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Abstract

In the non-volatile memory, ensuring the security and
correctness of persistent data is fundamental. However,
the security and persistence issues are usually studied
independently in existing work. To achieve both data
security and persistence, simply combining existing per-
sistence schemes with memory encryption is inefficient
due to crash inconsistency and significant performance
degradation. To bridge the gap between security and
persistence, this paper proposes SecPM, a Secure and
Persistent Memory system, which consists of a counter
cache write-through (CWT) scheme and a locality-aware
counter write reduction (CWR) scheme. Specifically,
SecPM leverages the CWT scheme to guarantee the
crash consistency via ensuring both the data and its
counter are durable before the data flush completes,
and leverages the CWR scheme to improve the per-
formance via exploiting the spatial locality of counter
storage, log and data writes. Preliminary experimental
results demonstrate that SecPM significantly reduces the
number of write requests and improves the transaction
throughput by using the CWR scheme.

1 Introduction

As DRAM suffers from limited scalability and high
power leakage [19, 29], non-volatile memories (NVM),
such as PCM [32], ReRAM [5], STT-RAM [6] and 3D
XPoint [1], become promising candidates of the next-
generation main memory. NVM has the advantages
of high scalability, high density, and near-zero standby
power. However, two fundamental challenges need to be
addressed in order to effectively use NVM in memory
systems, i.e., data persistence and security.

e Persistence. The non-volatility of NVM enables
data to be persistently stored into NVM for instantaneous
failure recovery. In order to achieve the correctness
of persistent data, the crash consistency guarantee is
fundamental [20, 31], which needs to ensure the correct
recovery of persistent data in case of a system failure,
e.g., power failure and system crash. Specifically, NVM
systems typically contain volatile storage components,
e.g., CPU caches. If a system failure occurs when a data
structure in NVM is being updated, the data structure
may be left in a corrupted state. Moreover, modern pro-

cessor and memory controller usually reorder memory
writes. The partial update and reordering cause the crash
inconsistency in NVM [15, 35]. Hence, the cache line
flushes, memory barriers, and log-based mechanisms are
used to ensure the crash consistency [17, 33].

e Security. The non-volatility of NVM also causes the
security problem of data remanence vulnerability [36, 7],
since NVM still retains data after systems power down.
In general, when using encryption to protect the data
security, the encrypted data are stored in disks, while
raw data are retained in main memory [12]. In the legacy
DRAM-based memory, if a DRAM DIMM is stolen, data
are quickly lost due to the volatility. Unlike it, if an
NVM DIMM is stolen, an attacker can directly stream
out the data from the DIMM. Hence, memory encryption
becomes important to ensure the data security in NVM.
Counter mode encryption [16, 36] is usually used in
secure NVM, due to the low decryption latency.

However, existing schemes addressing the persistence
issue [20, 31, 13, 33, 25] usually fail to efficiently use
memory encryption in NVM systems. On the other hand,
existing schemes addressing the security issue [36, 7, 28,
9] are inefficient to guarantee the data consistency. To
achieve a secure persistent memory, simply combining
existing persistence schemes with memory encryption
does not work due to the following challenges.

e Consistency challenge. In order to guarantee the
crash consistency, it is essential to use the cache line
flush and memory barrier instructions to persist data
into NVM with correct ordering. In the counter mode
encryption, each memory line is encrypted/decrypted
using a counter, and the counter increases one on each
write [16]. Thus each write in the secure NVM has
to persist two data including the data itself and the
counter. The data is evicted from the CPU caches and
the counter is evicted from the counter cache managed by
the memory controller. However, the current cache line
flush and memory barrier instructions only ensure the
data from the CPU caches to be correctly persisted into
NVM, which fail to operate the counter cache and hence
cannot ensure the consistency of counters. As a result,
the persisted data cannot be decrypted without correct
counters during the recovery from a system failure, thus
resulting in an inconsistent state.



e Performance challenge. Each write in the secure
NVM generates two NVM write requests, which signif-
icantly degrades the system performance. Because the
writes to NVM usually incur much higher latency than
reads [23, 37, 38], and are in the critical path of applica-
tion execution due to persistence requirements [30, 31].
Moreover, more write requests also increase the latency
of read requests. When a write request is served by an
NVM bank, the following read/write requests to the same
bank are blocked and wait until the current write request
is completed [22].

To bridge the gap between security and persistence,
this paper proposes a secure and persistent memory
system, called SecPM. SecPM proposes to use a simple
yet efficient counter cache write-through (CWT) scheme
to ensure the crash consistency of both data and counters.
CWT appends the counter of the data in the write queue
during encrypting the data, which ensures the counter
is durable before the data flush completes. Moreover,
SecPM leverages a locality-aware counter write reduc-
tion (CWR) scheme to improve the system performance.
CWR explores and exploits the spatial locality of counter
storage, log and data writes to merge the write requests
from counters in the write queue, thus reducing the
NVM writes. Our evaluation demonstrates that SecPM
reduces up to half of write requests, and improves the
transaction throughput by 1.4 ~ 2.1 times, by using the
CWR scheme.

2 Backgrounds and Motivations

2.1 Consistency Guarantee for Persistence

In order to correctly persist data in NVM, it is important
to ensure the crash consistency. Durable transaction [13,
17] is a commonly used solution for crash consistency
guarantee, which enables a group of memory updates
to be performed in an atomic manner. Figure 1 shows
the steps implementing a durable transaction with undo
logging, which include three stages, i.e., prepare, mutate
and commit. Whichever stage a system failure occurs,
the application can be recoverable in a consistent state
since at least one of the log and data are consistent.

As modern CPU and memory controller usually re-
order memory writes, the durable transaction uses cache

TX_BEGIN
do some computation;
// Prepare stage: backing up the data in log
write undo log;
flush log;
memory_barrier();
// Mutate stage: updating the data in place
write data;
flush data;
memory_barrier();
// Commit stage: invalidating the log
log->valid = false;
flush log->valid;
memory_barrier();
TX_END

Figure 1: Steps implementing an undo-log transaction.
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Figure 2: The counter mode encryption.

line flush and memory barrier instructions to enforce
write ordering [13, 20, 17]. The flush instructions
including clflush, clflushopt, and clwb explicitly
flush a dirty CPU cache line into the write queue of
the memory controller. The memory barrier instruc-
tions including mfence and sfence order the memory
operations via blocking the memory operations after
the fence, until those before the fence complete. The
pcommit instruction was initially used to force the write
requests in the write queue into NVM but was deprecated
later [2], due to the use of asynchronous DRAM refresh
(ADR) [3, 27, 18]. ADR is able to persist the write
requests in the write queue into NVM in case of a system
failure via the battery backup. Therefore, the cache lines
reaching the write queue can be considered durable.

2.2 Memory Encryption for Security

Since NVM still retains data after systems power down,
an attacker can easily stream out the data stored in the
NVM after stealing the NVM DIMM. Hence, memory
encryption is important to ensure the data security in
NVM. However, memory encryption causes the high
decryption latency in the critical path of memory reads,
thus degrading the system performance. Counter mode
encryption [16] is proposed to mitigate the decryption
latency from the critical path of memory reads via
leveraging the One Time Pad (OTP) technique, and
hence has been widely used in the NVM systems [36,
7,9, 28]. The main idea is to compute an OTP in parallel
with a memory read, and then XOR the OTP with the
ciphertext data, thus hiding the decryption latency in the
memory access latency, as shown in Figure 2a.

The security of counter mode encryption is based
on the premise that each OTP is never reused for data
encryption [16, 36, 28]. To ensure this, the counter mode
encryption uses a secret key, the line address and the per-
line counter to generate the OTP through the AES circuit,
as shown in Figure 2b. Therefore, data stored at different
addresses are encrypted by different OTPs. Moreover,
the per-line counter increases on each write to generate
different OTPs for data rewrites of the same line. Hence,
the OTPs are never reused. To reduce the generation



Table 1: The recoverability when a system failure occurs
in the different stages of a transaction.

Stage Log Log Data Data Recoverable ?
content counter | content counter
Prepare Wrong Wrong Correct Correct Yes
Mutate Correct Unknown| Wrong Wrong No
Commit | Correct Unknown| Correct Unknown No

time of OTPs, counters are buffered in an on-chip counter
cache [36, 28] managed by the memory controller.

2.3 The Gap between Persistence and Se-
curity

Each cache line flushed from CPU caches in the en-
crypted NVM produces two write requests: one for the
data and the other for the counter. This characteristic
not only degrades the system performance since NVM
needs to deal with more write requests, but also incurs
the crash inconsistency problem. The reason is that the
data is evicted from the CPU caches but its counter is
evicted from the counter cache. However, the cache line
flush instruction only flushes the data in CPU caches, but
fails to operate the counter cache. The memory barrier
instruction only works for the CPU cache line flushes,
but fails to ensure the ordering of counter writes.

We analyze the recoverability when a system failure
occurs in the different stages of a transaction executed in
an encrypted NVM, as shown in Table 1. We observe
when a system failure occurs in the mutate and commit
stages, the data is unrecoverable. Specifically, when a
system failure occurs in the prepare stage, the contents
and counters of the data are unmodified and correct,
which are in a consistent state. However, when a system
failure occurs in the mutate stage, the data are not updat-
ed completely and become wrong. The contents of the
log are correct due to the use of log flushes and memory
barriers, but whether the counters of the log are correctly
persisted is unknown, since the cache line flush and
memory barrier instructions fail to operate the counters
stored in the counter cache. Hence, during a recovery, the
log cannot be decrypted due to no correct counters and
fails to recover the logged data. For the same reasons,
when a system failure occurs in the commit stage, the
correctness of both log and data counters are unknown,
and hence the data is unrecoverable.

To address the inconsistency problem, Liu et al. [18]
proposed the concept of the selective counter-atomicity
which indicates that either both data and its associated
counter have persisted or neither data nor its associat-
ed counter has persisted. However, to implement the
counter-atomicity, significant modifications are made for
both software and hardware layers [18]. First, two
new primitives including CounterAtomic variable and
counter_cache_writeback() function, are added in
the programming language. Second, the compiler have
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Figure 3: The hardware architecture of SecPM.

to be modified to support the new primitives. Third,
an extra counter write queue is added into the memory
controller. As a result, the programs initially running
on a system with the un-encrypted NVM cannot directly
run on a system with the secure NVM. Our paper
proposes SecPM to guarantee the crash consistency in
secure NVM without the needs of the modifications on
programming language and compiler.

3 The SecPM Design

We propose SecPM, a Secure Persistent Memory system,
which leverages a simple yet efficient counter cache
write-through scheme (§ 3.1) to guarantee the crash
consistency, and a counter write reduction scheme (§ 3.2)
to significantly reduce the number of write requests for
improving the system performance.

3.1 Consistency Guarantee

The hardware architecture of SecPM is shown in Fig-
ure 3. When CPU issues a flush instruction, the corre-
sponding cache line is evicted from the last level cache to
the memory controller. The memory controller encrypts
the cache line using a counter and then appends the
encrypted cache line in the write queue. SecPM employs
a counter cache write-through (CWT) scheme in the
counter cache, which writes each dirty counter in the
counter cache, and simultaneously writes the counter
copy in the write queue. We further show how to use
the CWT scheme to ensure the crash consistency.

Figure 4 shows the sequence diagram that the mem-
ory controller deals with a cache line flush. When
the CPU flushes a cache line A (Flu(A)), the memory
controller reads the counter of A from the counter cache
(Read(Ac)), and adds the counter by 1 (Ac++). The
updated counter is used to encrypt A (Enc(A)). During
the encryption, the updated counter is written back to the
counter cache, and simultaneously appended in the write
queue (App(Ac)) via the CWT scheme.

After the encrypted A is appended in the write queue
(App(A)), the memory controller sends an ack (Ack(A)) to
the CPU, and the flush is retired (Ret#(A)). From Figure 4,
we observe that the counter encrypting a CPU cache line
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Figure 4: The sequence that CPU flushes a cache line.
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Table 2: The recoverability of a transaction in SecPM.

Stage Log Log Data Data Recoverable ?
content counter | content counter
Prepare Wrong Wrong Correct Correct Yes
Mutate Correct Correct Wrong Wrong Yes
Commit | Correct Correct Correct Correct Yes

has been already appended in the write queue before
the cache line flush completes via the CWT scheme.
Hence, if the contents of log/data have been persisted and
become correct, their counters have also been persisted.
Table 2 shows the recoverability when a system failure
occurs in the different stages of a transaction in SecPM.
We observe that at least one of log and data is correct
whichever stage a system failure occurs in, and hence
the system can be recoverable in a consistent state.

Recovery: We present the recovery scheme of transac-
tions in SecPM after a system failure occurs. During the
recovery, we scan the undo log region, and check each
log entry. For each log entry, we check whether the log
is complete via the log-end tag of a transaction. If the log
is incomplete, it means the system crashes in the prepare
stage of the transaction, in which the original data are
correct. We directly abandon the incomplete log. If the
log is complete, it means the system crashes in the mutate
or commit stage, in which the log is correct. We undo the
data via the log. Therefore, the system can be recovered
in a consistent state in SecPM.

3.2 Counter Write Reduction

Each CPU cache line flush appends two write requests
in the write queue as shown in Figure 4, which doubles
the number of write requests, compared with an un-
encrypted NVM. Thus the performance of the memory
system would significantly decrease. SecPM proposes
a locality-aware counter write reduction (CWR) scheme
to improve the system performance via leveraging the
spatial locality of counter storage, log and data writes.
The spatial locality of counter storage: In order to
reduce the storage overhead of counters, the counter
mode encryption uses a shared major counter (M) for an
entire page and 64 minor counters (my, my, ..., Mgq) €ach
for a memory line in the 4KB page [34, 7], as shown in
Figure 5. The counters of all memory lines in a page
are 64B and stored in one memory line, exhibiting good
spatial locality. Each memory line is encrypted by the
major counter concatenated with a minor counter. When
a memory line is rewritten, its minor counter increases
by 1. Although updating a counter only modifies several

bits, persisting the counter has to write the entire memory
line into NVM since a memory line is the basic unit of
memory writes.

The spatial locality of log and data writes: Since a log
is stored in a contiguous region in NVM, the log writes
of a transaction flush multiple cache lines which have the
contiguous physical addresses, thus having good spatial
locality. Moreover, the data writes of a transaction usu-
ally have good spatial locality, since programs usually
allocate a contiguous memory region for a transaction.
Hence, the cache lines flushed into the contiguous region
have the contiguous physical addresses. For example, a
transaction inserts a 1 KB key-value item into a key-value
store maintained in NVM, which will flush 16 cache lines
with the contiguous physical addresses.

Based on these localities, we show the write queue
during flushing the log of a transaction in Figure 6. The
log contents contain multiple cache lines (i.e., A, B, C,
and D) with contiguous physical addresses in the same
physical page. Since the counters of a page are contained
in one memory line as shown in Figure 2a, the counters
of the log contents, i.e., A, B., C¢, and D, will be written
to the same memory line. Moreover, since these counter
cache lines are evicted from the write-through counter
cache, the latter cache lines contain the updated contents
of the former ones with the same address. For example,
the cache line A, only contains the updated counter of
A, and the cache line B, contains the updated counters
of A and B, and the cache line C, contains the updated
counters of A, B, and C.

Based on above observations and insights, we present
a counter write reduction (CWR) scheme. Specifically,
when a new cache line evicted from the counter cache
reaches the write queue, we check whether an exiting
cache line in the write queue has the same physical
address as the new one. If yes, we remove this existing
cache line without causing any loss of data, since the
new cache line contains the updated contents of the
removed one as mentioned above. To reduce the latency
of checking the cache lines with the same address, we
add a one-bit flag for each cache line in the write queue.
The flag is used to distinguish whether a cache line is
from CPU caches or the counter cache. Thus we can
check the cache lines only from the counter cache based
on the flag. By performing the CWR scheme, the new
write queue is shown in Figure 7. We observe that the
number of write requests is significantly reduced.



Insec-PM [] SecPM wio CWR B SecPM | Insec-PM []SecPM wio CWR B SecPM

[ -m-Insec-PM _-@-SecPM wio CWR -A-SecPM__|

—m-Insec-PM -@- SecPM w/o CWR -A- SecPM

No. of NVM Writes

No. of NVM Writes

0. A
64 256 1K 4K 64 256 1K 4K
The Request Size (B) The Request Size (B)

(a) Hash table based KV store (b) B-tree based KV store

Figure 8: The number of NVM writes normalized to the
insecure persistent memory.

4 Performance Evaluation

1) Methodology. We model the proposed SecPM in
the gem5 [8] with NVMain [21]. NVMain is a cycle-
accurate main memory simulator for emerging NVM
technologies. The simulated system consists of x86-64
processors run at 2 GHz, 32KB L1 data and instruction
caches, 2MB L2 cache, and 8MB L3 cache. The counter
cache is 1MB. Without loss of generality, we model
PCM technologies [10] with the read/write latency of
150ns/450ns and 16GB capacity. The encryption and
decryption latency of AES circuit are 40ns [26]. We
revise the gem5 with NVMain to support the simulation
of persistent memory by implementing the clwb and
sfence instructions. We evaluate SecPM using two
storage benchmarks including a hash table based key-
value store and a B-tree based key-value store, like
existing work [24]. We compare the proposed SecPM
with an insecure persistent memory without memory
encryption (Insec-PM) and the SecPM w/o CWR which
indicates the SecPM without the proposed CWR scheme.

2) Results. We vary the transaction request sizes sent
to the two key-value stores from 64B to 4KB to evaluate
the performance in terms of the number of NVM writes
and transaction throughput.

o The number of NVM write requests. Figure 8§ shows
the number of write requests to NVM normalized to that
of Insec-PM in the two key-value stores. We observe the
SecPM w/o CWR achieves the security and consistency
but incurs about 2 times writes compared with Insec-
PM, whatever the transaction request size is. Compared
with the SecPM w/o CWR, SecPM significantly reduces
the NVM writes. When the request size is 64B, SecPM
reduces about 26% of writes, since the transaction data
writes have no locality while the log writes have locality.
When the request size is larger than 256B, the locality
of data writes increase, and SecPM reduces about half
of NVM writes. Compared with Insec-PM, SecPM only
causes 13%, 5%, and 2% more writes when the request
size is 256B, 1KB, and 4KB, respectively.

e Transaction throughput. Figure 9 shows the trans-
action throughput for the hash table and B-tree based
key-value stores. Compared with InsecPM, SecPM
incurs a little throughput reduction, due to the more
NVM writes and the latency overhead of data encryption.
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Figure 9: The transaction throughput for the two key-
value stores.

Compared with the SecPM w/o CWR, SecPM signifi-
cantly increases the throughput by 1.4 ~ 2.1 times, due
to the reduction in the number of write requests.

5 Related Work

e Secure NVM. Existing schemes on the secure NVM
including DEUCE [36], BLE [14], SECRET [28], and
Silent Shredder [7], mainly focus on reducing the bit
writes of encrypted data to NVM, which do not consider
the crash consistency in secure NVM.

o Crash consistency in NVM. To achieve data persis-
tence, various durable transaction systems, such as, N'V-
Heaps [11], Mnemosyne [31], DudeTM [17], NVML [4],
and DCT [13], are proposed to manage persistent data
with crash consistency. All these schemes are built on
the un-encrypted NVM, without considering the memory
encryption on NVM.

The most related work comes from Liu et al. [18]
that focuses on the crash consistency of secure NVM,
which proposes the selective counter-atomicity to ensure
that data and its counter are persisted in an atomic
manner. However, significant software and hardware
modifications are needed to implement selective counter-
atomicity. Unlike it, SecPM performs only slight modi-
fications on the memory controller to achieve crash con-
sistency which are transparent for programmers. Thus
programs running on an un-encrypted NVM can be
directly executed on a secure NVM with SecPM.

6 Conclusion

This paper proposes SecPM to achieve both the security
and persistence in non-volatile main memory. In SecPM,
a counter cache write-through scheme and a counter
write reduction scheme are respectively introduced to
ensure the crash consistency and improve the system
performance with slight modifications only on the hard-
ware layer. Our evaluation shows that SecPM reduces
up to half of write requests, and improves the transaction
throughput by 1.4 ~ 2.1 times, via the CWR scheme.
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