciphertext

Encryption Decryption

OTP

The Gap between Persistence and Security

Ensuring both security and persistence
– Simply combining existing persistence schemes with memory

encryption is inefficient
– Each write in the secure NVM has to persist two data

• Including the data itself and the counter

Crash inconsistency
– Cache line flush instruction cannot operate the counter cache
– Memory barrier instruction fails to ensure the ordering of

counter writes
Performance degradation
– Double write requests

Durable Transaction in Secure NVM
Stage Log content Log counter Data content Data counter Recoverable?

Prepare Wrong Wrong Correct Correct Yes
Mutate Correct Unknown Wrong Wrong No
Commit Correct Unknown Correct Unknown No

TX_BEGIN
 do some computation;
 // Prepare stage: backing up the data in log
 write undo log;
 flush log;
 memory_barrier();
 // Mutate stage: updating the data in place
 write data;
 flush data;
 memory_barrier();
 // Commit stage: invalidating the log
 log->valid = false;
 flush log->valid;
 memory_barrier();
TX_END

Selective counter-atomicity (HPCA’18): modifications
in software & hardware layers

− Programming language
◦ Add CounterAtomic variable and

counter_cache_writeback() function
− Compiler

◦ Support the new primitives
− Memory controller

◦ Add a counter write queue

SecPM: a Secure and Persistent Memory System

Perform only slight modifications on the memory
controller, being transparent for programmers
– Programs running on an un-encrypted NVM can be directly

executed on a secure NVM with SecPM

Consistency guarantee
– A counter cache write-through

(CWT) scheme

Performance
improvement
– A locality-aware counter write

reduction (CWR) scheme
Asynchronous DRAM refresh (ADR): cache lines
reaching the write queue can be considered
durable.

La
st

 L
ev

el
 C

ac
he

Memory Controller

AES-ctr Counter
Cache

The Write Queue

OTPPlaintext

Ciphertext Counter

Counter

Co
un

te
rs

En
cr

yp
te

d
N

VM

Counter Cache Write-through (CWT) Scheme

CWT ensures the crash consistency of both data and
counter
– Append the counter of the data in the write queue during

encrypting the data
– Ensure the counter is durable before the data flush complet

Memory Ctrl

(Write Queue)

CPU Flu(A)

Read(Ac) Ac++ Enc(A)

App(Ac) App(A)

Ack(A)

Ret(A)

Durable Transaction in SecPM
Stage Log content Log counter Data content Data counter Recoverable?

Prepare Wrong Wrong Correct Correct Yes
Mutate Correct Correct Wrong Wrong Yes
Commit Correct Correct Correct Correct Yes

TX_BEGIN
 do some computation;
 // Prepare stage: backing up the data in log
 write undo log;
 flush log;
 memory_barrier();
 // Mutate stage: updating the data in place
 write data;
 flush data;
 memory_barrier();
 // Commit stage: invalidating the log
 log->valid = false;
 flush log->valid;
 memory_barrier();
TX_END

At least one of log and data is correct
in whichever stage a system failure
occurs

The system can be recoverable in a
consistent state in SecPM

1

Counter Write Reduction (CWR) Scheme

leveraging the spatial locality of counter storage,
log and data writes
– The spatial locality of counter storage

• The counters of all memory lines in a page are stored in one
memory line

• Each memory line is encrypted by the major counter
concatenated with a minor counter

m64……m3M

64B

m1 m2

64 minor counters
 (each 7 bit)

Major counter
 (64 bit) 1

Counter Write Reduction (CWR) Scheme

leveraging the spatial locality of counter storage,
log and data writes
– The spatial locality of counter storage

• The counters of all memory lines in a page are stored in one
memory line

• Each memory line is encrypted by the major counter
concatenated with a minor counter

– The spatial locality of log and data writes
• A log is stored in a contiguous region
• Programs usually allocate a contiguous memory region for a

transaction

1

Counter Write Reduction (CWR) Scheme

An illustration of the write queue when writing a log
– The counters Ac, Bc, Cc, and Dc are written into the same

memory line
– The latter cache lines contain the updated contents of the

former ones (Ac ∈ Bc ∈ Cc ∈ Dc)
• They are evicted from the write-through counter cache

AcA

The write queue
(Each cell is a cache line to be written into NVM)

……BcBCcCDcD

The log contents The counters of log contents m64…m3M m1' m2 m4

m64…m3M m1' m2' m4

m64…m3'M m1' m2' m4

m64…m3'M m1' m2' m4'

Ac:

Bc:

Cc:

Dc:

1

Counter Write Reduction (CWR) Scheme

When a new cache line arrives, remove the existing
cache line with the same physical address in the write
queue
– Without causing any loss of data

AcA ……

The Write Queue

1

Counter Write Reduction (CWR) Scheme

AcA ……

The Write Queue

Bc

When a new cache line arrives, remove the existing
cache line with the same physical address in the write
queue
– Without causing any loss of data

1

Counter Write Reduction (CWR) Scheme

A ……

The Write Queue

BcB

When a new cache line arrives, remove the existing
cache line with the same physical address in the write
queue
– Without causing any loss of data

1

Counter Write Reduction (CWR) Scheme

A ……

The Write Queue

BcBCc

When a new cache line arrives, remove the existing
cache line with the same physical address in the write
queue
– Without causing any loss of data

1

Counter Write Reduction (CWR) Scheme

A ……

The Write Queue

BCcC

When a new cache line arrives, remove the existing
cache line with the same physical address in the write
queue
– Without causing any loss of data

1

Counter Write Reduction (CWR) Scheme

A ……

The Write Queue

BCcCDc

When a new cache line arrives, remove the existing
cache line with the same physical address in the write
queue
– Without causing any loss of data

1

Counter Write Reduction (CWR) Scheme

When a new cache line arrives, remove the existing
cache line with the same physical address in the write
queue
– Without causing any loss of data
– Using a flag to distinguish whether a cache line is from CPU

caches or the counter cache
A ……

The Write Queue

BCDcD
11101

(1: from CPU caches; 0: from the counter cache)

2

Counter Write Reduction (CWR) Scheme

When a new cache line arrives, remove the existing
cache line with the same physical address in the write
queue
– Without causing any loss of data
– Using a flag to distinguish whether a cache line is from CPU

caches or the counter cache
A ……BCDcD

A ……BCDcD AcBcCc

With CWR

Without CWR

2

Performance Evaluation

Model NVM using gem5 and NVMain

CPU and Caches
X86-64 CPU, at 2 GHz

32KB L1 data & instruction caches
2MB L2 cache

8MB shared L3 cache

Memory Using PCM
Capacity: 16GB

Read/write latency: 150/450ns
Encryption/decryption latency: 40ns

Counter cache: 1MB, 10ns latency

Storage benchmarks
– A hash table based key-value store
– A B-tree based key-value store

2

The Number of NVM Write Requests
Hash table based KV store B-tree based KV store

Compared with the SecPM w/o CWR, SecPM significantly reduces NVM
writes
Compared with Insec-PM, SecPM only causes 13%, 5%, and 2% more
writes when the request size is 256B, 1KB, and 4KB, respectively

2

Transaction Throughput

Compared with the SecPM w/o CWR, SecPM significantly increases the throughput by
1.4 ∼ 2.1 times
Compared with InsecPM, SecPM incurs a little throughput reduction, due to the more
NVM writes and the latency overhead of data encryption

Hash table based KV store B-tree based KV store

2

Conclusion

Both security and persistence of NVM are
important
Simply combining existing persistence schemes
with memory encryption is inefficient
– Crash inconsistency
– Significant performance degradation
This paper proposes SecPM to bridge the gap
between security and persistence
– Guarantee consistency via a counter cache write-

through (CWT) scheme
– Improve performance via a locality-aware counter write

reduction (CWR) scheme 2

Thanks! Q&A

2

