MORE?: Morphable Encryption and Encoding for
Secure NVM

Wei Zhao', Dan Fengl, Yu Hua', Wei Tongl, Jingning Liu', Jie Xu', Chunyan Li', Gaoxiang Xu' and Yiran Chen?

"Wuhan National Laboratory for Optoelectronics, Key Laboratory of Information Storage System
LSchool of Computer Science and Technology, Huazhong University of Science and Technology
'Ministry of Education of China
*Department of Electrical and Computer Engineering, Duke University, USA

Abstract—Memory encryption can enhance the security of
Non-volatile memories (NVMs), but it significantly increases the
data bits written to NVMs and leads to severe lifetime and
performance degradation. Current encryption techniques aim to
reduce the re-encryption to many existing clean words, which
unfortunately suffer from high encryption overheads (i.e. latency
and energy) and many unnecessary writes. In the meantime,
compression techniques can reduce the writes of encrypted NVM.
However, we find that they may destroy the data patterns and
increase the modified words, resulting in many encryptions in
secure NVM.

In this paper, we propose the MORphable Encryption and
Encoding (MORE?) scheme to address these problems. Our
MORphable Encryption (MORE) technique aims to reduce the
full-line re-encryption and avoid clean line encryption. Besides,
MORE proposes a prediction-based write scheme to avoid the
encryption of clean lines, and pre-encrypt the lines that are
predicted as dirty. Therefore, MORE can remove the encryption
from the critical path of NVM. Furthermore, MORE? proposes
the Morphable Selective Encoding (MSE) scheme to compress the
modified words while preserving clean words. MORE? encrypts
all metadata with the line counter to guarantee high security.
Experimental results show that MORE? reduces the bit flips
of encrypted NVM by 53.5%, decreases the access latency by
27.32%, improves the IPC performance by 12.1%, and reduces
the write energy by 29.1% compared with the state-of-the-art
design.

Index Terms—NVM, Encryption, Compression

I. INTRODUCTION

Non-volatile Memories (NVMs) such as PCM, ReRAM,
and STT-MRAM have the advantages of high density, low
leakage power, and fast read speed compared with traditional
DRAM technology [1]-[4]. However, the non-volatility prop-
erty causes security vulnerabilities. The data in the NVM-
based DIMM still exist after power off. Attackers can access
the sensitive data in the NVM main memory (NVMM) by
streaming out the data in NVMs [5]-[7].

Encryption techniques can enhance the security of NVM-
based main memory system. For the written back cache lines,
the encryption engine encrypts its data with the secure key.
Then, the memory controller writes the encrypted data to the
NVMM. If the NVMM is stolen or snooped, the adversaries
can only get secure encrypted data. Unfortunately, the security
guarantee introduces performance and endurance degradation
to NVM-based main memory. Firstly, the long encryption

Corresponding author: Tongwei@hust.edu.cn

latency before a write degrades the write performance. NVMs
are expected to store data as persistent memory for instanta-
neous failure recovery. Since achieving data consistency needs
to ensure the ordering of memory writes, the writes are on the
critical path of application execution. Thus a processor has to
stall and wait for the encryption completed before starting the
write process. In conclusion, the serial long encryption latency
severely degrades the system performance. Secondly, due to
the diffusion property of encryption, writing the encrypted
data incurs 50% bit writes, which is 4x compared with the
unencrypted NVM [5]-[8]. The largely increased bit writes
lead to high write energy consumption, long write latency,
and significant lifetime degradation. However, even though
without encryption, the write problems are severe enough [9],
[10]. For example, the write endurance of PCM is about 10'°
cycles [10], [11], which is six orders of magnitudes smaller
than that of DRAM. Besides, the write energy/latency of PCM
is about ten times more than DRAM. As a result, encryption
presents severe performance and endurance challenges to
NVM.

Existing intra-line! encryption techniques [5], [8], [12], [13]
propose to improve the write performance of encrypted NVM
by avoiding the re-encryption of many clean words existing
in the new cache lines [5], [14]. Through these methods,
encrypted NVMM suffers from less write pressure. BLE [12]
splits a cache line into four 128-bit words and allocates a 2-bit
local counter for each word. If one 128-bit word is modified,
the corresponding local counter adds one. When one local
counter reaches its terminal value, the entire cache line is re-
encrypted. SECRET [8] is similar to BLE, and it executes
encryption in 8-byte words and removes the re-encryption to
zero words as well. DEUCE [5] can avoid the re-encryption
to 2-byte words that are always clean in a fixed write epoch.
However, once one word is modified in a write operation, then
it will be re-encrypted till the end of an epoch even if it is
clean. These techniques show good effectiveness, but they have
two common weaknesses. Firstly, these techniques’ ability to
reduce word re-encryption is limited, many clean words are
still encrypted. Secondly, the encryption operation and the
write operation are serially executed to ensure data correctness,
which enlarges the overall system stalls. In this work, we

ISome inter-line techniques [6], [7] are orthogonal to our work.

propose morphable encryption to alleviate these problems.

Data compression techniques such as Base Delta Immediate
(BDI) [15], Frequent Pattern Compression (FPC) [16] can
reduce the writes of encrypted NVM through compressing
data before encryption. For example, BDI compresses a 512-
bit all-zero cache line to a 3-bit prefix. Then, only 3-bit
data are encrypted and written into NVM. CASTLE [13]
integrates compression and expand coding for MLC/TLC
encrypted NVMs to improve the write performance and life-
time. However, CASTLE cannot be used for SLC NVMs due
to the different cell write operations. Existing compression
algorithms leverage the data patterns of the new data to
maximize the size reduction, but they ignore the clean words
between the writes. Directly using compression techniques in
encrypted main memory performs not well. There are two
main reasons: (1) The data compaction operations of compres-
sion techniques make clean words disappear, leading to many
increased modified words. (2) Many modified words cause
frequent re-encryption operations. In this work, we design a
morphable selective encoding scheme to solve the challenges
of current compression schemes in encrypted NVM.

In summary, current encryption and compression techniques
of NVM face several challenges: (1) The serial encryption
before a write brings performance cost. (2) Many clean words
are still re-encrypted. (3) Current compression techniques can
reduce data size, but it increases the encrypted words. To solve
the challenges above, we propose MORphable Encryption
and Encoding (MORE?) to greatly improve encrypted NVM’s
performance. The detailed contributions of this paper are as
follows:

o A Morphable Encryption mechanism without encryp-
tion latency. We propose morphable counter mode
encryption to reduce the full-line and clean line re-
encryptions. Next, we propose a prediction-based write
scheme to remove the encryption latency. For cache lines
that are predicted to be clean, they need no encryption.
While for cache lines that are predicted to be dirty, the
encryptions are pre-executed to remove latency.

o A Morphable Encoding Scheme to Preserve Clean
Words and Zero Words. We propose an encoding scheme
to preserve the clean words and zero words. Firstly,
we compact the modified words through the dirtiness
tracking bits. Next, the modified and non-zero words are
compressed with our morphable encoding techniques.

o Efficient Synergization of Encryption and Encoding
with High Security. We propose MORphable Encryption
and Encoding (MORE?) by combining our proposed
techniques. MORE? combines the advantage of encryp-
tion and encoding, which can largely improve the write
performance and endurance of encrypted NVM with a
high-security guarantee.

o System Level Implementation and Evaluation. We im-
plement MORE? on Gem5 [17] with NVM simulator
NVmain [18], and the results are comprehensively eval-
uated using benchmarks from SPEC CPU2006 [19] and
PARSEC 2.1 [20].

II. BACKGROUND
A. Attack Models and Memory Encryption

Attack Models. The non-volatility property enables NVM to
work with low leakage power and persist data after power off.
However, it makes NVMs more vulnerable to be eavesdropped
by attackers. Like existing works [5]—[8], this paper aims to
discuss two common attacks, including stolen DIMM and
bus snooping attacks’. When the NVM DIMMs are stolen,
due to the non-volatility of NVM, adversaries can stream
out the sensitive data from stolen DIMMs. As for the bus
snooping attack, since Non-volatile main memory (NVMM)
accesses data through the memory bus, attackers can insert a
bus snooper or a memory scanner in the bus to obtain the data
communicated between the processor and NVMM chip.

Memory encryption can enhance the NVM security. Di-
rectly encrypting/decrypting data before a write/read opera-
tion is not a smart scheme, which leads to large encryp-
tion/decryption latency before the write/read operation. There-
fore, naive encryption degrades the system performance. To
ensure low encryption/decryption overhead, counter mode
encryption (CME) technique [21], [22] is proposed to reduce
the decryption latency in the critical path. CME uses a secure
global key in the CPU, address of the cache line, and the
per-line counter to generate the One Time Pad (OTP) through
the Advanced Encryption Standard (AES) circuit. Then, the
generated OTP is XORed with the cache line data to get the
decrypted/encrypted cache line. Fig. 1(a) shows the process
of counter mode encryption. In the read process, AES can
generate the OTP through the on-chip cached counter at the
same time. Therefore, only the XOR operation is on the critical
path. The timeline of the decryption process is shown in Fig.
1(b). In this way, counter mode encryption can largely reduce
the decryption latency. Since the XOR operation is simple and
fast, the overhead can be negligible.

______ — Plaintext
. Step 1: generating OTP _l_

| —_
(a) : Key oTP o I Step 2: xo;j J 0 :
Line l_ — l_ —_—
| Address cOunterl X i . T
(- J Ciphertext Ciphertext

Plaintext

| Memory Read

(b) ’\'X OR

| OTP generation I 3

Fig. 1: (a) Counter mode encryption (b) The read operation.

Plaintext

B. Counter Mode Encryption techniques

To improve the write performance of encrypted NVM,
several works focus on avoiding the writes to clean words
in the lines. BLE [12] splits a cache line into four 128-bit
words and allocates a 2-bit local counter for each word. If
one 128-bit word is modified, the corresponding local counter
adds one. When one local counter reaches its terminal count,
the entire cache line is re-encrypted. SECRET [8] similarly
reduces re-encryptions, and it can execute encryption in 64-bit
words and remove the re-encryption to zero words. In contrast,

2We don’t consider bus tampering attacks. They can be defended via Merkle
Trees-based authentication techniques, which are orthogonal to our work.

DEUCE [5] splits a cache line into 32 16-bit words and main-
tains a leading counter (LCTR) and a trailing counter (TCTR)
for the entire cache line. When a write hits the line, LCTR
adds one, and TCTR is the value of LCTR&O0xFFEOQO. When
the delta of LCTR and TCTR exceeds the pre-determined
fixed write epoch, the full-line will be re-encrypted. Fig. 2
shows the architecture of DEUCE. According to the new
dirtiness tracking bits, word2, word5, wordé6 need to be
re-encrypted, while the rest words are clean. The modified
words use line counter LCTR to get encrypted data. While
clean words retain the last encrypted data, which are encrypted
with the TCTR.

|
LCTR

Dirtiness tracking bits: 01100100

QO +] D

Line Alddress LCTR&II'leFEO } Words | Word5 M i
A S A A —
—Ke -+ () OTP26) 2 D
[horr][wore] words] [worca] [wores] werdz] [woret] [Worao] ora ine

Fig. 2: The architecture overview of DEUCE.

I
Line Address

III. MOTIVATION

(1) Two weaknesses of current encryption techniques.

1. Encryption latency leads to performance degrada-
tion. Crash-consistent applications for NVMs exhibit a unique
property—writes to memory are on the critical path of program
execution. For conventional DRAM memory, only reads are
on the critical path, while writes can be buffered, coalesced,
and reordered on the way to memory for better performance.
However, for persistent NVM, the order of writes is severely
constrained to ensure data recoverability across failures [7],
[23], [24]. Therefore, the serial encryption latency can prolong
the write latency and lead to performance degradation. Fig.
3 shows the write process of current encryption techniques
(e.g. DEUCE, SECRET). For an incoming write, the memory
controller reads and decrypts the encrypted data to get the
clean words. While the read process can hide the decryption
latency. Then, the encryption logic encrypts the modified
words. Finally, the encrypted data and metadata are written
into memory chips. The serial encryption can prolong the write
latency. Typically, the optimized AES-128 encryption latency
is about 40-100 ns, while the PCM timing parameter tWR is
300 ns [7], [24], [25]. In conclusion, encryption can result in
large performance degradation.

memctr { Write cmd)Memory Read><Encryptionp<_Write data_»<{N'rite metadatd>
Aes

Fig. 3: Serial encryption prolongs the write latency.

2. Many clean words are still encrypted. BLE [12],
DEUCE [5], SECRET [8] are effective to avoid the re-
encryption to clean words. But there are still many clean words
that are encrypted. As for DEUCE, due to the fixed write
epoch, it suffers from frequent full-line re-encryption while
all the words are modified, even the new data is clean. As
for BLE and SECRET, the word sizes are 16B and 8B, and
they cannot reduce the encryption of fine-grained clean words.
Besides, the local counters (2-bit for a word) are small, leading
to frequent overflows.

(2) Current compression techniques lead to many modified
words. Compression techniques can reduce the size of en-
crypted data. However, they destroy the original data patterns.
Fig. 4 shows the normalized compressed line size and the
modified words. By using BDI compression, the average line
size reduces to 57.4%. As for modified words, the average
modified word ratio of no compression is 38.1%, while the
ratio of BDI compression is 61.5%. Although compression
can significantly reduce the compressed line size, it changes
the data layout leading to many increased modified words.
Due to this phenomenon, encrypting compressed data may
lose effectiveness due to rare existing clean words. Therefore,
traditional compression schemes cannot be used for current
encryption algorithms.

[compressed size [modified B BDI modified|

K 02 O ok W o 0 o @ d a8 a0 0 o
S 127 (@ 0 WOV @\ A o (B€ (@20 @V e W @@ o 2
o o ‘;&@P PRI @f?da“‘“\ POONE < RS

A

Fig. 4: Compression leads to many modified words.

IV. DESIGN

To solve the problems of current encryption techniques,
we propose a light-weight morphable encryption (MORE)
architecture. MORE can reduce the full-line encryption and
avoid the encryption to clean lines. Besides, MORE uses
a light-weight prediction-based pipeline to reduce encryp-
tion latency and energy consumption. Next, we propose a
morphable selective encoding scheme (MSE) to reduce the
writes to modified words. We combine MORE and MSE to
form MORE?Z. The overall architecture of MORE? is shown
in Fig. 5. When a cache line is written back to NVMM,
MSE encoding logic firstly encodes the coming data. Next,
the encoded data are encrypted by the morphable encryption
engine with low encryption overhead.

A. Lightweight Morphable Encryption

Morphable Encryption. Current encryption techniques
cannot fully avoid the re-encryption of clean data. As for
DEUCE, there are many full-line re-encryptions when all
the dirtiness tracking bits become dirty. While for BLE and
SECRET, they can only avoid the encryption of course-
grained clean words (16B and 8B, respectively), and they
may suffer from frequent full-line re-encryption due to small
local counters. Fig. 5(b) shows a write epoch of DEUCE. The
write epoch of DEUCE is 8, and each line has 4 words. For
the 4-th write of DEUCE, all words in the write epoch are
modified. Therefore, DEUCE needs to encrypt the whole line
till the end of this epoch. To solve the problem, we re-organize
the form of counters to build morphable encryption (MORE).
We set a line counter (LC) to record the counter value of
the memory line. While a 5-bit delta counter (DC) records
the counter difference between the memory line and clean

| Last level cach Tracking bits: [TTT[1[1][O]1[11] [O]0[1[1] [O[0[O[L]{0]0T0[0] (O]0T0[0] (O]OTO 0] OT0TO[0] (ATATAIT]
ast level cache |
Re-encrypted| wi [wa,we [WEW2 Ly All All All Al
MORE” module in Memory controller Data DEUCE words ! w3
Metadata = | 0 @ 5 @
cache)| MSE logic 30 words| e 0 0 0 0 0 0 0 0 8
I Encoded |
| t orP l Data | Tracking bits: [1[{1]1]1|[0J1]1]1[OlOJ1|1|{ofofof1|{2f1]a[1flol1]1|1|{ofOf1[1][OofOf1[0O]f|0]l0Ol1]0
MORE — 9 MO'RE Re-encrypted| WA Wi, W2 W1,W2, all w1 WA.W2 W1,W2, 0
| re-encryption I write: words w3 w4
— — — — — — — 20 WDrdS
[0] [0]
Encrypted Encrypted Data LC 0 1 > 3 4 3 6 7 7
Metadata Modified words in
No-Encrypt: W2, W3 4 W1 w2 4W3 W4 w1 w2 W4
Encrypted NVMM oemrpodTe e o s § wi_f we gwe gws pwt qwe qws
9 words 0 1 2 3 4 5 6 7 8

(a) The architecture of MOREZ.

(b) The write example of DEUCE and our morphable encryption.

Fig. 5: The introduction of overall architecture and morphable encryption.

words. For a coming write, if there are no clean words, the
DC resets to ’0’. Otherwise, DC pluses one. As for the 4-th
write in Fig. 5(b), MORE encounters a full-line re-encryption,
then the DC resets to "0’ and tracking bits reset to ’clean’.
Therefore, MORE starts a new write epoch from 4-th write.
When the DC reaches its maximum value, the line needs to
be re-encrypted. In summary, MORE can achieve morphable
write epochs, removing many full-line re-encryptions.

Besides the full-line re-encryptions, we find that many lines
in the main memory are clean. Fig. 6 shows the clean line ratio
of several benchmarks. On average, 42.4% of memory lines
are clean. As for these lines, we can bypass the encryption and
write operations. In comparison, current encryption techniques
do not consider this feature, and they directly encrypt all the
written back lines even if some evicted lines are clean. For
the example in Fig. 5(b), the 8-th write for DEUCE is at the
epoch boundary, and DEUCE needs to re-encrypt the line,
even though it is clean. While MORE just bypass it. As a
result, DEUCE has to write 30 words, while MORE writes
20. To ensure data security, the dirtiness tracking bits and DC
are encrypted using the line counter.

1.0

Sos8
©
© 0.6
£
c04
©

502

0.0

X 169 206 ol AN o (0 A A8 6 20 A0 a0 (1 o o o0

S N2 (2O RO (2 Yo (O (Ve W 0 (o o
[

Fig. 6: The clean line ratio.

Reducing Encryption overhead with a light-weight pre-
dictor. Encryption leads to extra latency and energy overhead,
and these overheads can degrade system performance and
increase the overall energy. Previous work Janus [24] proposes
to pre-execute encryption operation with the help of software
interfaces and compiler. But it is not friendly for users due to
the complex modifications to application code. We propose a
hardware predictor to optimize the encryption overhead with
close performance to Janus. First, we analyze the encrypt-write
processes shown in Fig. 7. As for the serial way, when the

memory controller receives a write command, the read-decrypt
process is used to acquire the clean words information. While
decryption can be executed with the memory read in parallel.
Next, the encryption logic will encrypt the line if it is not
clean. The serial way can avoid encryption to clean lines, but
it may suffer from severe encryption latency if many lines are
dirty. To reduce the encryption latency, the parallel way pre-
executes the encryption together with the last-line decryption.
In this way, it needs another AES logic to finish the encryption
operation, and the encryption can be removed from the critical
path. However, the parallel way encrypts all lines even the
lines are clean, leading to high encryption energy. In summary,
the serial way has low encryption energy, but high encryption
latency, and the parallel way is the opposite of the serial way.

Write data

Memctrl Memory Read
AES i Decryption
i
Parallel: Memctrl { Write cmd) Memory Read
i

Decryption

<Write metadat:

Serial:

Write data <{Write metadata

AES1

AES2

|
Prediction: Memctrl < Write cmd % Memory Read Write data___x(Write metadata)
|

| - |

‘< Decryption 11011 Yes [‘clean’ v }
- « 0¥ 0 0307

D + <03> }

0] |

' |

Fig. 7: Line-level prediction-based encryption.

AES1

Reg

=

AES2

To leverage the strengths of the two ways above, we propose
a prediction-based way to reduce the encryption overhead. We
use a locality-based predictor to predict whether the next line
is clean or not, and we don’t encrypt the clean lines. As for
a coming write, if the last several writes are clean/dirty, the
incoming memory line is probably clean/dirty. Based on the
locality, we use the last four writes to predict the incoming
write, and each state multiplies its corresponding weight. Fig.
7 shows an example of prediction process. The last four
lines are ’clean’, ’dirty’, ’clean’, ’clean’, respectively, and
then the four weighted values are accumulated. Finally, we
get the predicted clean state through the comparison with the
threshold. In this example, the predicted state is clean. The
overhead of the predictor includes a 4-bit register and simple
hardware logic. Therefore, the overhead can be negligible. Fig.
7 also displays the pipeline of our prediction way. When the
prediction state is correct, no encryption latency is needed.
The read process can validate the predicted value. If a dirty

o
S

=3

o
@
IS
S

[4
> o
Noow
S o

Prediction accuracy

o
i)
=)

Encryption latency per write

o
o
=)

N

T e ot W W 3o ¥ 2% QO 00 < IR
fa‘%;\“a“&va ;’LQ %a‘\veéeﬁ oe‘-‘)“\‘(\agov“\e\e Wet® W @ i\ e ae\ *\(a 01_\\’ F‘Oa

(a) Prediction accuracy.

W 2@ 20 QA0 00 W o o
(\‘\a&é\ dae\ O ovﬂ“\\e W™ W« *0(3 a@
x

(b) Encryption latency of each write (ns).

Encryption energy per write

- serial - prediction - paralle\

\e'bé Wee® of o \V‘;\ e

0
a%\a‘ 0(\ *“,bo \9‘1« 0“\ ‘\e% 6"%‘—‘\ 6\"{&

(¢) Encryption energy of each write (nJ).

Fig. 8: The performance of prediction-based encryption.

cache line is incorrectly predicted to be clean, the encryption
executes after the read. Fig. 8(a) shows the prediction accuracy,
in average, 90.2% predictions are right. Fig. 8(b),(c) shows
the encryption overhead of the three ways. As for the latency
overhead, the values of three ways are 28.8 ns, 2.65 ns, 0
ns, respectively. While for energy overhead per write, the
values are 8.99 nJ, 9.85 nJ, 15.6 nJ, respectively. In summary,
our prediction-based encryption method can largely reduce
encryption overhead with low hardware cost.

B. Morphable Selective Encoding

Traditional compression techniques directly compact the
compressed data, increasing the number of modified words.
While many modified words may aggravate the write pressure
of encrypted NVM. In this section, we propose a Morphable
Selective Encoding (MSE) scheme to reduce data writes while
preserving the clean words (2-byte). Fig. 9 shows an example
of our selective encoding (SE) scheme. Firstly, we exclude
the clean words through the new tracking bits of encryption,
and we compact the modified words. Next, we find 57.5%
of words are zero. Therefore, we remove the zero words in
the modified data. We use a simple 1-bit zero tag to record a
zero word rather than compress it. In this example, 2nd and
4th modified words are zero, and the corresponding zero tags
are "0101". Then, we compress the rest modified words with
32-bit data patterns in TABLE 1, while the data patterns are
insensitive to 2-byte zeros. Finally, we write the compressed
data into the area of modified data, avoiding to destroy the
data layout of clean words.

[[el | | |

1. Compact modified words

2. Remove zero words

7 3. Compress modifed words
—

- Compressed data
—_

4. Write compressed data

[D [N

Fig. 9: The example of our selective encoding scheme.

| ze.-o| Tracking bits: 10011010

I:I Clean data

In the compression process, we only compress the rest 2-
byte modified words to avoid destroying the data patterns.
Besides, we use the matched patterns to compress data rather
than other compression algorithms like BDI, because the com-
pacted modified data leads to fragmented data layout. While

the fragmented data can destroy the word-level similarity
that BDI compression relies on, leading to poor compression
effectiveness. As for SE, if there are few zero words, it may
perform poorly. Therefore, we use the normal FPC [16] as an
alternative compression method. Fig. 10 displays the data flow
of our morphable selective encoding (MSE). Compared with
SE, FPC method doesn’t exclude the zero words in modified
words. MSE chooses the compression method that has the
minimum compressed size. We assign a 2-bit tag for a line
to indicate the compression type and whether this line is
compressible or not.

The decoding process of MSE is similar to FPC decoding.
While decompressing a memory line, the decompressor can
get the compression state and compression type via the 2-
bit tag. If the line is compressed by SE, the zero tags
can be known through the dirtiness tracking bits. Then, the
decompression logic can get original modified words through
the zero tag and compressed patterns. While for the FPC way,
the decompression process is same with normal FPC.

I Compacted modified words I I Compacted modified words I

I Remove zero words I

FPC compression process I

]

size2 = compressed I

ize2>=words_size

I Selective compression process I I

I sizel = zero_tag + compressed I I

(Selective) ()
Encodin, Fpe

Fig. 10: The data flow of morphable selective encoding.

C. The Implementation of MORE?

In this section, we combine the morphable encryption and
our morphable selective encoding to implement MORE?2.

Write Operation. When NVMM receives a write request,
the memory controller executes a read-decrypt-decoding pro-
cess with the cached metadata to obtain the clean words. At
the same time, the predictor uses the state register to predict
the clean state of this coming line, and the AES engine pre-
executes encryption (OTP generation) through the prediction
result. After the read operation, we can know the clean words.
Besides, the new tracking bits are updated through the XNOR
operation between the old tracking bits and clean tag bits.
Then, the encoding logic can encode the modified words

TABLE I: 32-bit zero-insensitive compression patterns of selective encoding [16], [26].

Prefix Data Pattern Example Compressed Example | Encoded Size
000 2-bit sign-extended in each byte 0x01FE0101 0x065 11 bits
001 4-bit sign-extended in each byte 0x03F905FE 0x1395E 19 bits
010 1-byte sign-extended OXFFFFFFB6 0x2B6 11 bits
011 2-byte sign-extended OXFFFFE432 0x3E432 19 bits
100 4-bit padded with a zero 4-bit in each byte | 0x10203040 0x41234 19 bits
101 two halfwords, each a byte sign extended 0xFFB60036 0x5B636 19 bits
110 4 repeated bytes 0x20202020 0x620 11 bits

according to the new tracking bits. Next, the encoded modified
data and metadata are encrypted through XNOR operation
with the new OTP. Finally, they are written into NVMM while
preserving the clean data.

Read Operation. When NVM receives a read request, the
decryption logic can decrypt data through the tracking bits
and the counters. Especially, the modified words are decrypted
by the line counter, while clean words use the counter value
of LC-DC. Next, the MSE decoder decodes the decrypted
modified words. Finally, the original data can be sent to CPU.

D. Overhead

Encryption. Compared with the encrypted NVM baseline,
we assign 32-bit tracking bits for each line to record clean
words, and a 5-bit delta counter is used to remove many
full-line re-encryption. Next, the predictor needs a 4-bit reg-
ister stored in the memory controller, which is negligible.
Besides, the prediction-based encryption needs another four
AES engines. The area of AES can be neglected compared
with CPU [27].

Encoding. As for encoding, we assign a 2-bit tag for each
line to record compression metadata. The encoding/decoding
latency is similar with FPC, which is about 1.5 ns [16]. The
encoding/decoding energy are several pJs for each line [26],
which can be ignored compared with writing a memory line.

Overall, the memory overhead is 7.62% (39/512) for a line,
and the hardware logic overheads are so small compared with
CPU that can be negligible [8], [26].

E. Security Analysis

In general, the metadata of the NVM must be safe to
ensure the security of data. In MORE?, the metadata is the
delta counter, compression tags, and tracking bits. We encrypt
all metadata with the line counter to ensure security. When
attackers obtain the encrypted data through the ways of our
attack models, attackers cannot get the raw data due to the
fully encrypted metadata.

V. EVALUATION

To verify the effectiveness of MORE?, we compare it with
six different schemes. We use Gem5 [17] with NVMain [18]
to evaluate several schemes. Gem5 is an accurate full system
simulator, and NVMain is a main memory simulator for NVM,
which can accurately simulate the timing and energy infor-
mation of NVM systems. We have implemented the MORE?
prototype, including morphable encryption and encoding mod-
ules in NVMain. TABLE II lists the system configurations.
We set the AES-128 logic encryption energy/latency as 50
ns/3.9 nJ [25], [27]. Besides, we assume the metadata cache
is big enough (e.g. 512 KB) for nearly 100% hit rate [7]. As

for the benchmarks, we choose 11 benchmarks from SPEC
CPU2006 suite [19]. We run eight copies of each benchmark
in the CPU, and the applications are warmed up with small
instructions then run overall 4 billion instructions. We also
run 5 multi-threaded benchmarks from PARSEC 2.1 [20] with
the medium input set, while the thread count is §. All the
schemes use Data-Comparison-Write (DCW) [28] to eliminate
the redundant bit flips. The several comparison schemes are
listed as follows:

o DCW: Memory line data are encrypted first, then en-
crypted data are updated by DCW.

« DEUCE: DEUCE can reduce the writes to words that
are always clean in a write epoch. In this paper, DEUCE
equips 32-bit tracking bits for each memory line.

o SECRET: Each 8-byte word has a 3-bit local counter and
1-bit zero word flag.

« DEUCE + BDI: Incoming data are compressed by BDI,
then compressed data are encrypted with DEUCE.

o« SECRET + BDI: Incoming data are compressed by BDI,
then compressed data are encrypted with SECRET.

o MORE?: This is our scheme with all optimizations.

o No-Encryption: Memory line data are updated by DCW
without encryption.

TABLE II: System Configurations.

Cores 8-Core, 3.2GHz
L1 I/D cache private, 32KB, 2-way, 2-cycle , LRU
L2 Cache private, 256KB, 8-way, 20-cycle , LRU
L3 Cache shared, 8MB, 16-way, 50-cycle , LRU

Encryption logic 50 ns, 3.9 nJ for AES-128 logic

8GB PCM, 64B memory line, 400 MHz
tRCDACL/tCWD/tFAW/AWTR/AWR =
60/15/13/50/7.5/300 ns
Ereset, Eset = 0.054, 0.102 nJ

Memory Organization

A. Bit flips

Fig. 11 shows the bit flips ratio. The bit flips of encrypted
NVM include the memory line data and its metadata. As for
the DCW scheme, the bit flips ratio is 50% due to the diffusion
property of encryption. DEUCE can reduce the encryption to
clean words, leading to a 23.6% bit flips ratio. Compared with
DEUCE, SECRET can reduce the encryption to zero words
and clean lines, reducing the bit flips ratio to 19.7%. As for
DEUCE+BDI, SECRET+BDI, which combines compression
and encryption techniques, the bit flips reduction is not sig-
nificant compared with DEUCE, SECRET, respectively. This
reason is that compression leads to many modified words,
diminishing the role of encryption techniques. As a result,
they bring to 22.5%, 18.8% bit flips ratio, respectively. For

our scheme MORE?, it reduces the bit flips from 50% to 8.8%.
MORE? works well mainly due to the morphable encryption
and encoding techniques: (1) Morphable encryption reduces
the full-line encryptions and removes the encryptions to clean
lines; (2) The compression scheme doesn’t destroy the clean
words, and it largely reduces the size of modified words
as well. In particular, the result of MORE? is even better
than NoEncryption, while NoEncryption reduces the
bit flips ratio to 14.8%. Compared with SECRET+BDI, MORE?
reduces bit flips by 53.5%. The reduced bit flips can improve
the lifetime of encrypted NVM [5].

(72 bcw RS DEUCE [DEUCE+BDI BB SECRET [Elill| SECRET+BDI =S MORE?[77Z] NoEncryption|

Bit flip ratio

o o

Fig. 11: The normalized bit flips ratio of different schemes.
B. Access Latency

Fig. 12 illustrates the average access latency of several
schemes. DEUCE, SECRET, DEUCE+BDI, SECRET+BDI,
MORE? can reduce the written data size, leading to shorter
access latency. For some benchmarks, e.g. bwaves, sjeng,
gobmk, these techniques can reduce largely existing clean
words, resulting in significant latency optimization. Compared
with SECRET+BDI, MORE2 can reduce the access latency
by 27.3%. The good effectiveness are contributed from two
aspects: (1) Prediction-based encryption mechanism can re-
duce the encryption latency from 50 ns to only 2.6 ns;
(2) Morphable encryption techniques can reduce the writes
to clean words, and morphable selective encoding scheme
can reduce the writes to modified words. These two aspects
of write reduction cooperates to reduce the access latency.
In particular, MORE? can gain more latency reduction than
NoEncryption. TABLE III lists the detailed write and read
latency of several scheme. MORE? shortens the write latency by
decreasing data size and removing encryption latency. While
read latency is decreased by reducing the request waiting time
in the memory queue. Compared with SECRET+BDT, MORE?
reduces the read/write latency by 32.9%/36.7%.

72 pcw [N DEUCE [SECRET [ESE8 DEUCE+BDI [l SECRET+BDIE=] MORE[Z) NoEncryp(ion:

® o

Normalized access latency

0.
0.
0.
0.
0.

o v » o

A
f
A 9 7
/ 7 9 A
) 1 A Y] 9 N
7 g 7 7 H 9 9 1
7 H 7 | 7 { 7 7
4 Y 9 1 1 1 1 f
7 H g Y 7 f 4 1
4 Y 1 4 1 1l 4 1
9 H g Y Y 4 4 7
11 Y Y 1 Y f 4 1
4 7 7 1] Y 1l 1
1 1 H 4 Y 9 9 Y
4 Y g 4 Y fl 9 Y
1 7 9 4 Y { 4 9
4 / U 4 Y d 4 Y

H

1

)

i
SR S SN S SR T Y ST (Y

S 187 (@ R SOV (@2 A T (BC ™ (@ @ e

s “‘savo&‘“ ‘07’0,\\@?“ N K’Aoz,\da“‘«\ ° &N B

o QO

Fig. 12: The normalized access latency of different schemes.

C. Performance

The performance comparisons of several schemes are shown
in Fig. 13. Due to the shortened access latency, the system

TABLE III: Normalized Read/Write Latency and Bandwidth.

Read Latency | Write Latency | Bandwidth

DCW 1.0 1.0 1.0
DEUCE 0.77 0.81 1.19
SECRET 0.72 0.74 1.25
DEUCE+BDI 0.76 0.79 1.20
SECRET+BDI 0.70 0.73 1.27
MORE” 0.51 0.50 1.56
NoEncryption 0.55 0.59 1.49

Instruction Per Cycle (IPC) and memory bandwidth can be
improved. TABLE III lists the bandwidth comparisons. Com-
pared with SECRET+BDT, MORE? can improve memory band-
width by 22.8%. Fig. 13 shows the normalized IPC. In some
benchmarks, e.g. bwaves, gobmk, sjeng, the IPC improvements
are significant due to large reduced access latency. Besides,
some benchmarks e.g. bodytrack, bzip2, cactusADM, fluidan-
imate are not sensitive to access latency, the IPC results are
not obvious. Compared with the baseline, DEUCE, SECRET,
DEUCE+BDI, SECRET+BDI, MOREQ, NoEncryption can
improve IPC by 14.3%, 17.7%, 14.7%, 18.3%, 32.6%, 31.3%,
respectively. While MORE? can obtain better performance than
NoEncryption due to smaller access latency. Compared
with SECRET+BDI, MORE? can improve IPC by 12.1%.

Y
Y
Y
Y
Y
/|
Y
y
Y
Y
7
Y
Y
Y
Y
Y
Y
Y
Y
Y
i

A
|
7
7
4
H
H
i
i

= \lee oS¢ oF 0\‘\ &2 69
2° W &xx P . o
S o an\\) [« K o \i\é

Fig. 13: The normalized IPC of several schemes.

D. Write Energy

The write energy includes encryption energy and NVM
write energy. The comparison results are shown in Fig. 14.
Compared with the baseline, DEUCE, SECRET, DEUCE+BDT,
SECRET+BDI, MORE?, NoEncryption can reduce write
energy by 37.2%, 45.1%, 38.5%, 47.5%, 62.8%, 81.7%.
MORE?2 can largely reduce the bit flips, therefore, the write
energy can be greatly decreased. While the write energy
of NoEncryption is much lower than MOREZ, this is
because MORE? has extra encryption energy. For DEUCE and
SECRET, they are encrypted by the serial way with several
AES-128 logics, leading to lower encryption energy than
MORE?, therefore, in some benchmarks e.g. astar, canneal,
mcf, the results of MORE? are higher than SECRET+BDI.
Compared with SECRET+BDI, MORE? reduces the overall
write energy by 29.1%.

VI. CONCLUSION

Encrypted secure NVM suffers from severe performance
and endurance degradation. Current encryption techniques aim
to reduce the re-encryption of clean words, which however
suffers from high performance overheads and many unnec-
essary encryptions. In the meantime, compression techniques
can reduce the writes of encrypted NVM. But, we find that

79 pcw) DEUCE B8 SECRET [DEUCE+BD| [l SECRET+BDIE=5 MORE?[ZZZ NoEncryption|

Normalized write energy

© ©o ©o o o ¢
o N B o ® o

Y
9
Y
i
1
i
=
i
1
4

54

0 L, COESHI DRESEE) DAY DRSS VPR i i il
@ 5 6 b N o A0 o 48 ¢ 20 0 o
SR C P g S
o o
[«

‘ N\

@
S @ °
Q

Fig. 14: The normalized write energy of different schemes.

they may destroy the data patterns and increase the modified
words, resulting in many encryptions in secure NVM.

In this paper, we propose the MORphable Encryption and
Encoding (MORE?) scheme to address these problems. Our
MORphable Encryption (MORE) technique aims to reduce
the full-line re-encryption and avoid clean line encryption.
Besides, MORE proposes a prediction-based write scheme
to avoid the encryption of clean lines, and pre-encrypt the
dirty lines. Therefore, MORE can remove the encryption from
the critical path of NVM. Furthermore, MORE? proposes the
Morphable Selective Encoding (MSE) scheme to compress the
dirty words while preserving clean words. MORE? encrypts
all metadata with the line counter to guarantee high security.
Experimental results show that MORE? displays great bit
flips, energy reduction, and large performance improvement
compared with the state-of-the-art design.

ACKNOWLEDGMENT

This work was sponsored by the National Natural Sci-
ence Foundation of China under Grant 61832007, Grant
61821003, Grant 61772222, and Grant U1705261, in part by
the Fundamental Research Funds for the Central Universities
No.2019kfyXMBZ037, and National Science and Technol-
ogy Major Project No. 20172X01032-101, and Zhejiang Lab
(NO.2020AA3AB07).

REFERENCES

[1] C. Wang, D. Feng, W. Tong, J. Liu, Z. Li, J. Chang, Y. Zhang,
B. Wu, J. Xu, W. Zhao et al., “Cross-point resistive memory: Nonideal
properties and solutions,” ACM Transactions on Design Automation of
Electronic Systems (TODAES), vol. 24, no. 4, pp. 1-37, 2019.

[2] B.C. Lee, E. Ipek, O. Mutlu, and D. Burger, “Architecting phase change
memory as a scalable dram alternative,” in ACM SIGARCH Computer
Architecture News, 2009.

[3] W. Zhao, W. Tong, D. Feng, J. Liu, J. Xu, X. Wei, B. Wu, C. Wang,
W. Zhu, and B. Liu, “Oswrite: Improving the lifetime of mlc stt-ram with
one-step write,” in Proceedings of the 36th International Conference on
Massive Storage Systems and Technology (MSST), 2020.

[4] W.Zhao, W. Tong, D. Feng, J. Liu, Z. Chen, J. Xu, B. Wu, C. Wang, and
B. Liu, “Improving the energy efficiency of stt-mram based approximate
cache,” in 2021 Design, Automation & Test in Europe Conference &
Exhibition (DATE). 1EEE, 2021, pp. 1104-1109.

[5] V. Young, P. J. Nair, and M. K. Qureshi, “Deuce: Write-efficient
encryption for non-volatile memories,” in Proceedings of the Twentieth
International Conference on Architectural Support for Programming
Languages and Operating Systems, 2015.

[6] A. Awad, P. Manadhata, S. Haber, Y. Solihin, and W. Horne, “Silent
shredder: Zero-cost shredding for secure non-volatile main memory
controllers,” in Proceedings of the Twenty-First International Conference
on Architectural Support for Programming Languages and Operating
Systems, 2016.

[71 P. Zuo, Y. Hua, M. Zhao, W. Zhou, and Y. Guo, “Improving the
performance and endurance of encrypted non-volatile main memory
through deduplicating writes,” in Proceedings of the 51st IEEE/ACM
International Symposium on Microarchitecture (MICRO), 2018.

(8]

91

(10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

(21]

[22]

(23]

[24]

(25]

[26]

(27]

(28]

S. Swami, J. Rakshit, and K. Mohanram, “Secret: Smartly encrypted
energy efficient non-volatile memories,” in 2016 53nd ACM/EDAC/IEEE
Design Automation Conference (DAC), 2016.

M. K. Qureshi, V. Srinivasan, and J. A. Rivers, “Scalable high perfor-
mance main memory system using phase-change memory technology.”
in Proceedings of the 36th Annual International Symposium on Com-
puter Architecture, 2009.

J. Yue and Y. Zhu, “Accelerating write by exploiting pcm asymmetries,”
in 2013 IEEE 19th International Symposium on High Performance
Computer Architecture (HPCA). 1EEE, 2013, pp. 282-293.

J. Boukhobza, S. Rubini, R. Chen, and Z. Shao, “Emerging nvm:
A survey on architectural integration and research challenges,” ACM
Transactions on Design Automation of Electronic Systems (TODAES),
vol. 23, no. 2, pp. 1-32, 2017.

J. Kong and H. Zhou, “Improving privacy and lifetime of pcm-based
main memory,” in Dependable Systems and Networks (DSN), 2010
IEEE/IFIP International Conference on, 2010.

P. M. Palangappa and K. Mohanram, “Castle: Compression architecture
for secure low latency, low energy, high endurance nvms,” in 2018 55th
ACM/ESDA/IEEE Design Automation Conference (DAC), 2018.

M. Arjomand, M. T. Kandemir, A. Sivasubramaniam, and C. R. Das,
“Boosting access parallelism to pcm-based main memory,” in ACM
SIGARCH Computer Architecture News, 2016.

G. Pekhimenko, V. Seshadri, O. Mutlu, P. B. Gibbons, M. A. Kozuch,
and T. C. Mowry, “Base-delta-immediate compression: practical data
compression for on-chip caches,” in Proceedings of the 21st interna-
tional conference on Parallel architectures and compilation techniques,
2012.

A. R. Alameldeen and D. A. Wood, “Frequent pattern compression:
A significance-based compression scheme for 12 caches,” Dept. Comp.
Scie., Univ. Wisconsin-Madison, Tech. Rep, vol. 1500, 2004.

N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The gem5 simulator,”
ACM SIGARCH Computer Architecture News, vol. 39, no. 2, pp. 1-7,
2011.

M. Poremba, T. Zhang, and Y. Xie, “Nvmain 2.0: A user-friendly
memory simulator to model (non-) volatile memory systems,” [EEE
Computer Architecture Letters, vol. 14, no. 2, pp. 140-143, 2015.

J. L. Henning, “Spec cpu2006 benchmark descriptions,” ACM SIGARCH
Computer Architecture News, vol. 34, no. 4, pp. 1-17, 2006.

C. Bienia and K. Li, Benchmarking modern multiprocessors. Princeton
University Princeton, NJ, 2011.

G. E. Suh, D. Clarke, B. Gassend, M. v. Dijk, and S. Devadas, “Efficient
memory integrity verification and encryption for secure processors,” in
Proceedings of the 36th annual IEEE/ACM International Symposium on
Microarchitecture, 2003.

C. Yan, D. Englender, M. Prvulovic, B. Rogers, and Y. Solihin,
“Improving cost, performance, and security of memory encryption
and authentication,” in Proceedings of the 33rd Annual International
Symposium on Computer Architecture, 2006.

A. Kolli, J. Rosen, S. Diestelhorst, A. Saidi, S. Pelley, S. Liu, P. M. Chen,
and T. F. Wenisch, “Delegated persist ordering,” in 2016 49th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO).
IEEE, 2016, pp. 1-13.

S. Liu, K. Seemakhupt, G. Pekhimenko, A. Kolli, and S. Khan, “Janus:
Optimizing memory and storage support for non-volatile memory sys-
tems,” in 2019 ACM/IEEE 46th Annual International Symposium on
Computer Architecture (ISCA). 1EEE, 2019, pp. 143-156.

R. Ueno, S. Morioka, N. Homma, and T. Aoki, “A high throughput/gate
aes hardware architecture by compressing encryption and decryption
datapaths,” in International conference on cryptographic hardware and
embedded systems. Springer, 2016, pp. 538-558.

X. Wei, D. Feng, W. Tong, J. Liu, and L. Ye, “Morlog: Morphable
hardware logging for atomic persistence in non-volatile main memory,”
in 2020 ACM/IEEE 47th Annual International Symposium on Computer
Architecture (ISCA). 1EEE, 2020, pp. 610-623.

S. Mathew, S. Satpathy, V. Suresh, M. Anders, H. Kaul, A. Agar-
wal, S. Hsu, G. Chen, and R. Krishnamurthy, “340 mv-1.1 v, 289
gbps/w, 2090-gate nanoaes hardware accelerator with area-optimized
encrypt/decrypt gf (2 4) 2 polynomials in 22 nm tri-gate cmos,” [EEE
Journal of Solid-State Circuits, vol. 50, no. 4, pp. 1048-1058, 2015.
B.-D. Yang, J.-E. Lee, J.-S. Kim, J. Cho, S.-Y. Lee, and B.-G. Yu,
“A low power phase-change random access memory using a data-
comparison write scheme,” in Circuits and Systems, 2007. ISCAS 2007.
IEEE International Symposium on, 2007.

