
A Write-Friendly and Fast-Recovery Scheme for
Security Metadata in Non-Volatile Memories

Jianming Huang and Yu Hua*

Wuhan National Laboratory for Optoelectronics
School of Computer, Huazhong University of Science and Technology

Email: {jmhuang, csyhua}@hust.edu.cn

Abstract—Non-Volatile Memories (NVMs) require security
mechanisms, e.g., counter mode encryption and integrity tree
verification, which are important to protect systems in terms
of encryption and data integrity. These security mechanisms
heavily rely on extra security metadata that need to be efficiently
and accurately recovered after system crashes or power off.
Established SGX integrity tree (SIT) becomes efficient to protect
system integrity and however fails to be restored from leaves,
since the computations of SIT nodes need their parent nodes
as inputs. To recover the security metadata with low write
overhead and short recovery time, we propose an efficient and
instantaneous persistence scheme, called STAR, which instantly
persists the modifications of security metadata without extra
memory writes. STAR is motivated by our observation that the
parent nodes in cache are modified due to persisting their child
nodes. STAR stores the modifications of parent nodes in their
child nodes and persists them just using one atomic memory
write. To eliminate the overhead of persisting the modifications,
STAR coalesces the modifications and MACs in the evicted
metadata. For fast recovery and verification of the metadata,
STAR uses bitmap lines in asynchronous DRAM refresh (ADR) to
indicate the locations of stale metadata, and constructs a cached
merkle tree to verify the correctness of the recovery process.
Our evaluation results show that compared with state-of-the-art
work, our proposed STAR delivers high performance, low write
traffic, low energy consumption and short recovery time.

I. INTRODUCTION

Non-Volatile Memory (NVM) is becoming the main devices

of next-generation memory systems, due to high density, near-

zero standby power, non-volatile and byte-addressable fea-

tures. NVM also suffers from limited cell endurance [19], [26],

[39], [43] and asymmetric read and write performance [16],

[31], [42]. The write energy consumption of NVM is 2 times

that of DRAM [14]. More importantly, due to non-volatile

property, NVM has to handle severe security vulnerabilities.

After physically stealing DIMM, an attacker can easily read

the contents via another computer due to retaining data

after power off in NVM. To protect the user data from

attacks, an intuitive solution is to leverage data encryption and

integrity verification schemes, which unfortunately introduce

extra security metadata, respectively including counter blocks

and integrity tree nodes. To support the normal execution

of applications after crashes, it is important to recover these

metadata to a consistent state [7], [38], [40], [44].

In general, counter mode encryption and integrity tree are

used to protect NVM systems respectively for security and

∗Corresponding author.

integrity verification. Due to hiding the decryption latency,

counter mode encryption (CME) [22] for secure memory

systems becomes more efficient via one-time padding than

direct encryption via AES [6], [33], [41], [46]. To protect

the integrity of data, an integrity tree is used in memory

systems [7], [28], [44]. The counter blocks in CME are hashed

to generate the Message Authentication Codes (MACs) that

are further hashed iteratively until generating a root node that

is stored in the on-chip non-volatile register, called Bonsai

Merkle Tree (BMT) [28]. Unlike BMT, SGX integrity tree

(SIT) [12], [34] consists of eight counters and one MAC in

each node. The MAC of one node is generated by hashing

the eight counters in the node, the address of the node and

one corresponding counter in the parent node. The security

metadata, generally including counter blocks and integrity tree

nodes, need to be recoverable to ensure the system security

and integrity after system crashes. In the BMT and SIT, the

counter blocks are the leaf nodes of the integrity tree. Thus

every metadata except the root has its parent node in the

integrity tree, and the counter blocks are the parent nodes of

their encryption user data. SIT updates MACs in each node

in parallel, while BMT sequentially updates MACs in the

same branch. Moreover, due to containing counters in nodes,

the nodes in SIT can be compacted to reduce the memory

bandwidth consumption [29], [34]. For better performance, we

leverage the SIT to protect NVM systems. In this paper, each

security metadata, i.e., the counter block and integrity tree

node, is 64 bytes, that match the cache line granularity.

To improve the system performance, we need to create

security metadata cache in the memory controller to cache

the metadata. If dirty metadata in the cache are not persisted

before system crashes, the metadata become stale in NVM.

And these stale metadata can’t be used to ensure the security

of systems after reboot. The encrypted systems only need to

persist the counter blocks [23], [40], [45]. However, in the

security systems with integrity tree, multi-level tree nodes also

need to be persisted. In the integrity tree, persisting modified

tree nodes causes the modifications of the ancestor nodes in the

metadata cache, which leads to new inconsistencies between

cache and NVM. After system crashes, the metadata need to

be recovered into the latest consistent state. Note that the user

data also need to be recovered into a consistent state, which

can be addressed via log and PMDK [3].

The persistent memory requires short recovery time and low

359

2021 IEEE International Symposium on High-Performance Computer Architecture (HPCA)

2378-203X/21/$31.00 ©2021 IEEE
DOI 10.1109/HPCA51647.2021.00038

write overhead. In Amazon’s cloud system, the downtime costs

are up to 2 million dollars per minute [1], and the average costs

of IT downtime are 5,600 dollars per minute [2]. Moreover,

for high-availability requirement systems that need to meet

the availability target of 99.999% (five nines rule), such as

bank systems and online transactions, short recovery time

is necessary. As shown in [44], recovering metadata needs

several hours without fast recovery schemes. Long recovery

time makes the normal recovery scheme inefficient [7]. On the

other hand, the high write latency, high energy consumption

and limited write endurance of NVM require less write

overhead during the running time.

Prior works can’t both achieve the short recovery time

and low write overhead. Osiris [40], Supermem [45] and

SCA [23] have low write overhead. However, they only focus

on counter blocks and can’t be used in the integrity tree.

Triad-NVM [7] extends the recovery ability to the integrity

tree by persisting the low-level tree nodes and reconstructing

the tree from the persisted low-level nodes. However, Triad-

NVM fails to recover the SGX integrity tree (SIT) since the

computation of SIT nodes’ MACs needs the counters in parent

nodes as inputs. On the other hand, Triad-NVM needs 2–

4 times memory writes to persist the low-level tree nodes.

Anubis [44] has the ability to recover BMT and SIT. However,

for recovering SIT, Anubis needs 2 times memory writes to

persist the modifications of metadata, which incurs the extra

write traffic, performance overhead and energy consumption.

Moreover, strict persistence schemes [7], [44] for persisting

all modified metadata via write-through need no recovery

after crashes, since there are no stale metadata. Unfortunately,

the strict persistence schemes incur tens of times the write

amplification, which is unacceptable in NVM due to limited

write endurance and high write energy consumption.

To achieve short recovery time after system crashes and

low write overhead on running time, we propose STAR (SIT

trace and recovery scheme) to instantly persist modifications

of metadata and fast recover the stale metadata on recovery.

The insight behind STAR is that the modifications in metadata

cache are caused by persisting one metadata. To avoid two

writes respectively for the metadata and modification, we

coalesce them into one write maintained in the metadata to

be persisted. For example, persisting metadata A causes the

modifications of its parent node. We store these modifications

in the metadata A, so that we atomically persist A and the

modifications in one write, without extra memory writes.

We observe that 1 in SIT, the modifications caused by

persisting metadata occur on the parent node of the persisted

one; and 2 the 64-bit MAC in data contains 10-bit unused

space. Based on the two observations, STAR coalesces the

modifications and persisted metadata in one memory write

(Section III-B). And the modifications of metadata are instant-

ly persisted. For fast recovery, it is necessary to distinguish the

stale metadata that need to be recovered from the metadata

space. To identify the stale metadata after crashes, STAR

places 16 bitmap lines within asynchronous DRAM refresh

(ADR) in the memory controller to indicate which metadata

are stale in NVM (Section III-C). The bitmap lines stored

in ADR can be flushed into the recovery area in NVM by

battery backup support when systems power off. To further

accelerate the recovery process, STAR introduces a multi-layer

index structure to selectively read the useful bitmap lines from

the recovery area (Section III-D). Moreover, STAR constructs

a cache-tree and uses its root to verify the correctness of the

recovery process (Section III-E).

To evaluate the performance of our proposed scheme, we

use Gem5 [8] with NVMain [25] to implement STAR. To show

the effectiveness of our STAR, we evaluate 5 persistent micro-

benchmarks that have been widely used in existing works [7],

[11], [17], [18], [23], [27], [45] and 2 macro-benchmarks

from WHISPER [24]. Our experimental results show that

STAR reduces 92% extra memory write traffic compared

with state-of-the-art work, Anubis. STAR also reduces the

IPC overhead from 10% to 2% and significantly reduces the

energy consumption from 46% to 4%. STAR needs about

0.05s to recover the security metadata in the systems with

a 4MB metadata cache. Since systems generally require 10–

100s to execute self-test [4] after system crashes, our metadata

recovery time is negligible in the real-world recovery process.

Moreover, the recovery time in STAR is proportional to the

number of dirty metadata in metadata cache, instead of NVM

or cache sizes, which offers the adaptability for the larger

NVM and metadata cache sizes. In summary, this paper makes

the following contributions:

• Counter-MAC synergization for persisting modifications
in security metadata cache. We explore and exploit the

unused bits in the MAC of data to store the modifications of

its parent node, which offers a new approach to consistently

persisting the modifications in metadata cache and restoring

the stale metadata without extra memory writes.

• Bitmap lines for locating stale metadata. To efficiently

locate the stale metadata with low write overhead, we

propose bitmap lines to absorb the location information.

Using the bitmap lines to record location is useful for

applications with high spatial localities.

• Cache-tree for verifying the process of recovery. We

analyze the challenges of constructing a merkle tree on

cache, which ensures the correctness of recovery. To address

the challenges, we introduce the cache-tree based on the

set-way structure of cache to detect the attacks on restored

metadata with low computation overhead.

• Extensive experiments. We have implemented and eval-

uated STAR via persistent micro- and macro-benchmarks,

and experimental results show STAR reduces the extra

memory write traffic by up to 92% with low recovery time

compared with state-of-the-art work. STAR also improves

system performance and reduces energy consumption.

II. BACKGROUND AND MOTIVATION

A. Threat Model

In general, only the processor chip is considered safe in

our threat model similar to the state-of-the-art works [6], [7],

[23], [28], [36], [40], [44]. An attacker attacks the memory

360

AES

Line

Key

Encrypted line

(a) Straightforward encryption

AES

Line

Key

Encrypted line

Counter Addr

OTP

(b) Counter mode encryption

Fig. 1. The comparisons of encryption schemes.

via multiple methods, such as scanning the memory, snooping

the memory bus and stealing DIMM to obtain the user data,

which exacerbate the data confidentiality. Moreover, attackers

also replay memory data and tamper with memory contents,

which undermine the data integrity. In this paper, we use

counter mode encryption (CME) and SGX integrity tree (SIT)

to defend against these attacks. Other attacks such as access

pattern leakage, power analysis and side-channel attacks, are

beyond the scope of this paper.

B. Counter Mode Encryption
Since NVMs retain data after power failures, informa-

tion leakage in NVMs is more severe than the volatile

DRAM. Data encryption becomes necessary to guarantee data

confidentiality, which can be processed in memory [9] or

processor side [36]. However, in the memory-side encryption,

the plaintext data have to pass through the memory bus and

are snooped by attackers. Thus, prior works use the encryption

in the processor side [6], [33], [41], [46]. A straightforward

method in the processor side to encrypt a memory line is to

use a block cipher algorithm, e.g., AES, with a global key, as

shown in Fig. 1(a). However, this scheme suffers from some

limitations. Due to the unchanged keys, attackers can easily

break the encryption by using dictionary attacks. Moreover,

the decryption process exists on the read critical path. The

ciphertext data read from NVM have to be first decrypted,

which causes a long decryption latency.

Counter mode encryption (CME) is proposed to compensate

for the above drawbacks. As shown in Fig. 1(b), CME first

uses a counter, a data line address and a global secret key to

generate a one-time padding (OTP) via the AES algorithm.

For memory writes, the cache line to be written needs to

be encrypted by XORing the plaintext data and OTP. For

memory reads, OTP is generated via the cached counter block

in parallel with reading a memory line, and the plaintext data

are obtained by XORing the memory line and OTP. Thus the

decryption latency is hidden by the latency of reading data.

To provide high security, OTP will not be reused. To

meet this requirement, OTP generation uses three inputs, i.e.,

the line address, counter and key. Different data lines have

different addresses, which allows the OTPs of different lines

not to be reused. For the same line, each memory write causes

its counter to increase by one, and thus OTP will not be reused

in the same line at different writes. In general, each counter

block contains 64 7-bit minor counters and one 64-bit major

counter. Counter blocks are cached in the memory controller

and persisted in NVM. One counter block covers 64 user data

blocks, i.e., one page. CME encrypts data blocks using the

corresponding minor counter and major counter. When one

Data block

Merkle tree node

Root on chip

Data block
Counter block

Bonsai Merkle tree node

Root on chip

(a) Merkle tree (b) Bonsai Merkle tree

Fig. 2. Different bottom-up integrity trees. (a) Merkle tree starts hashing from
data blocks; (b) Bonsai Merkle tree starts hashing from counter blocks.

ctr MACctr ctrctrctr

Hash
Address

ctrctr ctr

ctr MACctr ctrctrctrctrctr ctr

56-bit counter

64-bit MAC

Fig. 3. SGX integrity tree (SIT) generates the MAC by hashing node address,
all counters in this node and one corresponding counter in the parent node.

minor counter overflows, the major counter increases by one.

All the minor counters are reset and the data blocks in this

page need to be re-encrypted. The 64-bit major counter never

overflows throughout the lifespan of an NVM, since the count

range, i.e., 264≈1020, is much larger than the endurance limit

of NVM cell, e.g., 107-109 for PCM [26], [43] and 108-1012

for ReRAM [20], [21].
C. Integrity Tree

Attackers can replay the data, counter and MAC [28]. To

protect data integrity, integrity trees have been widely used

in memory systems, e.g., merkle tree, bonsai merkle tree

(BMT) and SGX integrity tree (SIT) [12], [15], [28], [34].

In the merkle tree, as shown in Fig. 2(a), several data blocks

are hashed together to generate MAC using a cryptographic

hash function stored in the processor. Higher level MAC is

generated by hashing the lower level MACs together and

finally, the merkle tree is formed with one 64B hash root stored

on chip. Bonsai merkle tree generates the first MAC level

by hashing counter blocks instead of user data as shown in

Fig. 2(b). Since the number of counter blocks is much smaller

than that of user data blocks, bonsai merkle tree has fewer leaf

nodes and lower heights than merkle trees. Since each MAC

in one node leverages the MACs of its child nodes as inputs,

the (bonsai) merkle trees calculate their MACs sequentially,

i.e., the tree can’t calculate the MAC of one node before

completing the computation upon the MACs of its child nodes.

Different from merkle tree and bonsai merkle tree, an SIT

node contains eight 56-bit counters and one 64-bit MAC [34],

instead of hash values. Like counter blocks, an SIT node is 64-

byte and stored in memory/cache line granularity. As shown in

Fig. 3, the MAC in each SIT node is generated by hashing the

node address, the counters in this node and one corresponding

counter in the parent node. SIT can calculate different level

MACs in parallel as long as these counters have been prepared.

In the SIT-based systems, the counter blocks in CME are the

leaves of SIT, and the counter blocks have the same structures

as SIT nodes, i.e., eight counters and one MAC.

In SIT, when one SIT node is read into cache, systems re-

calculate the MAC and compare it with the MAC stored in

the SIT node to detect whether the node is attacked. SIT

has two options to update the tree nodes, including eager

and lazy schemes. The eager scheme is to propagate the

changes to the root and modify root immediately when one

361

data block is flushed into NVM. Persisting data blocks causes

the corresponding counters in all ancestor nodes to increase

by one. The root exhibits the data changes and has a higher

probability of overflowing, since each user data write, no

matter where it is written, causes a counter in the root to

increase. Specifically, in the lazy scheme, once a data block,

i.e., the user data block, counter block or SIT node, is flushed

into NVM, its ancestor SIT nodes are cached to verify the

integrity of the flushed data block. The corresponding counter

in the parent node further increases by one, and the MACs

in the flushed data block and parent node are hence modified.

The other ancestor nodes, including the root, are unchanged.

These nodes are modified only when their dirty child nodes are

flushed into NVM from the cache. The SIT root is not modified

immediately with the changes of data and intermediate nodes

in the lazy scheme. The cached tree nodes are treated as trusted

bases since they have been verified when they enter the cache.

After crashes, since the cached nodes are lost and root is lazy

updated, the attacks occur during recovery can’t be detected

by SIT. Thus the systems need a new approach to verifying

the correctness of recovery [44].

Due to fewer computations of MACs than the eager scheme,

we leverage the lazy scheme to update the SIT, like Syner-

gy [30], Vault [34] and Anubis [44].

D. The MACs in Persistent Memory

SIT uses MACs stored in tree nodes (including counter

blocks, which are the leaves of SIT) to associate one tree

node with its parent node. Any unauthorized modifications

over counters and MACs in nodes could be detected by

comparing the stored and calculated MACs. The user data

also need MACs to associate the data with encryption counters

by hashing the data, data address and corresponding counter

in counter block to generate the MAC. Without the MAC,

an illegal modification in the user data can’t be detected,

and the wrong data will be used by CPU after decryption.

When reading user data, the integrity of the user data needs

to be verified by using MAC. To avoid the failure of integrity

checking after recovery, MACs need to be written into NVM

with the new user data. However, the MAC of user data

is logically placed with the user data line, but physically

placed in another memory line. To persist MAC and user data

atomically and decrease the number of the accesses to MAC

memory lines, Synergy [30] stores the MAC in the 9th chip, in

which the Error Correction Code (ECC) is previously stored.

Synergy reads/writes the data and MAC in one memory access.

Similar to Synergy, we store the user data and MAC in one

line, instead of two memory lines.

In general, the size of MAC is 64 bits [34]. However, 54-bit

MAC is also safe as described in Morphable Counters [29].

There are 10 unused bits in a 64-bit MAC space. We will

reuse these unused bits in our design to instantly persist the

modifications of security metadata.

E. Motivation

The state-of-the-art works provide the metadata recovery in

the persistent memory after system crashes, e.g., Osiris [40]

Triad-NVM [7] and Anubis [44]. However, Osiris and Triad-

NVM fail to support SIT recovery, and Anubis causes high

write overhead. We need to fast recover the security metadata

with low write overhead in the SIT-based persistent systems.

Osiris relaxes the counter block persistence during system

running time. After system crashes, Osiris recovers the stale

counter block by checking the counter from the stale counter
to stale counter+N to find the correct counter. Osiris checks

the correctness of each alternative counter by computing ECC

and finally detects the data replay attack by using the merkle

tree root stored on chip. However, Osiris doesn’t discuss how

to persist and recover the SIT nodes. Moreover, in the widely

used SIT lazy scheme, the root doesn’t demonstrate the latest

data in memory after crashes. Attackers can simply replay the

data, MAC and ECC with old tuple on recovery, and this data

replacement can’t be detected when Osiris is used for SIT.

Osiris also needs a long time to recover all counter blocks due

to failing to distinguish between the stale and fresh counter

blocks.

Triad-NVM forces to persist multi-level merkle tree nodes

with the user data into NVM. The merkle tree recovery on

Triad-NVM needs to reconstruct the whole merkle tree from

the leaves and compare the reconstructed root with the one

stored on chip. However, SIT can’t be constructed from the

leaves. Without the correct corresponding counter in the parent

node, the MAC in one SIT node can’t even be computed.

Due to forced persistence of the low-levels merkle tree nodes,

Triad-NVM incurs 2–4 times write overheads.

Anubis provides fast recovery schemes for both merkle tree

and SGX integrity tree. For a merkle tree, when a metadata

block in cache is marked dirty from a clean state, an extra

shadow table (ST) block with this dirty block address is written

into NVM. For the SGX integrity tree, each metadata write

from the cache into memory incurs an extra ST block write

containing the address, the LSBs of counters and MAC of the

parent node of the written metadata. To ensure the consistency

of ST and dirty security metadata blocks, Anubis needs an

atomic scheme to persist the ST and security metadata blocks

like SCA [23] and Supermem [45]. The Anubis recovery

scheme for SIT has 2 times memory writes compared with

a normal write-back scheme, thus increasing the write traffic

and the energy consumption of NVM.

Concurrent work, Phoenix [5], contains the updates of

counter blocks in the cache tree root and doesn’t persist the

modifications of counter blocks, which can be recovered via

Osiris [40]. Unlike Phoenix, our STAR removes the extra

writes of the whole tree, including the counter blocks and

intermediate tree nodes, by containing the changes in the

unused bits of the MAC fields.

In addition to the above works, logs are usually used to

restore the inconsistent data in systems, e.g., redo log and

undo log. For the redo log, the new data are first written into

the log, and then the old data are updated in-place. If system

crashes occur during writing logs, the old data in-place are

consistent. If the crashes occur during updating old data, the

inconsistent old data can be recovered according to the new

362

Node C

Node B

Node A

(a) Partial SIT in metadata cache

Transaction 1:

Log (Node A);

Write (Node A);

End

Transaction 2:

Log (Node A);

Write (Node A);

Log (Node B);

Write (Node B);

End

Transaction 3:

Log (Node A);

Write (Node A);

Log (Node B);

End

(b) Three log schemes

Fig. 4. Using log schemes to persist the SIT nodes.

L
L

C

Bitmap lines

Metadata

space

User data

space

RA

Memory Controller

Cache

tree

ADR support

Metadata cache

op�

op�

op�

co
u
n
te

r-
M

A
C

sy
n
e
rg

iz
a
ti

o
n

NVM

Fig. 5. The overview of STAR design. (op �) Flushing user data with
counter-MAC synergization incurs the modifications in metadata cache. (op �)
Flushing metadata with counter-MAC synergization incurs the modifications
in metadata cache. (op �) Bitmap lines are flushed into recovery area (RA)
by LRU policy. Cache-tree exhibits changes in metadata cache.

data recorded in the log. An undo log is also used to recover

the data by the old data in a log. However, SIT fails to use

logs to ensure the consistency between two tree nodes. As

shown in Fig. 4(a), node B is the parent node of node A,

and node C is the parent node of node B. The metadata cache

needs to evict the node A due to the cache replacement policy.

Fig. 4(b) shows three different log schemes for persisting node

A. Transaction 1 ensures that the node A itself in NVM is

consistent. However, the node B has been modified due to the

eviction of its child node A. After system crashes, node B in

NVM is stale and needs to be restored. Transaction 2 provides

the consistencies of both nodes A and B, but the node C is

stale after system crashes. Transaction 3 writes the node A

and logs the node B. When crashes occur, although the node

B is stale, it could be restored from the log. This transaction

provides the consistency of nodes A and B. However, this log

scheme is similar to Anubis with extra 1x writes, i.e., when

writing node A, Anubis uses the ST node to record and restore

the modified node B, while Transaction 3 uses the log.

Existing works provide different approaches to recovering

the security metadata. However, some can’t be used in SIT,

and others incur high write and recovery overheads. Unlike

existing works, we focus on SIT lazy update scheme and

counter mode encryption to propose a new scheme STAR,

which reduces the extra memory writes on running time

with fast recovery after system crashes while offering crash

consistency between metadata and metadata/user data.

III. SYSTEM DESIGN AND IMPLEMENTATIONS

A. STAR Overview

To fast recover security metadata after system crashes with

low write overhead, our paper proposes STAR that instantly

persists the modifications in metadata cache and restores the

stale metadata from their child nodes after crashes. Persisting

the child node into NVM only modifies the parent node.

STAR hence stores the modifications of the parent node in

the unused bits of the child node’s MAC. The modifications

of the parent node are instantly persisted after modifying the

parent node, without any extra memory writes. After system

crashes, STAR obtains the modifications of the stale parent

node from its persistent child node. The parent node is restored

by combining its stale version and the modifications.

In the context of SIT, our STAR recovers the stale security

metadata in a short time with low write overhead. As shown

in Fig. 5, STAR consists of the counter-MAC synergization,

bitmap lines and cache-tree structure. The user data flushing

from LLC into NVM causes the modifications of the counter

blocks, i.e., the parent nodes of user data (op �). The counter

blocks/SIT nodes flushing from metadata cache in memory

controller into the metadata space also causes the modifica-

tions of their parent nodes (op �). When flushing metadata and

user data, STAR stores the modifications in the child node’s

MAC space and the modifications are persisted with child

node, called counter-MAC synergization. The counter-MAC

synergization leverages the unused bits in the MAC space of

one node to store the modifications of its parent node. During

recovery, the stale metadata are restored from their child nodes.

To fast recover the metadata, STAR uses bitmap lines to

record the locations of stale metadata. On recovery, STAR

restores the stale metadata instead of all metadata, thus

consuming short recovery time. Bitmap lines are stored in an

asynchronous DRAM refresh (ADR) region in the memory

controller and flushed into the Recovery Area (RA) in NVM

by the least recently used (LRU) policy (op �).

Finally, to verify the correctness of the recovery process,

i.e., whether an attack occurs, the cache-tree in the metadata

cache is constructed. The dirty metadata in cache will be stale

when crashes occur, since they are not persisted into NVM

in time. The cache-tree is constructed via the dirty metadata

in the cache. The root of the cache tree is stored in the non-

volatile register on chip. If an attack occurs during the recovery

process, the stale node (i.e., the dirty node in cache) can’t

be restored to the latest state. The root of the reconstructed

cache-tree will not match the stored root, hence identifying

the occurrence of attacks.

B. Persisting the Modifications of Metadata

The security metadata in the cache are divided into two

categories, i.e., clean and dirty. Specifically, the clean metadata

in cache are the same as their counterparts in NVM. The

dirty metadata in cache are different from their counterparts

in NVM, since the cached metadata have been modified

but not flushed into NVM. If dirty metadata in the cache

are not persisted before system crashes, the corresponding

counterparts become stale in NVM. After system crashes, we

only need to restore the stale metadata in NVM. A cache has

a ‘dirty bit’ for each cache line to indicate whether this cache

line is dirty. As described in Section I, each metadata is 64B

363

data

Unchanged Modified

10 LSBs of c2

(a) Intuitive scheme

c0 c1 c2 c7 MAC

c0 c1 c2 c7 MAC

c0 c1 c2 c7 MAC

c0 c1 c2 c7 MAC

MAC
c2 MAC data MAC

(b) STAR scheme

1st line write
2nd line write

one line write

Fig. 6. Persisting the modifications of dirty nodes. (a) The intuitive scheme
persists two lines with atomicity assurance; (b) STAR scheme persists one
line via counter-MAC synergization.

and stored in a cache line. We distinguish the clean and dirty

metadata in cache by checking the dirty bits of the cache lines.

After system crashes, we need to restore the stale metadata.

One key observation is that in SIT lazy update scheme

(detailed in Section II-C), when one data block is evicted

from cache, only the corresponding counter in its parent

node increases by one, and the MAC in the parent node is

hence modified. Other counters in the parent node and other

nodes are unchanged as shown in Fig. 6. The systems need

to persist the modifications. On recovery, after obtaining the

modifications of the stale node’s counter, we restore the node

by combining the modifications and the stale version in NVM.

Finally, the MAC of the stale node is recomputed.

To persist modifications of the parent node in time, one

intuitive scheme is to store the modified counter and MAC

in one line, and persist the line with data block in an atomic

operation, as shown in Fig. 6(a). However, the intuitive scheme

incurs 2x memory writes and requires atomicity assurance like

SCA [23].

Unlike the intuitive scheme, we store the modifications

of metadata in their child nodes’ MAC space, as shown

in Fig. 6(b). As described in Section II-D, 54-bit MAC is

safe [29], and 10 bits are unused in the 64-bit MAC space.

STAR leverages these unused bits of MAC in the child node

to store 10 LSBs of the corresponding counter in the parent

node.

When one user data to be written arrives at the memory

controller, only the corresponding counter in the counter block

increases by one. STAR stores the 10 LSBs of the increased

counter in the unused space of user data’s MAC, called

counter-MAC synergization. The counter block contains eight

counters and has eight child user data. The LSBs of counter are

stored in the corresponding user data’s MAC. Moreover, the

MAC and user data are organized in one line [30]. Hence the

modifications of the counter blocks are atomically persisted

with the user data without any atomicity assurance.

The counter-MAC synergization is also leveraged in security

metadata. When one dirty metadata, i.e., counter block or SIT

node, is evicted from metadata cache in the memory controller,

the corresponding counter in the parent node increases by one.

The LSBs of the increased counter are stored in the unused

space of the evicted metadata’s MAC space and persisted with

the evicted metadata. Thus the modifications of the security

metadata are instantly persisted once be generated.

To protect the LSBs, MAC in a data block is computed by

hashing the content in the block, the address of the block, the

corresponding counter in the parent node and the LSBs stored

in the MAC space. When a counter in one metadata has been

increased 210 times, the metadata needs to be flushed into

NVM to update the Most Significant Bits (MSBs), which are

used on recovery to restore the stale metadata. This counter

overflow is rare and introduces negligible overhead.

After system crashes, the metadata are restored in a bottom-

up manner. The counter blocks are restored from the cor-

responding user data which are the child nodes of counter

blocks, and the SIT nodes are restored from their child nodes.

For one stale metadata, STAR obtains the correct LSBs of

counters from its child nodes’ MAC space. Even if the parent

and child nodes are both dirty in cache, the recovery is also

correct. The parent node becomes dirty due to persisting the

child node. Thus the modifications of the dirty parent node are

flushed with the child node via counter-MAC synergization. If

the child node is dirty in cache, since the dirty node has not

been evicted, the corresponding counter in parent node is not

modified. We don’t need to recover the counter after crashes.

Combined the MSBs stored in NVM with the LSBs obtained

from the child node’s MAC, counters in the stale metadata

are restored. According to the corresponding counter in the

parent node (if necessary, the parent node also needs to be

restored), the MAC in this stale metadata is recomputed. With

the counters and MACs, the stale metadata are recovered.

However, restoring all metadata requires a long recovery

time. For fast recovery, STAR uses bitmap lines to track the

locations of the stale metadata in Section III-C. Moreover,

restoring nodes according to counter-MAC synergization suf-

fers from data replay attacks. For example, when recovering

counter blocks from their child user data, attackers replace

the user data, MACs and LSBs in child data with an old

tuple. These attacks can’t be detected since the stale counter

block matches the replayed child data. STAR needs to verify

the correctness of the recovery process. We describe the

verification mechanism in Section III-E.

C. Tracking the Locations of Stale Metadata

The stale metadata need to be clearly identified via their

locations to facilitate fast recovery. Without the locations, all

metadata in NVM have to be fully restored even if some are

not stale, which requires a long recovery time. To efficiently

record the locations of the stale metadata, we use the bitmap

lines within ADR in memory controller. One bit in the bitmap

line represents a security metadata line, e.g., the first and

last bits in the first bitmap line represent the 1st and 512th

metadata lines in metadata space. Each bitmap line covers

32KB continuous metadata space since one line contains 512

bits (512×64B=32KB).

The bitmap lines are used for recovery to indicate the

locations of the stale metadata. During system running, when

the cached metadata lines become dirty, the corresponding bits

in bitmap line are set to 1, i.e., the dirty metadata become stale

in NVM due to not being flushed into NVM. When the cached

dirty metadata lines are flushed into NVM, STAR resets the

corresponding bits to 0, i.e., the metadata in NVM are not

364

L2 bitmap line

L1 bitmap line
non-zero line non-zero line

Metadata

stale metadata stale metadata stale metadata

Fig. 7. A multi-layer index structure is used to read the non-zero bitmap
lines and stale metadata.

stale. If the cached dirty metadata lines are modified again,

STAR doesn’t access the bitmap lines to change the bits, since

the corresponding bits have been set to 1 when the metadata

lines become dirty. Moreover, when the cached clean metadata

lines are evicted from the cache, STAR doesn’t access the

bitmap lines, since the corresponding bits are already 0. In

summary, we only access the bitmap lines when the dirty states

of metadata lines change (from clean to dirty or from dirty to

clean). According to the dirty bit in the cache, it is easy to

determine whether the dirty states change.

The bitmap lines need to be persisted when system crashes

occur. To ensure the persistence of bitmap lines, STAR lever-

ages the ADR mechanism. Modern processor vendors provide

a small battery backup for ADR with tens of entries [23], [32]

in the memory controller. When the system crashes occur, the

data stored in ADR are flushed into NVM by battery backup

support. STAR places a certain number of the bitmap lines

in ADR (the default value is 16 lines) so that these bitmap

lines would be persisted when crashes occur. Extending ADR

to store metadata is also used in SCA [23], which doesn’t

impact the performance but consumes the on-chip space.

If the bitmap lines in ADR don’t cover the metadata line

whose dirty state changes, i.e., the corresponding bit exists

in another bitmap line in NVM, STAR flushes one bitmap

line from ADR to the Recovery Area (RA) in NVM by LRU

policy and reads the bitmap line into memory controller from

RA to record the location of state-changed metadata line. For

example, when a metadata line becomes dirty from clean,

STAR needs to access the corresponding bitmap line. If there

is no corresponding bitmap line in ADR, STAR reads the

corresponding bitmap line from RA into memory controller

and flushes one bitmap line into RA via LRU. As shown in

Fig. 10 in Section IV, the frequency of writing/reading bitmap

lines is low. Thus the overhead is negligible. The RA in NVM

is allocated to store all bitmap lines, and consumes another

negligible 1/512 metadata space.

D. Using Multi-layer Index to Speed Up Recovery

To locate the stale metadata in NVM during recovery, STAR

needs to read all bitmap lines in RA. For a 16-GB NVM, the

size of RA is 1/512 of the size of metadata space in NVM,

i.e., RA occupies a 4-MB NVM space. However, reading

the 4-MB RA also causes long latency. To speed up the

STAR recovery process, we observe that only the locations

of the stale metadata are necessary. Even if all metadata

in the metadata cache are dirty and not written into NVM

when crashes occur, many bitmap lines in RA are useless for

recovery. The bitmap lines are designed to cover all metadata

space, which is much larger than the metadata cache. Since

inserted data
move

Root Inserted data

Moved data

Recomputed data

Fig. 8. Inserting a leaf node causes the changes of the whole merkle tree.

the zero lines don’t record the locations of stale metadata,

reading these lines from RA is useless and time-consuming

during recovery. It is more efficient to only read the non-zero

bitmap lines, instead of reading all lines from RA.

To speed up reading RA, we propose a multi-layer index, as

shown in Fig. 7. STAR leverages L1 bitmap lines to indicate

which security metadata lines are stale and L2 bitmap lines

to indicate which L1 bitmap lines are non-zero. If necessary,

STAR can add L3 bitmap lines and so on. We call this

structure a multi-layer index. STAR stores the highest-layer

bitmap lines in the on-chip non-volatile register like SIT

root, and never flushes these lines into NVM. To reduce the

consumption of on-chip space, the number of bitmap lines

in the highest layer is always one. Other-layer lines exist in

ADR in the memory controller and are flushed into RA by

LRU, like the bitmap lines described in Section III-C, with

lightweight NVM space consumption. A 1-/2-/3-layer index

can cover 32KB/16MB/8GB metadata space. In our evaluation,

we model 16GB main memory (about 2GB metadata), and the

3-layer index is sufficient to cover the metadata space.

E. Using Cache-Tree to Verify the Correctness of Recovery

STAR restores stale metadata according to the counter-MAC

synergization. However, attackers can replace the data, MAC

and LSBs with an old tuple to disable the recovery without

system detection. For example, a user data with its MAC and

the LSBs 0x11 is written into NVM. During recovery, restoring

its parent counter block needs the LSB 0x11, but attackers

replace the tuple with old data, old MAC and old LSBs 0x10.

Due to lazy update in SIT, the root of SIT can’t be used to

detect the attacks that occur during recovery. Moreover, since

the cached tree nodes are lost, they can’t be used to detect

the attacks on restored metadata. The replay attack also can’t

be detected via MAC since the old MAC in the user data

matches the old data, old LSBs and stale counter in the parent

node. Thus the stale parent node is incorrectly restored without

detection.

An intuitive approach to detecting the attacks is to construct

a merkle tree using the dirty data in the cache [44]. After

crashes, if the dirty metadata are incorrectly restored due

to attacks, the attacks can be detected by comparing the

reconstructed root and the stored one. However, directly

constructing the merkle tree faces two challenges: 1 the

different orders of leaf nodes before and after crashes cause

false positives of attacks; and 2 inserting/deleting one leaf

node may reconstruct the whole tree, thus causing high-

overhead recomputation. For the same dataset, the roots of

the constructed trees using the data with different leaf-node

orders are different. After crashes, the restored metadata are

365

MAC

8-way set

8-byte Set-MAC

dirty line clean line

MAC MAC MAC MACs of dirty lines in set

(a) Set-MAC

MAC MAC MAC MAC MAC MAC MAC

MAC MAC MAC MAC MAC MAC

Root

Set-MACs

Cache-tree root

MAC

(b) Cache-tree

Fig. 9. The MACs in cache lines storing dirty metadata are used to construct
a cache-tree.

required to use the same leaf-node order to reconstruct the

merkle tree. Otherwise, the attacks would be falsely reported.

Thus the order of dirty metadata used to construct the merkle

tree needs to be determined. Assuming the dataset is ordered

by the ascending addresses of data (descending addresses can

also be used). When a cached metadata becomes dirty, the

metadata is inserted into the leaves of the merkle tree via its

address. The metadata whose addresses are bigger than the

inserted metadata need to be moved in the leaf layer as shown

in Fig. 8. The ancestor nodes of the moved metadata need to

be recomputed with high computation overhead. Deleting the

leaf nodes when they become clean also needs to move some

leaf nodes and significantly change the merkle tree.

To address the above challenges and verify the correctness

of restored metadata, we introduce cache-tree based on the set-

way structure of cache to determine the order of dirty metadata

and reduce the recomputation overheads of tree nodes. We

notice that modern cache is usually a set-way structure. An 8-

way cache is divided into multiple sets. Each set has 8 ways,

and each way contains one cache line. A specific memory

line is cached into a specific set and placed in any way in

this set. As shown in Fig. 9, STAR constructs a cache-tree

in metadata cache by hashing the MACs of dirty metadata

lines to verify the correctness of the recovery. The MACs

of the dirty metadata lines in one set are first ordered by

the ascending addresses. Then the set-MAC is computed by

hashing these ordered MACs of the dirty metadata as shown

in Fig. 9(a). Furthermore, a small merkle tree (4 levels in

our implementation) is constructed by iteratively hashing these

set-MACs as shown in Fig. 9(b), called cache-tree. If no

dirty metadata lines exist in a set, STAR uses zero-bytes

as the set-MAC to construct the cache-tree. During system

running, one metadata becoming dirty only affects the set-

MAC and changes a branch of the small cache-tree with low

computation overhead. After crashes, the restored metadata

are ordered in sets via the ascending addresses, which is the

same order used before crashes, to construct the cache-tree.

STAR logically constructs the cache-tree without physically

moving any cache lines. STAR doesn’t add an 8-byte space at

each set to store set-MAC. Hence the set-MACs and cache-

tree nodes exist in metadata cache with SIT nodes and counter

blocks. The cache-tree nodes in the cache are not involved in

the set-MAC generation. The cache-tree root is always on chip

just like a traditional merkle tree root. On recovery, STAR

reconstructs the cache-tree. Attacks will cause a wrong MAC

and be detected by the cache-tree root.

F. Recovery Process

After system crashes, the stale metadata need to be restored,

and the correctness of recovery needs to be verified. To

recover the stale security metadata, STAR first reads the multi-

layer index from RA to obtain the non-zero L1 bitmap lines.

According to the L1 bitmap lines, STAR identifies the stale

metadata in metadata space.

STAR recovers the stale SIT nodes and counter blocks

in a bottom-up manner. When restoring one stale metadata

node, since we don’t know which counter in the metadata

is dirty, STAR restores all eight counters in the metadata.

STAR obtains all LSBs from the eight child nodes’ MACs.

Coalescing the MSBs in NVM with the obtained LSBs, the

eight counters in the stale metadata are restored. The MAC of

the stale metadata is re-computed by hashing the eight counters

and one corresponding counter in the parent node. To detect

the tampering and replay attacks that occur during recovery,

STAR caches all MACs of the restored metadata nodes, orders

them by the ascending addresses in a set, generates the set-

MACs and reconstructs the cache-tree root. The system further

verifies the recovery process by matching the recalculated

cache-tree root and original on-chip cache-tree root. If the two

roots are not matched, attacks occur during recovery and the

system recovery fails.

It is worth noting that no matter attacks occur in the

recovery-related or recovery-unrelated metadata during re-

covery, the system has the ability to detect the attacks.

Specifically, the recovery-related metadata include the stale

security metadata (MSBs in stale nodes), the bitmap lines

and the corresponding counters. The tampering and replay

attacks in recovery-related metadata result in the wrong set-

MACs (i.e., the leaves of cache-tree) in the metadata cache.

Thus these attacks are detected by comparing the reconstructed

cache-tree root with that stored on chip during recovery. On

the other hand, if the recovery-unrelated metadata are attacked,

due to not being verified during recovery, the system needs

to verify the recovery-unrelated metadata when using these

metadata. These attacks will be detected by SIT root or other

verified nodes in the cache during running time.

When an attacker replaces the bitmap lines or the security

metadata, our STAR can detect that the attack occurs, and the

recovery fails. But STAR doesn’t know which data block is

attacked. It is important to locate the attacked data. However,

in existing works, only the strict persistence schemes can

locate the attacks with unacceptable write overhead.

IV. PERFORMANCE EVALUATION

A. Evaluation Methodology

To evaluate the performance of STAR, we use Gem5 [8]

with NVMain [25] to model the system. NVMain is a

cycle-accurate main memory simulator for emerging NVM

366

TABLE I
THE CONFIGURATIONS OF THE EVALUATED NVM SYSTEM.

Processor
CPU 8 cores, X86-64 processor, 2 GHz

Private L1 cache 64KB, 2-way, LRU, 64B Block
Private L2 cache 512KB, 8-way, LRU, 64B Block
Shared L3 cache 4MB, 8-way, LRU, 64B Block

PCM Main Memory
Capacity 16GB

PCM latency model
tRCD/tCL/tCWD/tFAW/tWTR/tWR

=48/15/13/50/7.5/300 ns
Secure Parameters

Security metadata cache 512KB, 8-way, 64B Block, in MC

SIT 9 levels, 8-ary, 64B Block

Cache-tree 4 levels, 8-ary, 64B Block

Bitmap lines 1KB, 16 lines, in MC

Multi-layer index 4MB, in NVM

technologies. As illustrated in Table I, we simulate an 8-

core X86 processor. The NVM system contains 32KB L1

data and instruction caches, 512KB L2 and 4MB shared L3

caches. Since the structures of SIT node and counter block

are identical (i.e., 8 counters and 1 MAC), we use one 512KB

metadata cache to store the SIT nodes and counter blocks. The

metadata cache is managed by the memory controller [44],

[45]. We use 16GB PCM-based main memory, and the PCM

latency model is the same as that used in existing works [35],

[45]. We implement 5 persistent micro-benchmarks, i.e., array,

btree, hash, queue and rbtree, which are widely used in the

existing works of persistent memory [7], [11], [17], [18],

[23], [27], [45], to evaluate the system. We also leverage

macro-benchmarks, i.e., tpcc and ycsb from WHISPER [24]

to evaluate the performance of STAR. All these micro- and

macro-benchmarks run with 8 threads.

To comprehensively examine the performance of our pro-

posed STAR, we evaluate the following schemes for compar-

isons.

• A persistent system with a write-back metadata cache (WB).

It uses an ideal write-back metadata cache in which only

the evicted data from the metadata cache are flushed into

NVM. Since not all modified metadata are persistent, the

WB scheme doesn’t support recovery after system crashes.

We use WB as a baseline.

• A strict persistence scheme (Strict Persistence). Strict Persis-

tence scheme persists all changed nodes from the modified

counter block up to the root of SIT.

• Anubis for SGX Integrity Tree scheme (Anubis). An ST

block, in which Anubis records the address of the dirty

metadata, counters and MAC, is written into NVM with

each memory write. Anubis recovers the systems according

to the ST blocks.

• Our proposed STAR. STAR leverages counter-MAC syn-

ergization to persist the modifications of nodes, while

providing atomicity guarantee. The bitmap lines and multi-

layer index ensure the fast recovery of security metadata

after crashes.

It is worth noting that Osiris and Triad-NVM can’t be used

to recover the counter blocks and integrity tree nodes in SIT-

based persistent memory, and we don’t compare our STAR

ar
ra

y
bt

re
e

ha
sh

qu
eu

e

rb
tre

e
tp

cc
yc

sb

av
er

ag
e

0

2

4

6

8

10
181111 461422588299

N
u
m

b
er

o
f

M
em

o
ry

W
ri

te
s

Bitmap Lines in STAR WB

Fig. 10. The write number of Bitmap Lines in STAR compared with that of
WB (normalized to Bitmap Lines in STAR).

arr
ay

btr
ee

ha
sh

qu
eu
e

rbt
ree tpc

c
yc
sb

av
era
ge

0
1
2
3
4
5
6
7
8
9

N
or
m
al
iz
ed
W
rit
e
Tr
af
fic

WB STAR Anubis Strict Persistence

Fig. 11. The write traffic of different schemes (normalized to WB).

with them.

B. Write traffic of different schemes

The memory writes of STAR consist of bitmap line writes

and normal memory line writes. We show the write overhead

of the bitmap lines of STAR, and compare all write traffic of

STAR with other schemes.

Fig. 10 shows the number of bitmap lines writes of STAR

compared with the number of WB writes. The number of

bitmap lines in ADR is 16, consisting of 2 L2 bitmap lines and

14 L1 bitmap lines. STAR flushes the bitmap lines to NVM

since there is a bitmap line miss. The bitmap lines selected

by LRU need to be flushed into the recovery area (RA) in

NVM, and one bitmap line needs to be read from RA to

record the locations of dirty metadata. Fig. 10 shows that the

number of the bitmap lines writes/reads in STAR is negligible

compared with WB. On average, the number of WB writes

is 461x more than that of bitmap lines writes. Because one

bitmap line covers 8-page metadata space (512×64B=32KB).

When the applications have high spatial localities, STAR rarely

evicts bitmap lines. Most bitmap lines writes are caused by

evicting security metadata from metadata cache since the

security metadata have lower spatial locality than user data.

Fig. 10 shows that in different workloads, the numbers of

bitmap lines writes become different, which depend on the

localities of workloads.

Fig. 11 shows the write traffic of different schemes. In

addition to persisting common memory writes (i.e., the writes

in WB), Anubis also persists ST blocks, and the strict

persistence persists all nodes in a branch of SIT when a user

data is written. Since the height of SIT in 16GB persistent

memory is 8 (excepting the root), the write traffic (including

persisting the user data) of a strict persistence scheme is 9

367

ar
ra

y
bt

re
e

ha
sh

qu
eu

e

rb
tre

e
tp

cc
yc

sb

av
er

ag
e

0.0

0.2

0.4

0.6

0.8

1.0
N

o
rm

al
iz

ed
IP

C
WB STAR Anubis

Fig. 12. The IPCs of different schemes on different workloads (normalized
to WB).

arr
ay

btr
ee

ha
sh

qu
eu
e

rbt
ree tpc

c
yc
sb

av
era
ge

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

N
or
m
al
iz
ed
En
er
gy
C
on
su
m
pt
io
n WB STAR Anubis

Fig. 13. The energy consumption on different workloads (normalized to WB).

times that of WB in theory. However, in Fig. 11, the write

traffic of the strict persistence scheme is less than 9 times

that of WB, since the tree nodes also need to be evicted in

the WB scheme according to cache replacement policy, i.e.,

WB actually has more writes. Compared with the baseline

WB scheme, the write traffic of STAR is 1.08x, while Anubis

has 2x write traffic than WB. STAR significantly reduces 92%

extra memory traffic compared with Anubis. Extra write traffic

in STAR is caused by writing bitmap lines.

C. The IPCs

Due to low memory writes, the performance overhead of

STAR is low. Fig. 12 shows the IPCs (instructions per cycle) of

different schemes. Since the array and hash have more memory

writes in STAR (about 1.21x and 1.34x memory writes than

that of WB), they have more IPC degradation. However, the

highest IPC overhead in the hash workload is 8%, which is

light and acceptable. We also consider the performance impact

on cache-tree. The performance overhead incurred by cache-

tree is negligible. Since the metadata cache is small (512KB),

the height of the cache-tree is low (4 levels). Moreover, we

don’t force to persist cache-tree node. After system crashes,

we reconstruct the small cache-tree from leaf nodes. The leaf

nodes, i.e., the dirty cached metadata, can be restored via

the counter-MAC synergization after crashes. From Fig. 12,

STAR has a better IPC than Anubis in all workloads. On

average, STAR achieves about 98% IPC compared with WB,

and Anubis achieves about 90% IPC.

D. The Energy Consumption

NVMs have asymmetric read and write energy consumption,

and the write energy consumption is high. By reducing the

memory writes to NVM, STAR significantly reduces the

TABLE II
THE HIT RATIOS OF DIFFERENT NUMBERS OF BITMAP LINES PLACED IN

ADR (2, 4, 8, 16 AND 32).

Bitmap Lines 2 4 8 16 32
Hit Ratio 32.85% 47.44% 64.37% 74.75% 82.19%

energy consumption of the NVM systems. Fig. 13 shows the

energy consumption on WB, STAR and Anubis. Like the

observation in IPC performance, since the array and hash incur

more writes, they consume more energy compared with other

workloads. On average, STAR significantly reduces the energy

overhead from 46% in Anubis to 4%.

E. The Sensitivity to the Number of Bitmap Lines in ADR

A bitmap line in ADR covers 8 memory pages since one

bitmap line contains 512 bits and one bit represents one

memory line. More bitmap lines in ADR cover more metadata

space, thus increasing the hit ratio of the bitmap lines. Table II

shows the average hit ratio among 2, 4, 8, 16 and 32 bitmap

lines in ADR. The hit ratio is not too high because the system

tries to access the bitmap lines only when the dirty state of

one metadata line changes. For example, a user data is written

into NVM, which results in its counter block to become dirty.

The location of this counter block needs to be recorded in

the bitmap lines. Furthermore, the neighbor user data with

the same counter block is written. Since the counter block has

become dirty and the state of the counter block is not changed,

the system doesn’t need to access the bitmap lines and record

this location again. When the dirty metadata is evicted from

cache, the system records its location in a bitmap line due to its

state changing from dirty to clean. But when a clean metadata

is evicted, the system will not access the bitmap lines. Table II

shows that more bitmap lines in ADR provide a higher hit

ratio, which causes less number of bitmap lines to be written.

Considering that the on-chip ADR region is expensive, and

the improvement upon hit ratio decreases with more bitmap

lines, we choose to place 16 bitmap lines in ADR.

F. Recovery Time

To recover the stale nodes, STAR first reads the non-zero L1

bitmap lines according to the multi-layer index to obtain the

locations of the stale nodes. STAR further recovers a stale node

by reading its parent node and eight child nodes to restore the

counters and MAC of the stale node. The cache-tree is further

reconstructed to verify the correctness of the recovery process.

Like Anubis and Osiris [40], [44], we assume that fetching

and updating one metadata (64 bytes) from NVM consume

100ns. The recovery time consists of fetching metadata from

memory and reconstructing the cache-tree. Since the cache-

tree is small, the latencies of reading metadata from NVM

dominate the recovery time.

Fig. 14(a) shows the percentage of dirty metadata in the

metadata cache. When system crashes occur, these dirty

metadata are stale in NVM and need to be restored. STAR

hence needs to restore 78% metadata of cache, much smaller

than 100% in Anubis.

During the recovery process, STAR reads the negligible

number of bitmap lines and restored metadata to verify the

368

arr
ay

btr
ee

ha
sh

qu
eu
e

rbt
ree tpc

c
yc
sb

av
era
ge

0.0

0.2

0.4

0.6

0.8

1.0

P
er

ce
n

ta
g

e
o

f
D

ir
ty

M
et

ad
at

a

(a) Dirty metadata ratio

12
8

25
6

51
2

10
24

20
48

40
96

0.00

0.01

0.02

0.03

0.04

0.05

R
ec
ov
er
y
Ti
m
e
in
Se
co
nd

Metadata Cache Size in KB

STAR
Anubis

(b) Recovery time

Fig. 14. The recovery time of STAR and Anubis for recovering dirty metadata
in different sizes of metadata cache.

recovery process. Restoring each stale metadata needs to read

10 related nodes, including 1 stale node to be restored, 1 parent

node and 8 child nodes.

Fig. 14(b) shows the recovery time after system crashes of

different schemes. For a 4MB metadata cache, STAR needs

0.05s to recover the stale security metadata, while Anubis

needs 0.02s. Although STAR needs about 2.5x recovery time

than Anubis, STAR also requires less than 0.1s to recover

a sufficiently big (4MB) cache for the security metadata.

Moreover, since the systems need 10–100s to execute self-test

after system crashes [4], our time for recovering stale security

metadata is negligible in the real-world systems.

G. The Benefits of Different Optimizations

Counter-MAC synergization and bitmap lines disaggregate

contents and addresses of the modified metadata, allowing

each to be independently persisted and thus eliminating un-

necessary memory writes. They reduce 92% extra write traffic.

Due to the recorded addresses, STAR only recovers the stale

metadata, and proposes the multi-layer index to limit the

metadata recovery time to less than 0.1s. Finally, the cache-

tree is used to detect the attacks that occur during recovery.

V. RELATED WORK

Recovery in NVM. Fast and cost-efficient recovery in NVM

is important to secure persistent memory systems. Osiris [40]

recovers the counter blocks by retrieving counter from the

stale counter to stale counter+N and leverages error-correction

codes to verify the correctness of the retrieved counter blocks.

Since Osiris writes a counter block into NVM when one

counter in this block has been increased by N times, Osiris has

fewer writes than write-back schemes. cc-NVM [38] caches

the flushed counter blocks in write pending queue with a

battery in an epoch and only flushes these blocks at the

end of one epoch. cc-NVM also retrieves the counter to

obtain the correct one. Unlike Osiris, cc-NVM uses MAC

to verify the correctness of counters. To recover a merkle

tree, Triad-NVM [7] flushes the N lowest levels nodes and

counter blocks with the user data writes. On recovery, Triad-

NVM reconstructs the whole tree from the flushed tree nodes

instead of user data. Anubis [44] provides a fast recovery

scheme for merkle tree and SGX integrity tree by recording

the addresses of the modified metadata in a shadow table

block that is flushed with user data. Anubis only recovers the

cached nodes according to shadow table blocks and reduces

the recovery time. Phoenix [5] combines the Osiris and Anubis

to reduce the write overhead of metadata. Phoenix relaxes the

persistences of counter blocks using Osiris, and decreases the

extra writes of shadow table blocks for counter blocks.

Secure NVM. NVM suffers from the data remanence

vulnerability and limited lifetime. Ensuring data confidentiality

with low write overhead in NVM is necessary and important.

DEUCE [41] proposes a dual-counter scheme. In one epoch,

DEUCE uses the old counter to encrypt the untouched words

and new counter to encrypt the changed words in a cache

line, which reduces the write traffic since the untouched

words needn’t to be written by executing DCW [37] and

FNW [10]. Based on DEUCE, SECRET [33] further reduces

the zero-content words writes in NVM by flushing a zero-flag.

Silent Shredder [6] observes that zeroing out physical pages

before mapping to processor consumes a large percentage of

memory writes. They initialize the counters of the pages with

low overhead. The initialized pages can be assigned without

zeroing out. SuperMem [45] uses a write-through counter

cache to ensure the counter crash consistency and proposes a

counter write coalescing (CWC) scheme to reduce the number

of counter writes. Freij et al. [13] point out that prior research

under-estimated the cost of updating BMT, and propose the

pipelining BMT updates scheme to reduce the update latency

of BMT.

Unlike existing schemes, STAR focuses on SIT lazy scheme

and instantly persists the modifications in the cache to achieve

low recovery and write overheads.

VI. CONCLUSION

This paper proposes STAR to reduce the recovery time and

write overhead of recovering the SGX integrity tree nodes

and counter blocks in the secure non-volatile memories. To

efficiently restore the dirty metadata and verify the recovery

process, STAR judiciously exploits the unused space in MAC

in one node to store the LSBs of the corresponding counter

in the parent node, and leverages bitmap lines in ADR to

maintain the locations of stale metadata. Moreover, a multi-

layer index is used to speed up recovering stale nodes, and

a cache-tree is constructed to ensure the correctness of the

recovery process. Experimental results show that compared

with state-of-the-art work, STAR significantly reduces the

write overhead and improves system performance while fast

recovering the security metadata after crashes.

ACKNOWLEDGEMENTS

This work was supported in part by National Key Research

and Development Program of China under Grant 2016YF-

B1000202, National Natural Science Foundation of China

(NSFC) under Grant No. 61772212 and Key Laboratory of

Information Storage System, Ministry of Education of China.

REFERENCES

[1] “Amazon.com goes down, loses $66,240 per minute,”
https://www.forbes.com/sites/kellyclay/2013/08/19/amazon-com-
goes-down-loses-66240-per-minute/#7e75d897495c, accessed July 20,
2020.

[2] “The cost of it downtime,” https://www.the20.com/blog/the-cost-of-it-
downtime/, accessed July 20, 2019.

[3] “Intel corporation. persistent memory programming.” https://pmem.io/.

369

[4] “Power-on self-test,” https://en.wikipedia.org/wiki/Power-on self-test,
accessed July 20, 2019.

[5] M. Alwadi, K. Zubair, D. Mohaisen, and A. Awad, “Phoenix: Towards
ultra-low overhead, recoverable, and persistently secure nvm,” IEEE
Transactions on Dependable and Secure Computing, 2020.

[6] A. Awad, P. Manadhata, S. Haber, Y. Solihin, and W. Horne, “Silent
shredder: Zero-cost shredding for secure non-volatile main memory
controllers,” ACM SIGOPS Operating Systems Review, 2016.

[7] A. Awad, M. Ye, Y. Solihin, L. Njilla, and K. A. Zubair, “Triad-
nvm: Persistency for integrity-protected and encrypted non-volatile
memories,” in Proceedings of the 46th International Symposium on
Computer Architecture. ACM, 2019, pp. 104–115.

[8] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti et al., “The gem5
simulator,” ACM SIGARCH Computer Architecture News, vol. 39, 2011.

[9] S. Chhabra and Y. Solihin, “i-nvmm: a secure non-volatile main memory
system with incremental encryption,” in 2011 38th Annual international
symposium on computer architecture (ISCA). IEEE.

[10] S. Cho and H. Lee, “Flip-n-write: a simple deterministic technique
to improve pram write performance, energy and endurance,” in
Proceedings of the 42nd Annual IEEE/ACM International Symposium
on Microarchitecture. ACM, 2009, pp. 347–357.

[11] J. Coburn, A. M. Caulfield, A. Akel, L. M. Grupp, R. K. Gupta, R. Jhala,
and S. Swanson, “Nv-heaps: making persistent objects fast and safe with
next-generation, non-volatile memories,” ACM Sigplan Notices, 2012.

[12] V. Costan and S. Devadas, “Intel sgx explained.” IACR Cryptology ePrint
Archive, vol. 2016, no. 086, pp. 1–118.

[13] A. Freij, S. Yuan, H. Zhou, and Y. Solihin, “Persist-level parallelism:
Streamlining integrity tree updates for secure non-volatile memory,” in
Proceedings of the 53nd Annual IEEE/ACM International Symposium
on Microarchitecture, 2020.

[14] A. Gamatié, A. Nocua, J. Weloli, G. Sassatelli, L. Torres, D. Novo, and
M. Robert, “Emerging nvm technologies in main memory for energy-
efficient hpc: an empirical study,” 2019.

[15] B. Gassend, G. E. Suh, D. Clarke, M. Van Dijk, and S. Devadas, “Caches
and hash trees for efficient memory integrity verification,” in The Ninth
International Symposium on High-Performance Computer Architecture,
HPCA-9. Proceedings. IEEE, 2003, pp. 295–306.

[16] A. Hassan, H. Vandierendonck, and D. S. Nikolopoulos, “Software-
managed energy-efficient hybrid dram/nvm main memory,” in Proceed-
ings of the 12th ACM International Conference on Computing Frontiers,
2015.

[17] A. Kolli, V. Gogte, A. Saidi, S. Diestelhorst, P. M. Chen,
S. Narayanasamy, and T. F. Wenisch, “Language-level persistency,”
in ACM/IEEE 44th Annual International Symposium on Computer
Architecture (ISCA). IEEE, 2017, pp. 481–493.

[18] A. Kolli, J. Rosen, S. Diestelhorst, A. Saidi, S. Pelley, S. Liu, P. M. Chen,
and T. F. Wenisch, “Delegated persist ordering,” in The 49th Annual
IEEE/ACM International Symposium on Microarchitecture, 2016.

[19] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger, “Architecting phase change
memory as a scalable dram alternative,” ACM SIGARCH Computer
Architecture News, vol. 37, no. 3, pp. 2–13, 2009.

[20] H. Lee, Y. Chen, P. Chen, P. Gu, Y. Hsu, S. Wang, W. Liu, C. Tsai,
S. Sheu, and P. Chiang, “Evidence and solution of over-reset problem
for hfo x based resistive memory with sub-ns switching speed and high
endurance,” in International Electron Devices Meeting, 2010.

[21] M.-J. Lee, C. B. Lee, D. Lee, S. R. Lee, M. Chang, J. H. Hur, Y.-B.
Kim, C.-J. Kim, D. H. Seo, and S. Seo, “A fast, high-endurance and
scalable non-volatile memory device made from asymmetric ta 2 o 5-
x/tao 2- x bilayer structures,” Nature materials, vol. 10, no. 8, p. 625,
2011.

[22] H. Lipmaa, P. Rogaway, and D. Wagner, “Ctr-mode encryption,
comments to nist concerning aes modes of operations,” in NIST
Workshop on Modes of Operation, 2000.

[23] S. Liu, A. Kolli, J. Ren, and S. Khan, “Crash consistency in encrypted
non-volatile main memory systems,” in IEEE International Symposium
on High Performance Computer Architecture (HPCA). IEEE, 2018.

[24] S. Nalli, S. Haria, M. D. Hill, M. M. Swift, H. Volos, and K. Keeton,
“An analysis of persistent memory use with WHISPER,” in Proceedings
of the 22nd International Conference on Architectural Support for
Programming Languages and Operating Systems. ACM, 2017.

[25] M. Poremba, T. Zhang, and Y. Xie, “Nvmain 2.0: A user-friendly
memory simulator to model (non-) volatile memory systems,” IEEE
Computer Architecture Letters, vol. 14, no. 2, pp. 140–143, 2015.

[26] M. K. Qureshi, J. Karidis, M. Franceschini, V. Srinivasan, L. Lastras,
and B. Abali, “Enhancing lifetime and security of pcm-based main
memory with start-gap wear leveling,” in Proceedings of the 42nd annual
IEEE/ACM international symposium on microarchitecture. ACM, 2009.

[27] J. Ren, J. Zhao, S. Khan, J. Choi, Y. Wu, and O. Mutiu, “Thynvm:
Enabling software-transparent crash consistency in persistent memory
systems,” in 48th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). IEEE, 2015, pp. 672–685.

[28] B. Rogers, S. Chhabra, M. Prvulovic, and Y. Solihin, “Using address
independent seed encryption and bonsai merkle trees to make secure
processors os-and performance-friendly,” in Proceedings of the 40th
Annual IEEE/ACM International Symposium on Microarchitecture.
IEEE Computer Society, 2007, pp. 183–196.

[29] G. Saileshwar, P. Nair, P. Ramrakhyani, W. Elsasser, J. Joao, and
M. Qureshi, “Morphable counters: Enabling compact integrity trees
for low-overhead secure memories,” in 51st Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO). IEEE, 2018.

[30] G. Saileshwar, P. J. Nair, P. Ramrakhyani, W. Elsasser, and M. K.
Qureshi, “Synergy: Rethinking secure-memory design for error-
correcting memories,” in IEEE International Symposium on High
Performance Computer Architecture (HPCA). IEEE, 2018.

[31] S. Schechter, G. H. Loh, K. Strauss, and D. Burger, “Use ecp, not ecc,
for hard failures in resistive memories,” in ACM SIGARCH Computer
Architecture News, vol. 38, no. 3. ACM, 2010, pp. 141–152.

[32] S. Shin, S. K. Tirukkovalluri, J. Tuck, and Y. Solihin, “Proteus: A flexible
and fast software supported hardware logging approach for nvm,” in
50th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO). IEEE, 2017, pp. 178–190.

[33] S. Swami, J. Rakshit, and K. Mohanram, “Secret: Smartly encrypted
energy efficient non-volatile memories,” in 53nd ACM/EDAC/IEEE
Design Automation Conference (DAC). IEEE, 2016, pp. 1–6.

[34] M. Taassori, A. Shafiee, and R. Balasubramonian, “Vault: Reducing
paging overheads in sgx with efficient integrity verification structures,”
in ACM SIGPLAN Notices, vol. 53, no. 2. ACM, 2018, pp. 665–678.

[35] C. Xu, D. Niu, N. Muralimanohar, R. Balasubramonian, T. Zhang,
S. Yu, and Y. Xie, “Overcoming the challenges of crossbar resistive
memory architectures,” in IEEE 21st International Symposium on High
Performance Computer Architecture (HPCA). IEEE, 2015.

[36] C. Yan, D. Englender, M. Prvulovic, B. Rogers, and Y. Solihin,
“Improving cost, performance, and security of memory encryption
and authentication,” in ACM SIGARCH Computer Architecture News,
vol. 34, no. 2. IEEE Computer Society, 2006, pp. 179–190.

[37] B.-D. Yang, J.-E. Lee, J.-S. Kim, J. Cho, S.-Y. Lee, and B.-G. Yu,
“A low power phase-change random access memory using a data-
comparison write scheme,” in IEEE International Symposium on Circuits
and Systems. IEEE, 2007, pp. 3014–3017.

[38] F. Yang, Y. Lu, Y. Chen, H. Mao, and J. Shu, “No compromises: Secure
nvm with crash consistency, write-efficiency and high-performance,” in
Proceedings of the 56th Annual Design Automation Conference (DAC).

[39] J. J. Yang, D. B. Strukov, and D. R. Stewart, “Memristive devices for
computing,” Nature nanotechnology, vol. 8, no. 1, p. 13, 2013.

[40] M. Ye, C. Hughes, and A. Awad, “Osiris: A low-cost mechanism to
enable restoration of secure non-volatile memories.” in MICRO, 2018.

[41] V. Young, P. J. Nair, and M. K. Qureshi, “Deuce: Write-efficient
encryption for non-volatile memories,” ACM SIGPLAN Notices, vol. 50,
no. 4, pp. 33–44, 2015.

[42] J. Yue and Y. Zhu, “Accelerating write by exploiting pcm asymmetries,”
in IEEE 19th International Symposium on High Performance Computer
Architecture (HPCA). IEEE, 2013, pp. 282–293.

[43] P. Zhou, B. Zhao, J. Yang, and Y. Zhang, “A durable and energy
efficient main memory using phase change memory technology,” in ACM
SIGARCH computer architecture news, vol. 37. ACM, 2009.

[44] K. A. Zubair and A. Awad, “Anubis: ultra-low overhead and recovery
time for secure non-volatile memories,” in Proceedings of the 46th
International Symposium on Computer Architecture. ACM, 2019.

[45] P. Zuo, Y. Hua, and Y. Xie, “Supermem: Enabling application-
transparent secure persistent memory with low overheads,” in Pro-
ceedings of the 52nd Annual IEEE/ACM International Symposium on
Microarchitecture, 2019.

[46] P. Zuo, Y. Hua, M. Zhao, W. Zhou, and Y. Guo, “Improving the
performance and endurance of encrypted non-volatile main memory
through deduplicating writes,” in 51st Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). IEEE, 2018, pp. 442–454.

370

