
A Cost-Efficient Metadata Scheme for High-Performance Deduplication Systems

Yuxuan Mo, Yu Hua∗, Pengfei Li, Qin Cao, Xue Liu†
Huazhong University of Science and Technology
{yuxuanmo, csyhua, cspfli, qcao}@hust.edu.cn

†McGill University
xueliu@cs.mcgill.ca

Abstract—Data deduplication has been widely used in
backup systems to eliminate redundant data, which speeds
up the backup process and reduces the storage overhead.
Deduplication packs multiple chunks into a large, fixed-size
container as a storage unit to maintain the locality and achieve
efficient compression. We observe that the traditional contain-
ers have low filling ratios due to a large amount of metadata
generated by small files. Unfilled containers require more space
to store a backup, which decreases the storage efficiency and
reduces restore performance. In order to address this problem,
we propose a Metadata region Adaptive Container Structure,
called MACS. MACS maintains a tag to record the length of
metadata region in the container. The boundary between meta-
data region and data region is dynamically decided to ensure
the maximum space efficiency of the containers. Moreover, we
propose a container metadata length-based indexing and cache
replacement strategy to allow MACS to be practical in data
backup systems. We demonstrate the advantages of MACS with
three real world backup datasets. MACS achieves over 95%
average container filling ratio, which is significantly higher
than existing designs. MACS further achieves better restore
performance than the traditional container structure. When
combined with existing rewriting method, MACS achieves
an efficient trade-off between deduplication ratio and restore
performance.

Keywords-Data Deduplication; Storage Efficiency; Restore
Performance; Container Structure

I. INTRODUCTION

In recent years, the digital data rapidly increase with

the growth of mobile Internet, intelligent devices, scientific

computing and other applications. The total amount of data

will reach 163 ZB by 2025 according to the white paper

released by International Data Corporation(IDC) [1]. Data

deduplication becomes a significant technique to efficiently

reduce and store massive data, which has been widely used

in current backup storage systems.

In chunk-based deduplication systems, the storage effi-

ciency is improved by identifying and eliminating redundant

data. The data is divided into small-sized chunks (e.g., 4-8

KB), which are represented as fingerprints (e.g., typical 20-
byte) that are calculated via a hash algorithm, e.g., MD5,

SHA1, SHA256 [2] [3]. Instead of comparing the data byte-

by-byte, deduplication systems identify the duplicate chunks

via fingerprints, which speeds up the comparison process.

* Yu Hua is the corresponding author.

Two chunks share the same fingerprint are identified as

duplicate chunks, and only one copy is stored on disks for

storage efficiency.

To preserve the spatial locality of the backup data streams

and improve the efficiency of read and write, multiple

chunks are packed and stored into a large fixed-size (e.g.,

4 MB) container [4]. The container is the basic unit to
read and write data in deduplication systems, which consists

of a fixed length data region and a fixed length metadata

region. However, we observe that existing schemes contain

many unfilled containers, i.e., these containers contain a

large amount of available space. The main reason is that

the backup systems contain a tremendous amount of small

files, while the container consists of metadata and data

regions with fixed sizes. As a result, the metadata region

is filled when the data region is partially empty. This lead

to poor space utilization and backup system performance

degradation.

Moreover, deduplication process influences the restore

performance, due to only storing unique chunks, but the

subsequent duplicate chunks are not stored. The chunks of

a backup are likely to be dispersed and stored in different

containers. We have to load numerous different containers to

restore the backup. With the growth of unfilled containers,

the overhead to restore a backup increases.

To efficiently address above problems, we present a Meta-

data region Adaptive Container Structure, called MACS. It

dynamically determines the boundary between the metadata

region and data region according to chunk characteristics.

The proportion of metadata region in MACS is not fixed

and containers are flushed to disks with high filling ratio.

Thus, MACS maximizes the utilization of storage space.

In the traditional container structure, the metadata are

easily obtained according to the starting position of the

container, since the metadata region has a fixed length.

However, the metadata in MACS can’t be directly obtained

via the traditional approach due to the dynamic-size meta-

data regions. MACS adds a tag to indicate the length of

metadata region in a container. Based on the observation

that the adjacent backup versions are most similar, we just

cache the length tags of last backup version. Moreover, we

propose a metadata length-based cache replacement strategy

for efficient caching.

49

2021 IEEE 23rd Int Conf on High Performance Computing & Communications; 7th Int Conf on Data Science & Systems; 19th
Int Conf on Smart City; 7th Int Conf on Dependability in Sensor, Cloud & Big Data Systems & Application

978-1-6654-9457-1/21/$31.00 ©2021 IEEE
DOI 10.1109/HPCC-DSS-SmartCity-DependSys53884.2021.00034

0%

20%

40%

60%

80%

100%

Linux GCC GDB

Pr
op
or
tio
n

Workloads

space of files smaller than 1KB

amount of files smaller than1KB

space of files smaller than 2KB

amount of files smaller than2KB

Figure 1. Space and quantity proportion of small files in the workloads.

In this paper, we have the following contributions.

• We explore the workload characteristics in backup

systems and propose a size-aware container structure

to store the various-size chunks, which provides two

types of containers to fully use the container space.

• To maintain the locality of the data streams and ensure

the high space utilization, we optimize the proposed

structure with adaptive metadata regions or MACS,

which improves the storage efficiency.

• We propose a container metadata length-based indexing

and metadata length-based cache replacement strategy

to ensure the applicability of MACS in the data backup

system.

• We evaluate our proposed scheme using three real-

world datasets. The experimental results show that

MACS achieves over 95% average container filling

ratio and has the best restore performance compared to

the commonly used design and SACS. When combined

with existing rewriting method, MACS achieves an

efficient trade-off between the deduplication ratio and

restore performance.

II. BACKGROUND AND MOTIVATION

A. Small Chunks in Deduplication

The deduplication systems typically divide the data stream

into 4-8 KB chunks. However, small files generate smaller

chunks (e.g., 1 KB), and the small files widely exist in real-

world applications such as social networks, ecommerce sites,

and digital libraries. Existing research shows that small files

in a typical deduplication system occupies less than 20 % of

the storage space, but more than 80 % of the total number

of files [5].

To explore the impacts of small files on the chunk sizes,

we use three datasets to evaluate the basic deduplication

process on real workloads, including Linux, GCC, and GDB.

The details of these datasets are described in Section IV.

Figure 1 shows the occupied space ratio and quantity ratio

of the small files in different workloads. We observe that

although the proportion of the storage space occupied by

the small files is low, the number of the small files is very

Figure 2. Actual average chunk length under different expected chunk
lengths.

large. In order to explore the effects of the small files, we use

asymmetric extremum(AE) algorithm [6] to chunk the above

three datasets. AE is a chunking scheme, which employs an

asymmetric sliding window to identify extrema as cut points.

Figure 2 shows the actual average chunk lengths when the

chunking algorithm predefines different chunk sizes. We

observe that all actual average chunk sizes are smaller than

expected chunk sizes under different workloads. Due to the

tremendous amount of small files in the workloads, there is a

large proportion of small chunks in the data backup system,

which result in the average chunk length to be lower than the

expected chunk length. In addition, when the expected chunk

length increases, more small files generate small chunks.

Therefore, the gap between the actual average chunk length

and the expected chunk length increases as the expected

chunk size increases.

B. Low filling ratio of the container

The container is the basic unit to read and write in

the deduplication systems, which groups multiple chunks

together to preserve the locality. Specifically, a container

consists of a data and metadata region. The data region

stores the contents of chunks. The metadata region stores

the description information of chunks, including the offset

of the chunk and the size of the chunk, which are used

to restore the original data. The container pre-allocates a

fixed-size metadata and data regions with the assumption

that all chunks have the predefined chunk size to simplify

the process of container allocation and re-allocation. In

theory, the utilization of storage space is maximized when

the data region and the metadata region are filled at the

same time. However, in practice, the two regions fail to be

filled simultaneously. As shown in II-A, there are a large

proportion of small chunks in the system, while the boundary

between the metadata region and data region is set according

to the expected chunk size in advance. As a result, the

container is considered to be full when the metadata region

is full, even if the data region remains a lot of available

space.

To explore the efficiency of container space utilization,

50

Figure 3. Average container filling ratio at different expected chunk
lengths.

we track the average filling ratio of the containers on disk

after performing deduplication process. The average filling

ratio is defined as the total amount of data written to

disk divided by the amount of actually allocated physical

space, which reflects the efficiency of physical space. In this

evaluation, we use the same configurations for the containers

via commonly used schemes and the evaluation results are

shown in Figure 3. Each metadata entry occupies 28 bytes,

including a 20-byte fingerprint, a 4-byte container offset and

a 4-byte chunk length. The size of the metadata region is

set to be equal to or slightly larger than the value of the

expected metadata. The setting method and reason will be

elaborated in III-A. Experimental results show that a large

number of small files cause the metadata region to be filled

before the data region, resulting in a waste of container

space. More containers are required when containers have

low filling ratio, which reduces the storage space efficiency.

In addition, a low container filling ratio also decreases the

restore performance of the system, since more containers are

required to load to restore the original data.

III. DESIGN AND IMPLEMENTATION

In this section, we first propose a size-aware container

structure to alleviate the metadata problem generated by

small files. Then we propose metadata region adaptive

container structure to further increase the container filling

ratio. Moreover, we introduce the indexing process and

cache replacement strategy when taking the MACS.

A. Size-aware Container Structure

Based on the observations in II, the number of chunks

generated by small files is large, but the total space is

small. In addition, compared with large files, small files

are very unlikely to be changed. Therefore, in order to

solve the problem of a large amount of container space

being wasted in existing backup systems, we first propose

a benchmark solution called Size-Aware Container Struc-

ture (SACS). Since the fixed-size metadata will cause the

container to sacrifice storage space in its data region or

metadata region, SACS adopts two kinds of containers with

different metadata region sizes. SACS sets a chunk length

Data D3

Metadata M3

Length tag L3

Data D3

Metadata M3

Length tag L3

Data D2

Metadata M2

Length tag L2

Data D2

Metadata M2

Length tag L2

Data D1

Metadata M1

Length tag L1

Data D1

Metadata M1

Length tag L1

Data D0

Metadata M0

Data D0

Metadata M0

Figure 4. Traditional container structure and three examples of Metadata
Region Adaptive Container Structure. i.e., L1 = L2 = L3.

threshold to divide chunks into two types, namely small

chunks and large chunks. A chunk whose length is smaller

than the threshold is called a small chunk, otherwise it is

called a large chunk. At the same time, SACS maintains a

dual container mechanism, namely special chunk containers

and normal chunk containers. Small chunks are stored in

special chunk containers, and large chunks are stored in

normal chunk containers. The normal chunk container uses

the same metadata region and data region length as the

traditional container. The length of the metadata region in

the special chunk container is larger than that in the normal

chunk container.

For a special container, the size of metadata region is

set to be equal to or slightly larger than that in the normal

containers, as shown in Equation 1. Smeta indicates the
size of metadata region, Lentry represents the length of
metadata item, Nchunk represents the number of chunks in
the container, and ε represents an integer equal to or larger
than 0.

Smeta = Lentry ∗Nchunk + ε (1)

SACS uses the hash table to store the metadata in the

container. When the metadata region becomes full while the

data region remains much available space, SACS increases

the size of metadata region according to Equation 2, where

Smeta indicates the size of metadata region, Lentry repre-
sents the length of metadata item, and 2k represents the
capacity of the hash table.

Smeta = Lentry ∗ 2k (2)

For example, when the small chunk size is 1 KB and

the container size is 4 MB, a container will hold about 4096

chunks. In this case, the metadata region requires at least 112

KB according to Equation 3, as the metadata item length of

each chunk is 28 bytes.

Smeta = 28B ∗ 212 = 112KB (3)

B. Metadata Region Adaptive Container Structure

Directly using SACS in existing deduplication systems

decreases the restore performance because the chunk locality

is destroyed. The locality in the deduplication systems refers

51

to the existence of similar or identical files between backup

versions, e.g., The chunks divided by these files have a

very high probability be re-accessed in the same order [4],

[7]. However, SACS separately stores small chunks and

large chunks, which destroys the locality between the small

chunks and its adjacent large chunks. Moreover, SACS still

has some containers with low filling ratios, since SACS

still uses a fixed-length metadata region. The predefined

threshold significantly affects the container utilization and

fails to be set according to the workload characteristics.

To further improve the space utilization, we propose a

metadata region adaptive container structure, called MACS,

as shown in Figure 4. MACS uses dynamic boundary

division to ensure that the metadata region and the data

region are filled at the same time. MACS adds a 32-byte tag

to record the length of the metadata region in the container.

Compared with the storage space of the entire container, the

proportion of the space occupied by the length tag is very

small. By dynamically adjusting the sizes of the metadata

and data regions, MACS improves the space utilization of

the containers, as shown in Section IV. The space efficiency

improvement is much greater than the space consumption of

the length tag, so the cost of length tag is worthwhile.

Two areas are defined in the container to store the data

region and the metadata region respectively. When a chunk is

identified as a unique chunk or a fragmented chunk, it will

be written to the active container. MACS checks whether

the newly added chunk incurs the overflow of the container

according to Equation 4.

Ldata+Lchunk+(Nchunk+1) ∗Lentry > Sc−Lflag (4)

Nchunk represents the number of chunks cached in the
active container, Ldata is the total length of these chunks,
Lchunk represents the length of the chunk to be added,
Lentry is the space occupied by the metadata entries, Sc
indicates the size of the container, and Lflag is the space
occupied by the length tag. MACS puts the new chunk into

a new active container if the added chunk overflows the

current container.

C. Metadata Length Based Indexing

When querying the fingerprint of a chunk, the system

prefetches the metadata region of the found container into

memory to leverage the locality. In subsequent queries, other

fingerprints in this container hit the cache, thereby reducing

the number of disk accesses. However, MACS can’t directly

read the containers via the traditional indexing scheme, since

the sizes of the metadata regions are unfixed. One solution

is to read the length tag before reading the metadata region.

The weakness of this method is that it needs two times of

disk I/O to read the metadata region of a container, resulting

in high time overhead and performance degradation. Another

solution is to read the entire container into memory using

M7

M1 M2 M3 M4 M5 M6Cache queue

New metadata

Condition 1
M1 M3 M4 M5 M6 M7Cache queue

Condition 1
M1 M3 M4 M5 M6 M7Cache queue

Condition 2

Condition 2

Condition 2
M3 M4 M5 M6 M7Cache queue

Condition 2
M3 M4 M5 M6 M7Cache queue

Condition 3

Condition 3

M6 M7

Condition 3

M5 M6 M7

Condition 4

Condition 4

M5 M6 M7

Condition 4

M5 M6 M7

M5

Cache queue M4

Cache queue

Figure 5. Examples of four conditions with metadata length-based cache
replacement strategy. Condition 1-3 correspond to the three listed priority
replacement conditions, and Condition 4 is the default.

the container ID, which just need one disk I/O. However, it

wastes the limited memory space and bandwidth of I/O, as

not all data of a data region are needed.

Cache is commonly used hardware to reduce slowly

disk I/Os. Caching all the lengths of all metadata regions

in memory seems a feasible method to reduce disk I/O

overhead. However, this method can cause cache overflow

as the amount of containers is very huge and grows with

the increase of backup versions in backup systems. We

observe that there is a high degree of similarity between

adjacent backup versions. Instead, MACS only caches the

length tags of the containers in last back version, which is

affordable. Therefore, caching the container information of

the last backup version reduces most of the disk I/Os. If the

container ID of the duplicate chunk fails to hit the memory,

MACS will read the entire container into memory and

obtain the content of the metadata region according to the

length tag. After the backup stream performs deduplication,

the metadata region length index of the current version is

retained in memory, and the information of the last backup

version is cleared.

D. Cache Replacement Strategy

During the process of fingerprint query, the whole meta-

data region is prefetched into cache if the fingerprint hits

52

(a) Linux (b) GCC (c) GDB

Figure 6. Comparison results of average filling ratio of three container structures under different expected lengths.

the index table on the disk. An old container is removed

from cache when the fingerprint cache is full. The least

recently used(LRU) algorithm is a commonly used cache

replacement algorithm, which removes the cache line that

has not been accessed for the longest time. Directly applying

the traditional LRU algorithm to MACS will not work as the

chunks have various lengths.

The main idea of the cache replacement strategy based on

metadata region length is to remove as few existing container

metadata as possible and make full use of memory space

when prefetching metadata region of a container to ensure

that it can be put into cache. MACS divides the queue of

the cache into a priority replacement part and a regular

replacement part. The regular replacement part will only be

used if all the conditions for priority replacement are not

met. Suppose that the length of the metadata region to be

added is S, the priority replacement part is traversed from
the front to the end following three replacement conditions.

• Determine whether there is a metadata region with a

length larger than S. If so, select the metadata with the
closest length to S for replacement.

• Determine whether there are 2 metadata regions with a

length larger than S/2 at the same time. If so, select the
metadata with the closest length to S/2 for replacement.

• Determine whether there are 4 metadata regions larger

than S/4 at the same time. If so, select the metadata
with the closest length to S/4 for replacement.

If not meeting the above replacement principles of mini-

mum container metadata, MACS removes the metadata from

the head of the queue until the remaining space in the cache

is large enough to hold the new one. When all the container

metadata of the priority replacement part is removed and

the free part is still smaller than the newly added metadata,

the metadata of the regular replacement part is sequentially

removed from the back until the new metadata can be

completely placed in the cache.

Figure 5 shows the examples of this cache replacement

strategy. M7 is the new metadata region to be added and its
size it is S. The original replacement part of cache queue

has four metadata regions and the regular replacement part

has two. In Condition 1, the size of M2 is larger than S
and the closest length to S, meeting the first replacement
principle; In Condition 2, M1 and M2 have the closest
lengths to S/2, meeting the second replacement principle; In
Condition 3, all metadata regions in priority part are larger

than S/4 and smaller than S/2 at the same time, meeting
the third replacement principle; In Condition 4, none of

these replacement principles are met. It removes M1, M2
and M3 to make sufficient space for M7 from the head of the
queue. The metadata region length-based cache replacement

strategy ensures the adaptability of MACS in the data backup

system and makes better use of the limited cache space.

IV. PERFORMANCE EVALUATION

A. Experimental Setup

The experiments are deployed on a 4-core Intel E5620

2.4GHz system with 24 GB memory and 1 TB hard disk.

We implement our prototype based on Destor [5], which

is a widely used open-source deduplication system [8], [9].

For the configurations, we leverage AE algorithm [6] for

chunking and SHA-1 hash algorithm [2] for hashing. Since

fingerprint indexing performance is not the focus of this

study, all the experiments put all fingerprint indexes in

memory.

We use three widely used real workloads for performance

evaluation, including Linux, GCC, and GDB [10], [11].

Linux dataset contains 50 consecutive versions of the Linux

Kernel (linux-3.10.1 to linux-3.10.50), with a total size of

23.2 GB. GCC dataset contains 42 consecutive versions of

the GNU compiler (gcc-3.3 to gcc-4.4.7), with a total size of

11.5 GB. GDB dataset contains 48 consecutive versions of

the GNU debugger (gdb-5.2.1 to gdb-9.1), with a total size

of 7.4 GB. Since the tar format will affect the identification

of duplicate data, this experiment uses fully decompressed

workloads.

B. Space Efficiency

We use the average container filling ratio to evaluate the

space efficiency of different schemes, which is defined as the

53

(a) Linux (b) GCC (c) GDB

Figure 7. Comparison results of restore performance of three container structures with different expected chunk lengths.

(a) Linux (b) GCC (c) GDB

Figure 8. Comparison results of deduplication ratio and restore performance of three container structures after integrated rewrite method.

actual stored data divided by the total size of the container.

Figure 6 shows the evaluation results of MACS, which is

compared with the baseline and SACS. The baseline refers

to the container structure with a fixed-length data region and

metadata region. SACS is a size-aware container structure

as elaborated in Section III-A.

We set all containers to 4 MB and configure different

chunking sizes (i.e., the expected chunk lengths) in the AE

algorithm. In SACS, this experiment defines small chunks

as chunks smaller than 1 KB. In this experiment, 4 KB, 8

KB, and 16 KB are used as the expected chunk lengths.

From the experimental results, we observe that the average

container filling ratio of SACS at different expected lengths

is higher than that of the traditional container structure, and

MACS achieves the highest container filling ratio among the

three container structures. The reason is that SACS uses two

sizes of container structures, and could reduce the number

of container overflows caused by the full metadata region.

The MACS dynamically determines the boundary between

the data and metadata regions to ensure that both regions

are filled at the same time. Therefore, even if MACS adds

a length tag occupying 32 bytes of space in each container

to record the length of the metadata region in the current

container, its space efficiency is still highest one. MACS

achieves over 95% average container filling ratio and gets

the best performance.

C. Restore Performance

The restore process needs to read the data from different

containers to assemble the original data. We use the widely

used metric speed factor to measure the restore performance,
which is defined as the mean data size read by one con-

tainer [12]. The higher speed factor indicates the better

restore performance.

The experiment uses 4 KB, 8 KB and 16 KB as the

expected chunk length to perform the basic deduplication

process, and then recover the original data stream according

to the recipe. The memory contains a container cache,

set to 30 container sizes. The replacement strategy when

the container cache overflows is the LRU algorithm. The

container size is set to 4 MB.

Figure 7 shows the restore performance of the three

container structures. From the evaluation results, we observe

that MACS achieves the highest restore performance among

the different schemes, since MACS gathers the chunks into

fewer containers and improves the physical locality of the

data. As a result, MACS incurs fewer disk I/Os to read the

containers, hence achieving higher restore performance than

other schemes.

Existing deduplication systems selectively rewrite some

chunks to improve the restore performance. To further verify

the impact of different container structures on the restore

performance, we equip the backup systems with rewriting

54

Figure 9. The metadata length-based index in MACS reduces the ratio of
disk accesses. The hit ratio of backup version 1 is 0.

algorithm LBW and observe the trend in the deduplication

ratio and restore performance of the backup data stream.

In this experiment, the sliding window size is 8 container

lengths, the window moves forward by 1 container length

each time, and the adjustment range of the rewriting thresh-

old is 5 to 60.

In order to get the fair result, it is necessary to compare

the speed factors of systems using these three container

structures when the deduplication ratio is the same. Fig-

ure 8 shows the restore performance of different container

structures when enabling the rewriting algorithm. From the

evaluation results, we observe that MACS still achieves

higher restore performance than other schemes, since MACS

makes full use of the containers and improves the physical

locality. Therefore, MACS can be combined with rewriting

methods to improve the restore performance of the system.

D. The Caching Efficiency

In order to explore the efficiency of container metadata

length-based index in reducing disk access, we evaluate the

hit ratio to measure the caching efficiency. The hit ratio is
defined as the number of the cached chunks divided by the

total number of the duplicate chunks in the current backup

version. The experiment selects the first 10 backup versions

of three workloads and inputs them into the backup system

with MACS. The expected chunk length is set to 4 KB.

The result is shown in Figure 9. The hit ratio of backup

version 1 is 0, since no data exist in the cache. For the

other backup versions, the evaluation results show that the

hit ratios are close to 100% due to the strong locality be-

tween adjacent backup versions. Hence, our caching strategy

efficiently reduces the disk I/Os in backup systems.

V. RELATED WORK

Improving the storage efficiency. As a small change
in data stream can cause all subsequent chunks to be

identified as unique, existing deduplication systems leverage

the content-based chunking algorithms [13] to improve the

deduplication ratio. It uses a sliding window to traverse the

data stream. FastCDC [14] combines five key techniques,

including simplifying and enhancing the Gear hash judg-

ment, gear based fast rolling hash, skipping sub-minimum

chunk cut-points, normalizing the chunk-size distribution,

and rolling two bytes each time to further speed up CDC,

which incredibly accelerates the chunking process.

The traditional compression algorithms [15] are used to

further reduce the redundancy. Kruus and Romanski et al.

improve the deduplication ratio by further chunking the

unique chunks and re-executing the deduplication process

[7], [16]. Moreover, incremental compression after dedupli-

cation eliminates more redundancy between unique but sim-

ilar chunks without performing further deduplication [17].

Combining the compression and deduplication, BCD [18]

effectively utilizes the partial matches among cache lines

and achieves better compression ratio than the best art-of-

state work.

Restore optimization. Designing efficient caching strate-
gies and selectively rewriting duplicate chunks become two

main solutions to improve the restore performance. Fu et

al. [8] propose an optimal restore cache algorithm, called

OPT, which caches containers during the restore process

to improve the restore performance. Lillibridge et al. [12]

propose a forward assembly scheme (FAA). Cao et al. [19]

combine chunk-based caching and FAA to further improve

the restore performance. The performance of cache schemes

is relevant to block size, CDAC [20] leverages the content

usage patterns to address this problem. CDAC achieves high

read hit ratio, when the block size ranges from 4 KB to 32

KB.

On the other hand, we can use rewrite technique based

on different standards to improve the physical locality [8],

[12], [21]–[24]. Cao et al. [23] use a rewriting method based

on the look-back window, called LBW, which is proposed

to identify the fragment using the sliding window. Lu et

al. [25] propose a read-leveling data distribution scheme

to improve read performance and reduce contention, which

scatters the highly-duplicated data into different parallel

units. Besides, Zou et al. [26] find that most duplicate chunks

in a backup are directly from its previous backup and use

a data classification approach to generate an optimal data

layout.

Unlike the works we mentioned above, our MACS im-

proves the space efficiency by making full use of container

space. Moreover, MACS can be coalesced with existing

schemes to achieve higher storage efficiency.

VI. CONCLUSION

Data deduplication becomes an important technique to im-

prove the storage efficiency in backup systems. However, our

experimental results show that the containers are not fully

loaded due to many small files. To address this problem,

we propose a size-aware container structure with adaptive

metadata regions, called MACS. Moreover, we optimize

MACS with a container metadata length-based index scheme

and a cache replacement strategy. Our evaluation results

demonstrate that MACS significantly improves the storage

55

efficiency over traditional container structure and achieves

high restore performance.

ACKNOWLEDGMENT

This work was supported in part by National Natural

Science Foundation of China (NSFC) under Grant No.

61772212.

REFERENCES

[1] D. Reinsel, J. Gantz, and J. Rydning, “Idc white paper: Data
age 2025: The evolution of data to life-critical (idc white
paper),” 2017.

[2] S. Quinlan and S. Dorward, “Venti: A new approach to
archival storage.” in USENIX Conference on File and Storage
Technologies (FAST), vol. 2, 2002, pp. 89–101.

[3] A. Muthitacharoen, B. Chen, and D. Mazieres, “A low-
bandwidth network file system,” in Proceedings of the eigh-
teenth ACM symposium on Operating systems principles,
2001, pp. 174–187.

[4] B. Zhu, K. Li, and R. H. Patterson, “Avoiding the disk
bottleneck in the data domain deduplication file system.” in
USENIX Conference on File and Storage Technologies (FAST
8), vol. 8, 2008, pp. 1–14.

[5] M. Fu, D. Feng, Y. Hua, X. He, Z. Chen, W. Xia, Y. Zhang,
and Y. Tan, “Design tradeoffs for data deduplication perfor-
mance in backup workloads,” in 13th USENIX Conference on
File and Storage Technologies (FAST 15), 2015, pp. 331–344.

[6] Y. Zhang, H. Jiang, D. Feng, W. Xia, M. Fu, F. Huang,
and Y. Zhou, “Ae: An asymmetric extremum content de-
fined chunking algorithm for fast and bandwidth-efficient
data deduplication,” in 2015 IEEE Conference on Computer
Communications (INFOCOM). IEEE, 2015, pp. 1337–1345.

[7] E. Kruus, C. Ungureanu, and C. Dubnicki, “Bimodal content
defined chunking for backup streams.” in USENIX Conference
on File and Storage Technologies (FAST 10), 2010, pp. 239–
252.

[8] M. Fu, D. Feng, Y. Hua, X. He, Z. Chen, W. Xia, F. Huang,
and Q. Liu, “Accelerating restore and garbage collection in
deduplication-based backup systems via exploiting histori-
cal information,” in USENIX Annual Technical Conference
(ATC), 2014, pp. 181–192.

[9] J. Liu, Y. Chai, X. Qin, and Y. Xiao, “Plc-cache: Endurable
ssd cache for deduplication-based primary storage,” in 2014
30th Symposium on Mass Storage Systems and Technologies
(MSST). IEEE, 2014, pp. 1–12.

[10] W. Xia, H. Jiang, D. Feng, and Y. Hua, “Silo: A similarity-
locality based near-exact deduplication scheme with low ram
overhead and high throughput.” in USENIX Annual Technical
Conference (ATC), 2011, pp. 26–30.

[11] V. Tarasov, A. Mudrankit, W. Buik, P. Shilane, G. Kuenning,
and E. Zadok, “Generating realistic datasets for deduplication
analysis,” in USENIX Annual Technical Conference (ATC),
2012, pp. 261–272.

[12] M. Lillibridge, K. Eshghi, and D. Bhagwat, “Improving
restore speed for backup systems that use inline chunk-
based deduplication,” in 11th USENIX Conference on File
and Storage Technologies (FAST 13), 2013, pp. 183–197.

[13] M. O. Rabin, “Fingerprinting by random polynomials,” Tech-
nical report, 1981.

[14] W. Xia, X. Zou, H. Jiang, Y. Zhou, C. Liu, D. Feng, Y. Hua,
Y. Hu, and Y. Zhang, “The design of fast content-defined
chunking for data deduplication based storage systems,” IEEE
Transactions on Parallel and Distributed Systems, vol. 31, pp.
2017–2031, 2020.

[15] J. Ziv and A. Lempel, “A universal algorithm for sequential
data compression,” IEEE Transactions on information theory,
vol. 23, no. 3, pp. 337–343, 1977.

[16] B. Zhou and J. Wen, “Hysteresis re-chunking based metadata
harnessing deduplication of disk images,” in 2013 42nd
International Conference on Parallel Processing. IEEE,
2013, pp. 389–398.

[17] W. Xia, H. Jiang, D. Feng, L. Tian, M. Fu, and Y. Zhou,
“Ddelta: A deduplication-inspired fast delta compression ap-
proach,” Performance Evaluation, vol. 79, pp. 258–272, 2014.

[18] S. Park, I. Kang, Y. Moon, J. H. Ahn, and G. E. Suh,
“Bcd deduplication: Effective memory compression using
partial cache-line deduplication,” in Proceedings of the 26th
ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, 2021, p.
52–64.

[19] Z. Cao, H. Wen, F. Wu, and D. H. Du, “ALACC: Accelerating
restore performance of data deduplication systems using
adaptive look-ahead window assisted chunk caching,” in 16th
USENIX Conference on File and Storage Technologies (FAST
18), 2018, pp. 309–324.

[20] Y. Tan, C. Xu, J. Xie, Z. Yan, H. Jiang, W. Srisa-an, X. Chen,
and D. Liu, “Improving the performance of deduplication-
based storage cache via content-driven cache management
methods,” IEEE Transactions on Parallel and Distributed
Systems, vol. 32, no. 1, pp. 214–228, 2021.

[21] M. Kaczmarczyk, M. Barczynski, W. Kilian, and C. Dubnicki,
“Reducing impact of data fragmentation caused by in-line
deduplication,” in Proceedings of the 5th Annual International
Systems and Storage Conference, 2012.

[22] K. Srinivasan, T. Bisson, G. R. Goodson, and K. Voruganti,
“iDedup: latency-aware, inline data deduplication for primary
storage.” in 10th USENIX Conference on File and Storage
Technologies (FAST 12), vol. 12, 2012, pp. 1–14.

[23] Z. Cao, S. Liu, F. Wu, G. Wang, B. Li, and D. H. Du,
“Sliding look-back window assisted data chunk rewriting
for improving deduplication restore performance,” in 17th
USENIX Conference on File and Storage Technologies (FAST
19), 2019, pp. 129–142.

[24] Y. Zhang, Y. Yuan, D. Feng, C. Wang, X. Wu, L. Yan,
D. Pan, and S. Wang, “Improving restore performance for
in-line backup system combining deduplication and delta
compression,” IEEE Transactions on Parallel and Distributed
Systems, vol. 31, pp. 2302–2314, 2020.

[25] M. Lu, F. Wang, D. Feng, and Y. Hu, “A read-leveling data
distribution scheme for promoting read performance in ssds
with deduplication,” in Proceedings of the 48th International
Conference on Parallel Processing, 2019, pp. 22:1–22:10.

[26] X. Zou, J. Yuan, P. Shilane, W. Xia, H. Zhang, and X. Wang,
“The dilemma between deduplication and locality: Can both
be achieved?” in 19th USENIX Conference on File and
Storage Technologies (FAST 21), 2021, pp. 171–185.

56

