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Abstract—Cloud computing applications face the challenges of dealing with a huge volume of data that needs the support of accurate

and fast approximate queries to enhance system scalability and improve quality of service. Locality-sensitive hashing (LSH) can

support the approximate queries that unfortunately suffer from imbalanced load and space inefficiency among distributed data servers,

which severely limits the query accuracy and incurs long query latency between users and cloud servers. In this paper, we propose a

novel scheme, called NEST, which offers easy-to-use and cost-effective approximate queries for cloud computing. The novelty of

NEST is to leverage cuckoo-driven locality-sensitive hashing to find similar items that are further placed closely through cuckoo-driven

method to obtain load-balancing buckets in hash tables. NEST hence carries out flat and manageable addressing in adjacent buckets,

and obtains constant-scale query complexity even in the worst case. The benefits of NEST include the increments of space utilization

and fast query response. Moreover, due to the salient property of flat addressing in NEST, we implement NEST design in a real hybrid

storage system, which consists of DRAM, SSD, and hard disk. The flat addressing allows efficient operations in SSD to improve system

performance. We argue that a proper “division of labor” among DRAM, SSD, and hard disk in the hybrid and heterogeneous storage

hierarchy is desperately needed to strike an optimal balance to remove the indexing bottleneck. Theoretical analysis and extensive

experiments (on LANL and Microsoft metadata) in a large-scale cloud testbed demonstrate the salient properties of NEST to meet the

needs of approximate query service in cloud computing environments. We have offered open-source codes of NEST for public use.

Index Terms—Hybrid storage systems, approximate queries, locality

Ç

1 INTRODUCTION

CLOUD computing applications generally have the
salient property of massive data. The datasets with a

volume of Petabytes or Exabytes and the data streams with
a speed of Gigabits per second often have to be processed
and analyzed in a timely fashion. According to a recent
International Data Corporation (IDC) study, the amount of
information created and replicated is more than 1.8 Zetta-
bytes in 2011 [1]. Moreover, from small hand-held devices
to huge data centers, we are collecting and analyzing ever-
greater amounts of information. Users routinely pose
queries across hundreds of Gigabytes of data stored on their
hard drives or data centers. Some commercial companies
generally handle Terabytes and even Petabytes of data
everyday [2], [3], [4].

Cloud systems are facing great challenge in handling the
deluge of data stemming from cloud computing applica-
tions such as business transactions, scientific computing,
social network webs, mobile applications and information
visualization. How to accurately return the queried results
to requests is becoming more challenging than ever to cloud
computing systems that generally consume substantial
resources to support query-related operations [5], [6], [7].
Cloud computing demands not only a huge amount of stor-
age capacity, but also the support of low-latency and scal-
able queries [3]. In order to address this challenge, query
services have received many attentions in the cloud com-
puting communities, such as query optimization for parallel
data processing [4], automatic management of search serv-
ices [8], similarity search in file systems [9], information
retrieval for ranked queries [5], similarity search over cloud
data [6], multi-keyword ranked and fuzzy keyword search
over cloud data [10], [11], approximate membership query
[12] and retrieval for content cloud [13].

Many practical applications in the cloud require real-
time Approximate Near Neighbor (ANN) query service. Cloud
users, however, often fail to provide clear and accurate
query requests. Hence, the content cloud systems offer the
ANN query to allow users to find the nearest files in dis-
tance measures by carrying out a multi-attribute query,
such as filename, size, creation time, etc. On the other hand,
a cloud system needs to support approximate queries to get
particular search results. Consider another example of
image protection and spam detection among billions of
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images in a cloud. A system supporting ANN queries can
help identify and detect the modified images, which are
often altered by cropping, re-scaling, rotation, flipping,
color change or text insertion. Therefore, providing quick
and accurate service of ANN query becomes a necessity for
cloud development and construction [4].

Despite the fact that LSH [14] can be used to support
ANN query due to its simplicity of hashing computation
and faithful maintenance of data locality, performing effi-
cient LSH-based ANN query needs to deal with two chal-
lenging problems. First, LSH suffers from space-
inefficiency and low-speed I/O access because it leverages
many hash tables to maintain data locality and a large
fraction of data needs to be placed in hard disks. Although
the space inefficiency has been partially addressed by
multi-probe LSH [15], it decreases space overhead but
becomes inefficient to support constant-scale complexity
for queries, which makes it not suitable in large-scale
cloud computing applications. Second, LSH produces
imbalanced load in the buckets of hash tables to maintain
data locality. In order to deal with hash collisions, some
buckets in a hash table often contain too many items in the
linked lists that produce linear searching time. In contrast,
other buckets may contain very few or even zero items.
Vertical addressing, such as probing data along a linked
list within a bucket, further aggregates the negative effect
and produces OðnÞ complexity for n items in a linked list.
The high complexity severely degrades the efficiency of
query services.

In this paper, we propose a NEST design for cloud appli-
cations to support ANN query service and address the
above problems of LSH. First, to build a space-efficient
structure, we transform conventional vertical addressing of
hash tables in LSH into flat and manageable addressing,
thus allowing adjacent buckets to be correlated. As a result,
we can significantly decrease the number of vacant buckets.
Second, to alleviate the imbalanced load in the buckets, we
use a cuckoo-driven method in LSH to obtain constant-scale
operation complexity even in the worst case. The cuckoo
method [16] can balance the load among the LSH buckets
by providing more than one available bucket.

When facing the challenges of obtaining locality-aware
data and achieving load balance in the cloud servers, it is
worth noting that performing a simple combination of LSH
and cuckoo hashing will be inefficient to support ANN
query service due to extra frequent “kicking out” operations
and high rehashing costs caused by the cuckoo hashing. To
overcome such inefficiency, we propose locality-aware algo-
rithms in the NEST design that leverages the adjacent buck-
ets in the cuckoo hashing to manage the overflowed data
during the LSH computation.

This paper has made the following contributions.
Locality-Aware Balanced Structure. We propose a novel

locality-aware balanced data structure, called NEST, in
cloud servers. NEST achieves locality-aware storage by
using LSH and load-balanced storage by using the cuckoo-
driven method to move crowded items to alternative empty
positions. NEST can further significantly decrease the end-
less loop burden in cuckoo hashing by allocating new items
in neighboring buckets, which is perfectly allowed in LSH.
The proposed structure provides a locality-aware data

management in a tri-tiered heterogeneous storage hierar-
chy. Specifically, the top-layer DRAM, as a temporary
buffer, identifies and aggregates correlated files with the aid
of LSH with a complexity of Oð1Þ. In order to alleviate the
hash collisions in the hash table, we employ a variant of the
cuckoo hash [16] and achieve a constant-scale lookup com-
plexity. The middle-layer SSD stores the metadata in the
form of key-value pairs. A key is the hashed value of a file
ID and the value is the metadata of that file. Correlated files
are conducive to sequential operations with a high probabil-
ity. Finally, the bottom-layer hard disk stores and maintains
the correlated files. NEST is able to efficiently utilize the
locality of datasets to support sequential operations (e.g.,
read/write) and data retrieval.

Constant-Scale Worst-Case Complexity. NEST demon-
strates salient performance in practical operations, such as
item deletion and ANN query, which are bounded by
constant-scale worst-case complexity. In essence, we
replace conventional vertical addressing, such as a linked
list in a bucket, with flat and manageable addressing to a
bucket and its limited number of neighbors. NEST has the
same constant-scale worst-case complexity for item inser-
tion in most cases, which shows its good scalability. The
rehashing event has a very low probability to occur and
has little impact on the overall operational performance of
NEST. In order to support fast search in hybrid storage
systems, we employ a Bloom-filter based hierarchy in
both DRAM and SSD [17]. Specifically, in SSD, besides the
key-value metadata store, we maintain a Page-level Bloom
Filter (PBF) as a metadata index. Thus, PBF can fast
answer the requests for membership queries. Since the
typical DRAM lookup time is estimated at about 1us,
much smaller than around 100us in SSD [18], we maintain
a cached Bloom filter in DRAM that only stores “hot spot”
files. The Bloom-filter hierarchy is able to efficiently sup-
port membership query for data intensive applications
with small space overheads.

Practical Implementation. We have implemented the NEST
prototype and compared it with the simple combination of
“LSH with cuckoo hashing (LSH-CH)”, and LSB-tree [19] for
ANN query in a large-scale cloud computing testbed. LSH-
CH is a simple combination of LSH and cuckoo hashing,
which fails to efficiently handle the increments of hash colli-
sions when data exhibits an obvious locality property. We
use recently released real-world traces, i.e. Los Alamos
National Lab (LANL) [20] and Microsoft metadata [21] to
examine the real performance of the proposed NEST. Com-
parison results demonstrate performance gains of NEST for
its low query latency, high query accuracy and space saving
properties.

The rest of the paper is organized as follows. Section 2
shows research backgrounds. Section 3 presents the
NEST design and practical operations. We present the
experiment configurations and evaluation results respec-
tively in Sections 4 and 5. Section 6 shows the related
work. Section 7 concludes our paper.

2 RESEARCH BACKGROUNDS

This section shows the research backgrounds of locality sensi-
tive hashing and cuckoo hashing techniques for ANNquery.

HUA ET AL.: THE DESIGN AND IMPLEMENTATIONS OF LOCALITY-AWARE APPROXIMATE QUERIES IN HYBRID STORAGE SYSTEMS 3195



2.1 Locality Sensitive Hashing

Definition 1. (ANN Query). Given a set S of data points in
u-dimensional space and a query point q, ANN query returns
the nearest (or generally # nearest) points of S to q.

Data points a and b having u-dimensional attributes can be

represented as vectors ~au and ~bu. If their distance is smaller
than a pre-defined constant R, we say that they are corre-
lated. Correlated items constitute the set of an ANN query
result. The distance between two items can be defined in
many ways, such as the well known Euclidean distance,
Manhattan distance and Max distance.

LSH [14], [22], [23] has the property that close items will
collide with a higher probability than distant ones. In order
to support ANN query, we need to hash query point q into
buckets in multiple hash tables, and furthermore union all
items in those chosen buckets by ranking them according to
their distances to the query point q. We define S to be the
domain of items. Distance functions jj � jjs correspond to
different LSH families of ls norms based on s-stable distri-

bution to allow each hash function LSHa;b : R
u ! Z to map

a u-dimensional vector v onto a set of integers.

Definition 2. (LSH Function Family). H ¼ fg : S ! Ug is
called ðR; cR; P1; P2Þ-sensitive for any p; q 2 S

� If jjp; qjjs � R then PrH½gðpÞ ¼ gðqÞ� � P1,
� If jjp; qjjs > cR then PrH½gðpÞ ¼ gðqÞ� � P2.

The settings of c > 1 and P1 > P2 are configured to sup-
port ANN query service. The practical implementation
needs to enlarge the gap between P1 and P2 by using multi-
ple hash functions. The hash function in H can be defined as

LSHa;bðvÞ ¼ ba�vþb
v

c, where a is a u-dimensional random vec-

tor with chosen entries following an s-stable distribution, b
is a real number chosen uniformly from the range ½0;vÞ and
v is a constant.

LSH determines the proximate locality between two
points by examining their distance in a metric space. If
the ball centered at q with radius R covers at least one
point, e.g. p1, as shown in Fig. 1, LSH can provide a point
with no more than cR distance to q as query result. We
observe that there is an uncertain space in LSH from R to
cR distance and the query q will obtain a reply of either
point p1 or p2, since both points locate within distance cR,
i.e. jjp1; qjjs < cR and jjp2; qjjs < cR. On the other hand,
point p3 is not close to the queried q due to its distance
larger than cR.

We need to configure two main parameters, M, the
capacity of a function family G, and r, the number of hash
tables, to build an LSH. Specifically, given a function family

G ¼ fg : S ! UMg and LSHj 2 H for 1 � j � M, we have
gðvÞ ¼ ðLSH1ðvÞ; . . . ; LSHMðvÞÞ as the concatenation of M
LSH functions, where v is a u-dimensional vector. Further-
more, an LSH consists of r hash tables, each of which has a
function gið1 � i � rÞ from G.

LSH has been successfully applied in approximate
queries of vector space and semantic access. Main variants
include entropy-based LSH [24], multi-probe LSH [15],
LSBF [12] and LSB-tree [19]. The locality sensitive hashing
however has to deal with the imbalanced load in the buck-
ets due to hash collisions. Some buckets may contain too
many items to be stored in the linked lists, thus increasing
searching complexity. On the contrary, other buckets may
contain less or even zero items. We hence take into account
the cuckoo hashing technique to obtain constant-scale
searching complexity.

2.2 Cuckoo Hashing

The name of cuckoo-driven method comes from cuckoo
birds in nature, which kicks other eggs or birds out of their
nests. This behavior is similar to the hashing scheme that
recursively kicks items out of their positions as needed.
Cuckoo hashing uses two or more hash functions for resolv-
ing hash collisions to alleviate the complexity of using the
linked lists. Instead of only indicating a single position that
an item a should be placed, cuckoo hashing can provide two
possible positions, i.e., h1ðaÞ and h2ðaÞ. Hence, collisions can
be minimized and a bucket stores only one item. The pres-
ence of an item can be determined by probing two positions.

Cuckoo hashing, however, cannot totally eliminate data
collisions. An insertion of a new item causes a failure when
there are collisions in all probed positions. Even the “kicking
out” hashing to make empty room for a new item is likely to
produce endless loop. To break the loop, one way is to per-
form a full rehash if this rare event occurs. Since the item
insertion failure in the cuckoo hashing scheme occurs with a
low probability, such rehashing has very small impact on the
average performance. In practice, the cost of performing a
rehashing can be dramatically reduced by the use of a very
small additional constant-size space.

Cuckoo hashing is a dynamization of a static dictionary
described in [16] and provides a useful methodology for
building practical, high-performance hash tables. It com-
bines the power of schemes that allow multiple hash loca-
tions for an item with the power to dynamically change the
location of an item among its possible locations. Further-
more, the space usage is roughly 2n space units, which
means that the space usage is similar to that of binary search
trees. Cuckoo hashing is very competitive, especially when
the dictionary is small enough to fit in cache.

Definition 3. (Standard Cuckoo Hashing). Cuckoo hashing
uses two hash tables, T1 and T2, each consisting of m space
units, and two hash functions, h1; h2 : U ! f0; :::; m� 1g.
Every item a 2 S is stored either in bucket h1ðaÞ of T1 or in
bucket h2ðaÞ of T2, but never in both. The hash functions hi

are assumed to behave as independent, random hash functions.

Fig. 1. The LSH scheme for approximately hashing items into the same
bucket in hash tables with a high probability.
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Fig. 2 shows an example of cuckoo hashing. Initially, we
have three items, a; b and c. Each item has two available
positions in hash tables. If either of them is empty, an item
will be inserted, as shown in Fig. 2a. When inserting a new
item x, both of two available positions have been occupied
and item x can “kick out” one existing item that will con-
tinue the same operations until all items can find positions
as shown in Fig. 2b. If an endless loop takes place, the
cuckoo hashing carries out a rehashing operation.

It is shown in [25] that if m � ð1þ �Þn for some constant
� > 0 (i.e. two tables are almost half full), and h1; h2 are
picked uniformly at random from an ðOð1Þ; OðlognÞÞ-uni-
versal family, the probability of failing to arrange all items
of dataset S according to h1 and h2 is Oð1=nÞ.

The d-ary cuckoo hashing further makes an extension
and allows each item to have d > 2 available positions.

Definition 4. (d-extension). Each item a has d possible locations,
i.e., h1ðaÞ; h2ðaÞ; :::; hdðaÞ, where d > 2 is a small constant.

Cuckoo hashing provides flexibility for each item that is
stored in one of d � 2 candidate positions. A property of
cuckoo hashing is the increments of load factors in hash
tables while maintaining query times bounded to a con-
stant. Cuckoo hashing becomes much faster than chained
hashing when increasing hash table load factors [16]. Specif-
ically, performing the relocation of earlier inserted items to
any of their other positions demonstrates the linear probing
chain sequence upper bounded at d. When an item a is
inserted, it can be placed immediately if one of its d loca-
tions is currently empty. Otherwise, one of the items in its d
locations must be replaced and moved to another of its d
choices to make room for a. This item in turn needs to
replace another item out of one of its d locations. Inserting
an item may require a sequence of item replacement and
movement, each maintaining the property that each item is
assigned to one of its d potential locations, until no further
evictions are needed.

In practice, the number of hash functions can be
reduced from the worst-case d to 2 with the aid of popular
double-hashing technique. Its basic idea is that two hash
functions h1 and h2 can generate more functions in the
form hiðxÞ ¼ h1ðxÞ þ ih2ðxÞ. In the cuckoo hashing, we
define the i value belongs to the range from 0 to d� 1.
Therefore, more hash functions do not incur additional
computation overheads while helping obtain higher load
factors in the hash tables.

The cuckoo hashing is essentially a multi-choice
scheme to allow each item to have more than one avail-
able hashing positions. The variants of random walk way

[26] and d-ary extension [27] further demonstrated the
flexibility and efficiency of cuckoo-driven method due to
its simplicity. The items can hence “move” among multi-
ple positions to achieve load balance and guarantee con-
stant-scale complexity of operations. However, a simple
combination, i.e., utilizing cuckoo hashing in LSH, will
result in frequent operations of item replacement and
potentially produce high probability of rehashing due to
limited available buckets.

3 NEST DESIGN

This section presents NEST scheme and illustrates the prac-
tical locality-aware operations, including item insertion,
deletion and ANN query. The theoretical analysis of the
NEST design, say rehash probability, is presented in the
conference version [28].

3.1 The Architecture of Hybrid Storage Systems

The conventional DRAM, hard disk, and flash-based SSD
have their own advantages and disadvantages. A critical
challenge is to find a way to retain their advantages while
hiding their disadvantages when managing data in a coor-
dinated approach among the multi-level heterogeneous
devices to maximize their performance. This challenge has
been addressed routinely by exploiting workload locality.
However, simple detection and exploitation of locality has
its limitation, particularly with massive volumes of data
that lack strong locality or easily detectable locality. We
believe that this limitation can be overcome with the exploi-
tation of the correlation among files and data items [29],
with very low complexity, say LSH, to support the sequen-
tial read/write operations in both SSD and hard disk, while
reducing the space overhead in main memory.

In order to improve storage system performance, we
leverage the property of parallel operations in NEST. Specif-
ically, the LSH based hash computation can be completed in
parallel in multiple buckets. We exploit this salient property
to efficiently support the read and write operations in SSD.
To further handle large amounts of data, the NEST design
provides a suitable “division of labor” in the hybrid storage
hierarchy that consists of DRAM, flash-based SSD and hard
disk. The data placement scheme improves the utilization
of heterogeneous devices and obtain space savings.

NEST consists of a hybrid storage hierarchy offering
semantic-aware data management as shown in Fig. 3. Spe-
cifically, in the DRAM, we implement the NEST

Fig. 2. Cuckoo hashing structure.

Fig. 3. The hybrid storage architecture.
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components, i.e., LSH-based cuckoo hash table, as a block-
level buffer to fast and accurately identify the semantic cor-
relation residing in arriving files. LSH is able to exploit the
locality of items by mapping similar items into the same
hash buckets with a high probability. However, such a local-
ity-aware storage causes load imbalance among the buckets
of the hash table, which exacerbates the hash collisions. In
order to address the imbalance problem, we leverage a
cuckoo-based approach [16] that can balance the load
among the LSH buckets via providing more than one avail-
able bucket. To deal with potential endless loops that result
from cuckoo hashing collisions, the LSH-based cuckoo hash
table in NEST serves as a temporary buffer and flushes the
metadata into SSD and files into hard disk, when the capac-
ity is full or endless loops occur. In the meantime, the NEST
scheme avoids the extra stash used in ChunkStash [18] and
hence alleviates the storage overheads.

NEST uses the flash-based SSD to maintain the meta-
data of semantically-correlated files in the key-value pairs.
Since the LSH-based cuckoo hash table has identified and
organized correlated files, we then write the metadata of
these files into the SSD. The correlated metadata can be
placed in the sequential addresses. These correlated files
are conducive to sequential operations with a high proba-
bility, thus further enhancing the SSD performance. More-
over, in the hard disk, we sequentially write the correlated
files into the addresses of hard disk, similar to the opera-
tions in the SSD, to achieve a much better performance
than the random data layout.

3.2 In-Memory Data Structures

NEST takes into account the case for d > 2 due to two main
reasons. One is that LSH requires multi-hashing computa-
tion to enhance the accuracy of locality aggregation. More
hashing functions lead to higher aggregation accuracy. The
other reason is that multi-hashing is more important and
practical in real-world applications. When d ¼ 2, after the
first choice has been made to kick out an item, there are no
further choices besides the other position. The special case
(d ¼ 2) appears much simpler. In the literature, the case
where d > 2 remains less well understood. A natural
approach is to use random selection among d choices, like
random walk [26], which is adopted in NEST.

3.2.1 Multi-Choice Hashing

NEST structure uses a multi-choice hashing scheme to place
items as shown in Fig. 4. It uses LSH to allow each item to
have d available positions. The item can select an empty
bucket to place. Furthermore, since LSH can faithfully

maintain the locality characteristic of data, adjacent buckets
exhibit correlation property. If no empty bucket is available,
it may choose one from adjacent buckets to reduce or avoid
endless loop.

Fig. 4a shows an example of the NEST structure. The blue
bucket is the hit position by LSH computation and their
adjacent neighboring buckets indicated by green color also
exhibit data correlation for ANN query. Once all positions
LSHiðaÞ are full, the item can choose an adjacent and empty
bucket for storage. For instance, in Fig. 4b, if d ¼ 3,
LSH1ðaÞ, LSH2ðaÞ and LSH3ðaÞ have been occupied by
other items b, e and p and in this case, the item amay choose
the position of the right neighbor of LSH2ðaÞ.

Furthermore, if all neighbors of hit positions are full, we
will carry out the “kicking out” operation to make a room
for item a. After the probing operations on adjacent neigh-
bors, the probability of endless “kicking out” in NEST is
much smaller than the normal cuckoo hashing because we
can take advantage of neighboring buckets to solve hash
collision, as shown in Fig. 5. In the worst case, if such
“kicking out” operation looking for empty position fails, we
can carry out the rehashing operation as a final solution.
The adjacent probing can significantly reduce or even avoid
the occurrence of hash failing. Such scheme works well in
NEST, but not in the standard cuckoo hashing. The reason
is that items in adjacent buckets in NEST are locality-aware
by using LSH computation, while they are uniformly dis-
tributed in the standard cuckoo hashing.

3.2.2 Bloom Filter Hierarchy

A standard Bloom filter [17] is a bit array of m bits repre-
senting a dataset S ¼ fa1; a2; . . . ; ang of n items. All bits in
the array are initially set to 0, where a Bloom filter uses k
independent hash functions fh1; . . . ; hkg to map the set to
the bit vector ½1; . . . ;m�. Each hash function hi maps an item
a to one of the m-array positions equally likely. An item a is
considered a member of set S with a very high probability if
all hiðaÞ (1 � i � k) are set to 1. Otherwise, a is definitely not
in the set S. The membership query in a Bloom filter possi-
bly introduces a false positive, indicating that an item a is a
member of set S although it in fact is not. The false positive

rate of a standard Bloom filter is fStandardBF 	 ð1� e�
kn
m Þk

when the Bloom filter has m bits and k hash functions for

storing n items. This probability is minimized to ð1=2Þk or

ð0:6185Þm=n when k ¼ ðm=nÞ ln 2.
In order to support fast membership query and obtain

space savings, we build a Bloom filter hierarchy in the

Fig. 4. The data structure.

Fig. 5. Cuckoo-based solution for hashing collisions.
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DRAM and SSD layers. Specifically, DRAM maintains a
cached Bloom filter that only stores the membership infor-
mation for the “hot spot” files (i.e., files with very high local-
ity as measured by LSH), incurring very limited space
overhead. At the SSD layer, a PBF is stored to maintain the
membership information of all files. The page-level organi-
zation in PBF facilitates the garbage collection in SSD. Since
the in-memory cached Bloom filter can satisfy most mem-
bership queries, the hierarchy design can significantly
reduce the accesses to SSD. In addition, in order to support
deletion operations in Bloom filters, we adopt a form of
counting Bloom filter by replacing a bit in the tradition
Bloom filter with a 4-bit counter to satisfy most real-world
applications [30].

3.2.3 Practical Operations

We describe practical locality-aware operations of NEST to
support item insertion, ANN query and item deletion.
These operations can be efficiently implemented in the
hybrid storage architecture via exploring and exploiting the
property of parallel operations. Moreover, due to the space
savings in NEST, we can further improve the caching and
indexing performance.

The insertion operation needs to place items in hashed or
adjacent empty buckets to obtain load balance. The recur-
sive insertion algorithm consists of three parts. We need to
first find an empty position for the new item a. If no hash
collisions occur, this item can be directly inserted. If there is
no empty bucket among the positions hit by LSH computa-
tion, NEST needs to probe adjacent buckets of LSHiðaÞ. The
third part employs the “kicking out” operation to help item
a to find an empty bucket if the first two parts fail to do so.

The key question in item insertion is which item to be
moved if d potential positions for a newly inserted item a
are occupied. A natural approach in practice is to pick one
of the d buckets randomly, replace the item b at that bucket
with a, and then try to place b in one of its other ðd� 1Þ
bucket positions. If all of the buckets for b are full, choose
one of the other ðd� 1Þ buckets (other than the one that now
contains a, to avoid the obvious loop) randomly, replace the
item in the chosen bucket with b, and repeat the same pro-
cess. At each step (after the first), we place the item when-
ever an empty bucket is found, or else randomly exchange
the item with one of ðd� 1Þ choices. We refer to this process
as the random-walk insertion method for cuckoo hashing.

The ideal scenario of inserting an item is that there is no
visit to any hash table bucket more than once. Each item can
hence locate in a certain bucket without kicking out other
items. Once the insertion procedure returns a previously
visited bucket, the behavior may lead to endless loop that
requires relatively high-cost rehashing operations. We
study the probability of rehashing occurrence. In practice,
the rehash occurs if an item insertion cannot stop, i.e. no
vacant bucket, after MaxLoop steps. The MaxLoop is a con-
stant to be set application-related. In standard cuckoo hash-
ing, let MaxLoop ¼ � log n for n items and � is an
approximately chosen constant [16]. We take into account
the s-stable distribution in the probability analysis. When
s ¼ 2, the 2-stable normal distribution has the density

function gðxÞ ¼ e�x2=2
ffiffiffiffi

2p
p .

The ANN query needs to obtain approximate neighbors
to a query point q. NEST can complete the ANN query oper-
ation in a simple way. The ANN query algorithm allows the
query to obtain totally d
 ð2Dþ 1Þ items, thus requiring
accesses to memory for d times. Each access needs to probe
2Dþ 1 buckets that are stored and at most 2Dþ 1 non-
empty buckets provide items. The final set contains corre-
lated data items to satisfy the ANN query request.

In the item deletion, we need to find the item to be
deleted and then remove it from the bucket of hash table.
Assume that the deletion operation is to remove an existing
item. If an item to be deleted does not exist, NEST will
return an error.

3.3 The Extended Memory using Flash-based SSD
Design

In the storage system implementation, conventional DRAM
and hard disk based storage architecture shows the ineffi-
ciency to offer large-scale approximate query services. First,
conventional file systems generally leverage hard disks for
persistent storage, which recently obtain the performance
improvements. However, the performance gap between
hard disks and other system components, in fact, widens
[31]. On the other hand, the availability of memory space
and the requirements from real-world applications also
build a gap. The use of many DRAM devices is not cost-
effective. For example, a 128GB RamSan supports fewer
than 2.5 hash-based operations per second per dollar [32].
Moreover, real-world cloud applications need large
amounts of space. For example, in identifying and removing
duplicate contents, we can maintain the data fingerprints in
DRAM. For analyzing 100TB data, the storage of finger-
prints alone has to consume more than 320GB memory
space, as well as the need to offer 10,000 lookups, insertions
and updates per second [33]. Hence, we need to select a
proper division of labor in the system components.

In order to bridge the gap, the flash-based SSD is used to
obtain a suitable tradeoff between DRAM and hard disk in
terms of both performance and costs. SSD has multiple
advantages over hard disk in terms of low random read
latency and energy consumption, and high physical dura-
bility. In the meantime, SSD exhibits space and cost advan-
tages over DRAM. However, due to the unique physical
features, we cannot fully replace DRAM or hard disk with
the SSD. In practice, existing flash-based SSD devices gener-
ally show the little implementation details to consumer
devices and use one-size-fits-all Flash Translation Layer
(FTL). For example, if the applications are already log-struc-
tured, the internal wear-leveling functionality becomes use-
less. This is also the reason why Google is exploring a
design for large data caches by using the FIFO replacement
policy, which demonstrates a perfect match for flash mem-
ory [34]. Therefore, a reasonable data placement is needed
in the flash-based SSD to facilitate its sequential operations
and exploit its unique features.

As the extended memory, the flash-based SSD architec-
ture consists of flash chips and FTL as shown in Fig. 6. In a
flash chip, SSD maintains data in an array of flash blocks.
Each block contains 32-64 pages and a page is the smallest
unit of read and write operations. Moreover, read and write
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operations exhibit asymmetric performance, and the write-
after-erase property does not support the in-place update
operation. A flash page needs to be erased before it is writ-
ten. Furthermore, read and write operations are performed
in the page-level, while erase operation is performed in the
block-level. On the other hand, FTL is a block-device soft-
ware layer that simulates NAND flash as a hard disk. The
FTL is able to support address mapping between a logical
address in the file system to a physical address in the flash.
By offering a disk-like interface, FTL is an intermediate soft-
ware layer inside an SSD. FTL receives logical read and
write commands from the applications and then transforms
them to the internal commands in the flash.

In order to provide efficient data management, we need
to carefully design the data allocation scheme. The function
of allocation scheme is to decide the mapping between
physical page and logical page. When a new write request
arrives, the allocation scheme needs to select a free physical
page by considering the idle/busy states of channels and
chips, the erased count of blocks and the priority order of
parallelism. Furthermore, there exist static and dynamic
allocation schemes. Static allocation assigns a logical page
to a pre-defined channel, package, chip, die and plane.
Dynamic allocation assigns a logical page to any free
physical page in the entire SSD.

In order to reduce write traffic to flash memory and
obtain space savings in SSD, NEST eliminates unnecessary
duplicate writes, which further improves the efficiency of
garbage collection and wear-leveling. The sizes of sequen-
tial requests are generally very small and the basic opera-
tion unit in flash is a page. The internal management
policies in SSDs, say the mapping policy, are also designed
in the unit of pages.

Fig. 7 shows the implementation of the SSD design. The
SSD design is event-driven, modularly structured, and
multi-tiered, thus efficiently supporting the performance
evaluation. This prototype serves as an SSD hardware plat-
form and carries out the FTL schemes, allocation schemes,
buffer management algorithms and request scheduling
algorithms. There are three tiers in the SSD prototype,
including the buffer and request-scheduling module at the
top, the FTL and allocation module in the middle, and the
low-level hardware platform module at the bottom.

Specifically, the top module supports buffer organization
and scheduling requests. In the middle module, the FTL
sub-module carries out the FTL scheme, and the allocation
sub-module supports the allocation between the logical
pages and the physical pages. The bottom module supports
all the flash operations based on the Open NAND Flash
Interface (ONFI) 2.2 Specification [35].

The preliminary design has been used in HAT [36] and
SSDsim [37]. In implementing the prototype of NEST, we
use an FPGA chip as the controller, multiple flash chips as
two independent channels, and multiple 16MB DRAM
chips to store the mapping table and data buffer. The hard-
ware prototype supports the buffer management and alloca-
tion schemes. Moreover, the data allocation scheme
determines how to select free physical page to contain logi-
cal page being written to the SSD. To locate a particular
physical page, we need to identify the channel address and
package address, in addition to the chip address, die
address, plane address, block address and page address.
We input the configuration parameters and the request
streams into the hardware prototype. Hence, we can obtain
the performance results, such as waiting time, processing
time, response time of each request, total erasure count and
buffer hit count.

4 PERFORMANCE EVALUATION CONFIGURATIONS

In this section, we present the experiment setup in terms of
system platform, the used traces and configurations.

4.1 Experiment Environments

We implement NEST in a large-scale cloud computing envi-
ronment that consists of 100 servers, each of which is
equipped with Intel 2.0GHz dualcore CPU, 4GB DRAM,
250GB disk and 1000PT quad-port Ethernet network inter-
face card. The prototype is developed in the Linux kernel
2.4.21 environment and all functional components in NEST
are implemented in the user space. We make use of two
traces, i.e. LANL [20] and Microsoft [21] from real-world
applications, to examine the system performance.

We describe the characteristics of real-world traces for
our experiments.

� LANL. Los Alamos National Laboratory (LANL)
recently released multiple sets of data [20]. These
data contain a metadata walk of some of the NFS
file systems. These metadata demonstrate the

Fig. 6. An SSD architecture for the extended memory.

Fig. 7. The implementation of SSD prototype.
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information about files and the hierarchical structure
in which they archived files were stored. The data
set is about 19GB and consists of roughly 112 million
lines of archive data and roughly 9 million lines of
home/project space data. The attributes of these
data include unique ID, file sizes (in bytes), creation
time, modification time, block sizes (in bytes) and
the paths to files.

� Microsoft: From 2000 to 2004, metadata traces [21]
have been collected from more than 63,398 distinct
file systems that contain 4 billion files. This is the
largest set of file-system metadata ever collected.
The 92GB-size trace has been published in SNIA
[38]. The multiple attributes of data in the traces
include file size, file age, file-type frequency, direc-
tory size, namespace structure, file-system popula-
tion, storage capacity and consumption, and degree
of file modification. The access pattern studies [21]
further show the data locality properties in terms of
read, write and query operations.

To investigate the real performance when using two
traces, we randomly allocate the available data segments/
snapshots among all 100 servers in a round-robin way.
Moreover, a client leverages the LSH-based NEST for fast
data retrieval. A client captures the system operations from
these traces and then delivers the query requests to servers.
Both clients and servers use multiple threads to exchange
messages and data via TCP/IP. The IP encapsulation tech-
nique helps forward the query requests.

Query requests are generated from the attribute space of
above typical traces and are randomly selected by consider-
ing 1000 uniform or 1000 Zipfian distributions. We set the
zipfian parameter H to be 0.75. 2000 query requests consti-
tute the query set and we examine the query accuracy and
latency. In practice, ANN query can be interpreted as query-
ing multiple nearest neighbors by first identifying the clos-
est ones to the queried point, and then measuring their
distances. If the distance is smaller than a metric, we say the
queried point is an approximate member to dataset S.
Moreover, in order to construct suitable ANN queries, the
methodology of statistically generating random queries in a
multi-dimensional space leverages the file static attributes
and behavioral attributes that are derived from the available
I/O traces [21], [29]. For example, an ANN query in the
form of (11:20, 26.8, 65.7, 6) represents a search for the top-6
files that are closest to the description of a file that is last
revised at time 11:20, with the amounts of “read” and
“write” data being approximately 26.8MB and 65.7MB,
respectively. The members in this tuple will be further nor-
malized in the LSH based computation. In addition, due to
space limitation, we only exhibits the performance of query-
ing top-6 nearest neighbors. Experiments for querying more
nearest neighbors have been done and results show similar
observations and conclusions.

The load factor in hash tables can affect the response to
queries. Fortunately, cuckoo hashing can have a higher load
factor in hash tables without incurring too much delay to
queries. It has been shown mathematically that with three
or more hash functions and with a load factor up to 91 per-
cent, insertion operations can be done in an expected
constant time. We hence set a maximum load factor of

90 percent for the cuckoo hashing implementation. Note
that our comparison does not imply, in any sense, that other
structures are not suitable for their original design pur-
poses. Instead, we intend to show that NEST is a better
scheme for ANN query in large-scale cloud computing
applications.

In order to obtain accurate parameters, we use the popu-
lar sampling method that is proposed in LSH statement
[14], [15] and practical applications [12], [19]. “Approximate
Measure x ¼ jjp$

1 � qjj=jjp1 � qjj” evaluates the query quality
for queried point q, where p

$

1 and p1 respectively represent

the actual and searched nearest neighbors by computing
their Euclidean distances. With the aid of this sampling
technique, we determine the R values to be 550 and 700
respectively for LANL andMicrosoft metadata traces. In addi-
tion, a rehashing in insertion operations may incur the relo-
cation of items. Based on sampling results, we recommend
to use 10 LSH functions to obtain a suitable tradeoff
between computation complexity and the number of reloca-
tion. We also set v ¼ 0:85, M ¼ 10 and D ¼ 5 in the experi-
ments to guarantee high query accuracy.

4.2 System Configurations

In order to comprehensively evaluate the performance, we
leverage two system configurations, i.e., DRAM+HDD and
hybrid (DRAM+SSD+HDD). The two configurations use
DRAM and HDD (hard disk). Their difference is the use
of the SSD implementation prototype as described in
Section 3.3. Since the two configurations have different fea-
tures, we compare their performance with different state-of-
the-art schemes.

For the DRAM+HDD configuration, we compare the
NEST performance with LSB-tree [19], LSH with cuckoo
hashing (LSH-CH) and Baseline schemes. These schemes for
performance comparisons are not only state-of-the-art but
also their correlation with our work. Specifically, conven-
tional cuckoo hashing techniques can only support exact-
matching query, but not approximate query. We hence
select the LSB-tree [19] that can support ANN query. LSB-
tree is the most recent work that can obtain high-quality
ANN query result. It uses Z-order method to produce asso-
ciated values that are indexed via an auxiliary data struc-
ture, i.e., a conventional B-tree. It addresses the endless loop
by using an auxiliary data structure as a stash. The Baseline
approach utilizes the basic brute-force retrieval to identify
the closest point in the dataset. It determines an approxi-
mate membership by computing the distance between the
queried point and its closest neighbor.

For the hybrid (DRAM+SSD+HDD) configuration, we
compare NEST with a number of state-of-the-art schemes in
terms of hybrid storage systems, including BufferHash [33],
Buffer Bloom Filters [39], ChunkStash [18] and Berkeley-DB
[40]. The metrics include lookup and insert latencies. In
order to comprehensively and fairly evaluate NEST’s per-
formance, we consider the following tri-layer system config-
uration. This settings consist of in-memory buffer with SSD-
based metadata index and hard disk based data store. More-
over, both DRAM and SSD execute the Least Recently Used
(LRU) algorithm to maintain the most recently visited files.
If an item is replaced in DRAM, it will be placed into the
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SSD. Furthermore, if an item is replaced in SSD, it will be
then placed into the hard disk.

5 PERFORMANCE RESULTS

We present the performance results of using two system
configurations, including DRAM+HDD and hybrid storage,
in terms of multiple metrics.

5.1 DRAM+HDD

We show advantages of NEST over Baseline, LSH-CH and
LSB-tree approaches by comparing their experimental
results in terms of query latency, accuracy, space overhead,
I/O cost and rehash probability.

5.1.1 ANN Query Latency

Figs. 8 and 9 respectively show the ANN query latency
when using LANL and Microsoft metadata traces. We
observe that NEST, LSH-CH and LSB-tree obtain significant
improvements upon Baseline approach due to hashing com-
putation, rather than linearly brute-force searching. NEST
further obtains on average 36.5 and 42.8 percent shorter run-
ning time than LSB-tree respectively in uniform and zipfian
distributions. Moreover, compared with LSB-tree, LSH-CH
obtains on average 8.51 and 9.45 percent latency reduction.
The main reason is that LSB-tree needs to run Z-order codes
and retrieve a B-tree with Oðlog nÞ-scale complexity after
the hashing computation.

NEST and LSH-CH can carry out constant-scale complexity
even in the worst case. In addition, as described in Sec-
tion 4.1, since the simple combination of LSH and cuckoo
hashing, i.e., LSH-CH, addresses the infinite loop by using
an auxiliary stash, the queries in LSH-CH have to navigate
the auxiliary space to find possible approximate items, thus
incurring a larger latency than NEST.

5.1.2 Space Overhead

Fig. 10 shows the space overhead normalized to LSH-CH.
We observe that NEST can obtain significant space savings.
Compared with the space overhead of LSH-CH that has an
auxiliary stash, the average savings from NEST are 51.6 per-
cent in the LANL trace and 47.9 percent in the Microsoft
trace.

Moreover, LSB-tree needs to keep additional Z-order
codes in a B-tree to facilitate ANN query and thus consumes
larger space than NEST. The smallest space overhead of
NEST is the result of cuckoo hashing usage to achieve load
balance among buckets of hash tables. The limited and flat
hash-based addressing in NEST also helps to improve the
space utilization.

5.1.3 I/O Costs

We take into account I/O costs by examining the access
times that include the visits on high-speed memory and
low-speed disk. Figs. 11 and 12 respectively illustrate the
total I/O costs for approximate queries when using two

Fig. 8. Average ANN query latency using LANL trace. Fig. 9. Average ANN query latency using Microsoft metadata trace.
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typical traces. The Baseline approach requires the largest
number of accesses since it needs to probe the entire dataset.
LSH-CH needs to examine the auxiliary space and hence
incurs more costs than LSB-tree and NEST.

Furthermore, performing the index on a B-treemakes LSB-
tree produce 1.52 and 1.76 times more visits (on the average)
than NEST respectively in LANL andMicrosoft traces. NEST
needs to probe limited and deterministic locations to obtain
query results and its operations of constant-scale complexity
significantly reduce the costs of I/O accesses.

5.1.4 ANN Query Accuracy

We examine query accuracy of NEST and other three
approaches by using the metric of average “Approximate
Measure” in the LANL and Microsoft traces by using uni-
form and zipfian query requests as shown Figs. 13 and 14.
The Baseline uses linear searching on the entire dataset and
causes very long query latency, which leads to potential
inaccuracy of query results due to stale information of
delayed update. Its slow response to update information in
multiple servers incurs false positives and false negatives,
and hence greatly degrades the query accuracy. The average
query accuracy of NEST are 91.2 and 90.5 percent respec-
tively in LANL and Microsoft traces, which are higher than
the percentages of 83.6 and 82.7 percent in LSB-tree, and
80.6 and 79.3 percent in LSH-CH. Such improvement comes
from the adjacent probing operation in NEST to guarantee
query accuracy. Moreover, LSH-CH consumes relatively

smaller accuracy than LSB-tree since the stash in the former
is not locality-aware for the approximate query. We also
observe that the uniform distribution receives higher query
accuracy than the zipfian because items in the latter are nat-
urally closer and it is more difficult to clearly identify them.

5.1.5 Rehash Probability

Hash collisions are unavoidable for hash functions. Without
exception, NEST has a chance for rehashing when hash col-
lisions occur. Surprisingly, the rehashing probability has
been reduced significantly. Fig. 15 shows the experimental
results by comparing NEST with the standard cuckoo hash-
ing, when we carry out item insertions. An insertion failure
means that an endless loop takes place. The average failure
probabilities of NEST are very small, 1:72
 10�6 in the

LANL trace and 1:85
 10�6 in the Microsoft trace. In other
words, a failure only occurs when millions of insertions are
done. In contrast, the standard cuckoo hashing has a much
higher failure probability and we can witness a failure
when inserting thousands of items. Such significant decre-
ment of failure rate is because NEST allows items to be
inserted into adjacent and correlated buckets.

The extensive experiments demonstrate NEST has great
advantages over existing work in terms of query latency,
accuracy, space overhead, and rehash probability. In partic-
ular, a simple combination of LSH and cuckoo hashing, say
LSH-CH, does not work well. The chosen data traces show
that the stronger locality a data trace demonstrates, the

Fig. 10. Normalized space overhead. Fig. 11. Total I/O costs for ANN query using LANL trace.
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higher probability hash collisions exhibit. NEST can effi-
ciently utilize the locality of datasets to support approxi-
mate query and achieve load-balance while significantly
alleviate the system performance degradation due to hash
collisions by employing locality-aware algorithms.

5.2 The Hybrid Storage (DRAM+SSD+HDD)

Figs. 16 and 17 show the lookup latency under the two
workloads respectively. The latency results are shown in
the form of cumulative distribution function (CDF) of
requests. We observe that NEST can satisfy more than
98 percent query requests within 0.1ms (i.e., 98 percent
query requests have a latency of 0.1ms or less), much faster
than other schemes. The main reason is that NEST employs
a small-size cached Bloom filter in DRAM to maintain the
membership of “hot spot” files with an Oð1Þ lookup com-
plexity. Even when a hit miss occurs, the page-level Bloom
filter in SSD can provide accurate results by storing the
entire dataset. The Bloom filter hierarchy helps significantly
improve the lookup performance.

Figs. 18 and 19 show the latency of executing the
insert operations. The NEST scheme can complete on
average 96.8 percent inserts within 0.65ms and 99.6 per-
cent within 1ms. The latency savings come from many
sequential operations in both SSD and hard disk. The
LSH-based cuckoo hash table identifies the useful seman-
tic correlation residing among files to aid the organiza-
tion of sequential operations.

6 RELATED WORK

Cloud computing [41], [42] is exhibiting its great potential
abilities to provide high quality of services. The cloud com-
puting environments usually contain massive data that
critically require fast and accurate retrieval to support intel-
ligent and adaptive cloud services. The ANN query can pro-
vide approximate service matching and becomes one of the
most critical services in cloud computing [43], [44]. The pro-
posed NEST can support ANN service by using computa-
tion with the aid of cuckoo hashing for load balance.

Locality Sensitive Hashing introduced by Indyk and
Motwani in [14] has been successfully applied in approxi-
mate queries of vector and string spaces. Existing variants
include distance-based hashing [45], multi-probe LSH [15]
and bounded LSH [9]. Distance-based hashing [45] extends
conventional LSH into arbitrary distance measures by tak-
ing statistical observation from sample data. Multi-probe
LSH [15] checks the hashed buckets more than once to sup-
port high-dimensional similarity search and improve index-
ing accuracy based on statistic analysis. Most of existing
LSH-based designs have to consume a large storage space
to maintain multiple hash tables to improve the accuracy of
approximate queries.

Cuckoo hashing [16], [46] can provide constant-scale
complexity in the worst case. Random walk cuckoo hashing
[26] demonstrated that for sufficiently large d with high
probability the graph structure of the resulting cuckoo
graph is such that, regardless of the staring vertex, the

Fig. 13. ANN query accuracy using LANL trace.Fig. 12. Total I/O costs for ANN query using Microsoft trace.
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random-walk insertion method will reach a free vertex in
polylogarithmic time with high probability. Authors in [47]
present the methods of greatly improving the failure proba-
bility bounds for a large class of cuckoo hashing variants by
using only a constant amount of additional space. The d-ary
Cuckoo Hashing [27] further generalizes the cuckoo hash-
ing to show how to yield a simple hash table data structure
that stores n elements in ð1þ �Þn memory cells, for any con-
stant � > 0. This structure indicates that cuckoo hashing can
obtain better performance in practical situations. For exam-
ple, at d ¼ 4, it achieves 97 percent space utilization and at
90 percent space utilization, insertion requires only about
20 memory probes on the average. In history-independent
cuckoo hashing [48], the memory representation at any

point in time yields no information on the specific sequence
of insertions and deletions that led to its current content,
other than the content itself. An improved cuckoo hashing
[49] uses tables of different size or granted both hash func-
tions with access to the whole table, thus enhancing the
probability that the first hash function hit an empty cell.

Existing solutions to data-index bottleneck problem, such
as BufferHash [33], Buffer Bloom Filters [39], BloomFlash
[50], ChunkStash [18], Multiple Bloom Filters [51] and Berke-
ley-DB [40], attempt to address the above challenges from
the viewpoints of data structures (e.g., Bloom filters in SSD).
Different from these state-of-the-art solutions, NEST exploits
the semantic correlation among files by using a locality-
aware data management scheme in the hybrid storage

Fig. 15. Insertion failure probability due to endless loops.

Fig. 14. ANN query accuracy using Microsoft trace. Fig. 17. Lookup latency under the Microsoft workload.

Fig. 16. Lookup latency under the LANL workload.

Fig. 18. Insert latency under the LANL workload.
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hierarchy to facilitate sequential operations and obtain space
savings. NEST is able to carry out a near-optimal data place-
ment in system implementations and support a proper
“division of labor” among the heterogeneous devices to
obtain significant performance improvements.

The above existing work motivates our design of NEST
that makes further improvements upon them. The NEST is a
novel structure to use LSH tomap approximate items into the
same or adjacent buckets and obtain load balance by using
cuckoo hashingwithout compromising query performance.

7 CONCLUSION

This paper presented a novel locality-aware hashing scheme,
called NEST, for large-scale cloud computing applications.
The new design of NEST provides solutions to two challenges
in supporting approximate queries, namely, locality-aware
and balanced storage among cloud servers. NEST uses an
enhanced LSH to store one item in one bucket, exploited by
cuckoo hashing to achieve load-balance. The LSH in NEST, in
turn, can significantly reduce the probability of the loop in
cuckoo hashing by allowing adjacent buckets to be locality-
aware and correlated items to be placed closely with a high
probability. We then obtain a fast and limited flat addressing,
which is Oð1Þ complexity even in the worst case for ANN
query, while conventional vertical addressing structures (e.g.,
the linked lists) for LSH have OðnÞ complexity. NEST hence
can efficiently support ANN query service in large-scale
cloud computing applications. NEST achieves a proper divi-
sion of labor in the heterogeneous storage hierarchy that con-
sists of DRAM, SSD and hard disk. The NEST design
supports fast queries with the aid of a Bloom filter hierarchy
and is able to organize sequential operations in both SSD and
hard disk to obtain performance improvements. NEST is
practical and easy to implement due to its simplicity.

The future work will consider possible use in real-world
industrial applications. The source codes of NEST are avail-
able for public use at the website http://cs.hust.edu.cn/
stlab/csyhua/nestcode.zip.
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