
A Cost-efficient NVM-based Journaling Scheme
for File Systems

Xiaoyi Zhang, Dan Feng�, Yu Hua and Jianxi Chen
Wuhan National Lab for Optoelectronics, Key Lab of Information Storage System (School of Computer Science and

Technology, Huazhong University of Science and Technology), Ministry of Education of China, Wuhan, China

�Corresponding author: dfeng@hust.edu.cn

{zhangxiaoyi, dfeng, csyhua, chenjx}@hust.edu.cn

Abstract—Modern file systems employ journaling techniques
to guarantee data consistency in case of unexpected system
crashes or power failures. However, journaling file systems
usually suffer from performance decrease due to the extra
journal writes. Moreover, the emerging non-volatile memory
technologies (NVMs) have the potential capability to improve
the performance of journaling file systems by being deployed as
the journaling storage devices. However, traditional journaling
techniques, which are designed for hard disks, fail to perform
efficiently in NVMs. In order to address this problem, we propose
an NVM-based journaling scheme, called NJS. The basic idea
behind NJS is to reduce the journaling overhead of traditional file
systems while fully exploiting the byte-accessibility characteristic,
and alleviating the relatively slow write and endurance limitation
of NVM. Our NJS consists of three major contributions: (i) In
order to minimize the amount of journal writes, NJS only needs
to write the metadata of file systems and over-write data to
NVM as write-ahead logging, thus alleviating the relatively slow
write and endurance limitation of NVM. (ii) We propose a novel
journaling update scheme in which the journaling data blocks can
be updated in the byte-granularity based on the difference of the
old and new versions of journal blocks, thus fully exploiting the
unique byte-accessibility characteristic of NVM. (iii) NJS includes
a garbage collection mechanism that absorbs the redundant
journal updates, and actively delays the checkpointing to the
file system. Evaluation results show the efficiency and efficacy of
NJS. For example, compared with original Ext4 with a ramdisk-
based journaling device, the throughput improvement of Ext4
with our NJS is up to 137.1%.

I. INTRODUCTION

Journaling techniques have been widely used in modern

file systems due to offering data consistency for unexpected

system crashes or power losses [1]. In general, the basic idea

of a journaling technique is that, a file system first logs updates

to a dedicated journaling area, called write-ahead logging,

and then writes back the updates to the original data area,

called checkpointing. If a system crash occurs, the consistent

data are kept either in the journaling area or in the original

file system. However, the performance of a journaling file

system deteriorates significantly due to the extra journal writes.

For example, the write traffic with journaling is about 2.7

times more than that without journaling [2]. Therefore, how

to reduce the journaling overhead is an important problem to

improve the file system performance.
Recently, the emerging Non-Volatile Memory (NVM) tech-

nologies have been under active development, such as Spin-

Transfer Torque Magnetic RAM (STT-MRAM) [3], Phase

Change Memory (PCM) [4], ReRAM [5] and 3D-XPoint

[6]. NVMs synergize the characteristics of non-volatility as

magnetic disks, and high random access speed and byte-

accessibility as DRAM. Such characteristics allow NVMs

to be placed on the processor’s memory bus along with

conventional DRAM, i.e., hybrid main memory systems [7],

[8]. However, due to expensive price and limited capacity,

NVMs co-exist with HDDs and SSDs in storage systems, and

in the meantime, NVMs play an important role in improving

system performance in a cost-effective way.

NVMs provide a new opportunity to reduce the journaling

overhead of traditional file systems. However, simply replacing

SSDs or HDDs with NVMs in building journaling device

needs to address new challenges. First, for traditional jour-

naling schemes, the software overheads caused by the generic

block layer will become the performance bottleneck because

these overheads are not ignorable compared with the low

access latency of NVMs [9]. Second, NVMs have relatively

long write latency and limited endurance [4], [5]. If NVMs

are simply used as journaling storage devices in traditional

journaling schemes, the write performance and endurance

of NVMs will be inefficient due to the heavy write traffic.

Third, the characteristic of byte-accessibility of NVM is not

well explored and exploited in traditional journaling schemes.

Traditional journaling schemes need to write an entire block to

the journaling area even though only a few bytes of the block

are modified, which causes a write amplification problem and

further degrades the overall system performance [10], [11].
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Fig. 1: Overhead of Traditional Journaling Schemes

In order to quantify the overhead of traditional journaling

schemes, we measured the throughput of Ext4, with and

without journaling under different workloads in Filebench

[12]. Details about the experimental environment are described

in Section IV-A. As shown in Figure 1, the throughput of Ext4

2017 IEEE 35th International Conference on Computer Design

1063-6404/17 $31.00 © 2017 IEEE

DOI 10.1109/ICCD.2017.18

57



with data journal mode on HDD is 41.9% and 43.8% slower

than its non-journaling mode under Filesever and Varmail

workloads, respectively. Even if we switch the journaling

storage device from slow HDD to fast NVM (Ramdisk),

the throughput of Ext4 with journaling on ramdisk is only

11.7% and 12.1% faster than that on HDD, which indicates

that traditional journaling schemes fail to perform efficiently

in NVMs. Therefore, we consider highly-efficient journaling

techniques for NVMs.

To this end, we present an NVM-based journaling scheme,

called NJS, which can be used in traditional file systems

to guarantee strict consistency and reduce the journaling

overhead. NJS proposes to use three optimization techniques:

(1) In order to alleviate the relatively slow write and

endurance limitation of NVM, NJS minimizes the amount of

journal writes. In the process of transaction committing, only

the metadata of file systems and over-write data are needed to

be written to NVM as write-ahead logging, and the append-

write data blocks are directly issued to the file system.

(2) In our NJS, a byte-level journaling update scheme is

proposed to allow a journal block to be updated at the byte

granularity by computing the difference between the old and

new versions of the same journal block. In order to protect

the latest version of journal block from being modified, we

maintain an extra previous version (the one just before the

latest) for each journal block. When a journal block is written

to NVM, if the previous version exists, instead of writing

another entire block, NJS only writes the different bytes (i.e.

delta) between the updating and the previous version to the

previous version block. Thus, NJS exploits the unique byte-

accessibility characteristic of NVM and further reduces the

journal writes to NVM.

(3) When the NVM-based journal space is nearly full,

we propose a garbage collection scheme, which recycles the

redundant versions of the same journal block and delays

the checkpointing to the file system. The redundant journal

updates are absorbed, thus the writes to the file system can be

reduced. In this way, the file system performance is improved.

The remainder of this paper is organized as follows. Section

II provides the background of NVM, existing consistency

and journaling techniques. Section III presents the design and

detailed implementations. Experiment results are presented

in Section IV. Related work is discussed Section V and we

conclude the paper in Section VI.

II. BACKGROUND

A. Consistency and Journaling for File Systems

File system consistency can be categorized into three levels,

including metadata consistency, data consistency, and version
consistency [13]. Specifically, metadata consistency guaran-

tees that the metadata structures of file systems are entirely

consistent with each other. It provides minimal consistency.

Data consistency has the stronger requirement than metadata
consistency. In data consistency, all data that are read by a file

should belong to this file. However, the data possibly belong

to an older version of this file. Version consistency requires

the metadata version to match the version of the referred data

compared with data consistency. Version consistency is the

highest level of file system consistency.

Journaling techniques provide the consistency for file sys-

tems. According to the contents written to the journaling area,

there are three journaling modes [1]:

The Writeback Mode: In this mode, only metadata blocks

are written to the journaling area. The writeback mode only

provides the metadata consistency.

The Ordered Mode: Like the writeback mode, only meta-

data blocks are written to the journaling area in this mode.

However, data blocks written to their original areas are strictly

ordered before metadata blocks are written to the journaling

area. Since append-write does not modify any original data,

the version consistency is guaranteed. But for over-writes,

the original data are modified. Thus, the ordered mode only

provides data consistency.

The Journal Mode: In this mode, both metadata and data

are written to the journaling area and version consistency

is guaranteed. However, this mode suffers from significant

performance degradation since all the data are written twice.

In fact, the ordered mode is the default journaling mode in

most journaling file systems for performance reasons. Hence,

in order to meet the needs of data integrity in storage systems,

it is important to obtain the version consistency in a cost-

efficient manner.

B. Non-volatile Memory Technologies

In recent years, computer memory technologies have e-

volved rapidly. The emerging non-volatile memory technolo-

gies, e.g., PCM, STT-MRAM, ReRAM and 3D-XPoint, have

attracted more and more attentions in both academia and

industry [14]. Among current NVM technologies, PCM is

mature and more promising for volume production [15]. In

2012, Samsung announced in volume production of a 8 Gbit

PCM device [16].

Different NVMs have similar limitations. First, NVMs have

the read/write performance asymmetry. Write latency is much

higher (i.e., 3-8X) than read latency [4], [5]. Second, NVMs

generally have the limited write cycles, e.g., 108 times for

PCM [4], 1010 times for ReRAM [5]. To extend the lifetime

of NVMs, wear-leveling techniques have been proposed [17].

Since most of the proposed wear-leveling techniques are built

on device level, we assume such wear leveling is present and

do not address it in our NJS work. Actually, our design of

reducing journal writes can be combined with wear-leveling

techniques to further lengthen NVM’s lifetime.

C. Data Consistency in NVM

When NVM is directly attached to the processor’s memory

bus, the consistency of data updates to NVM must be ensured

during the memory operations. In general, the atomicity of

writes to memory is very small (8 bytes for 64-bit CPUs) [18].

The updates with larger sizes must adopt logging or copy-on-

write mechanisms which require the memory writes to be in

a correct order [19]. Unfortunately, in order to improve the
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memory performance, modern processors and their caching

hierarchies usually reorder write operations on memory. And

the reordering writes possibly induce data inconsistency in

NVM when a power failure occurs [20]. In order to address

the data consistency problem in NVM, today’s processors

provide instructions such as mfence and clflush to enforce write

ordering and explicitly flush a CPU cacheline. However, these

instructions have been proved to be significantly expensive,

and the overhead of these instructions is proportional to the

amount of writes [21]. Thus, we should reduce the amount of

journal writes to NVM.

III. DESIGN AND IMPLEMENTATIONS

In this section, we present the design and implementation

details of our NJS.

A. Overview

Fig. 2: Overall architecture of NJS

Figure 2 illustrates the workflow overview of a journal write

request among the file system, buffer cache, and journaling

area in NJS. For each updated data block in the write request, if

the update is an append-write, the data block is directly written

to the file system. Moreover, if the update is an over-write, the

data block is written to the NVM-based journaling area. The

updated metadata blocks are also written to the NVM-based

journaling area. When the free space size of the journaling

area is low, the garbage collection is invoked to free invalid

journal blocks. If the free journal space is still lower than a

predefined threshold after garbage collection or the periodical

checkpoint time interval arrives, the latest version of valid

journal blocks in the journaling area are written back to the

file system. When the system is rebooted due to unexpected

crashes, the information in the journaling area is validated and

the valid journal blocks are restored.

B. Journaling Space Management

Figure 3 shows the space management and corresponding

data structures used in the NVM-based journaling area. There

are three types of structures: superblock, journal header and

journal block.

Superblock is used to record the global information of the

journaling space. Two kinds of global information are kept

in superblock: (1) the statistical information of the journaling

space, e.g., the total amount of journal blocks; and (2) the

pointers that mark the transactions and define the boundaries

of the logical areas described later in this Section.

Journal header acts as the metadata of journal block and

all the accesses to journal block are handled via journal
header. Journal header tracks the address of the matched

journal block, the corresponding file system block number

and some state bits for the attributes of the journal block (e.g.,

valid/invalid, old/latest). Each 16-byte journal header matches

a 4KB journal block. We reserve 256 journal headers, the

total size of which is equal to a journal block. These reserved

journal headers will be used to store persistent copies of valid

journal headers during garbage collection step (described in

Section III-E).

Journal block is used to store journal data blocks.

Logically, we divide the journal space into three areas: free

area, checkpoint area and commit area, as shown in Figure 3.

The pointers (e.g., p commit, p checkpoint) in the superblock
are used to define the boundaries of these areas.

Fig. 3: Space management and corresponding data structures

Free area: The blocks in this area are used to store

journal data blocks. The pointer p first free block points to

the first free block. When the journal blocks begin to be

committed to the journaling area, they are written from the

block p first free block pointed to.

Checkpoint area: In this area, all the journal blocks

belong to previous transactions which have been committed

successfully, and these journal blocks are in the consistent

state. The pointer p checkpoint points to the last block of

checkpoint area. When the checkpointing or system recovery

process starts, only the blocks in this area are needed to be

searched and recovered.

Commit area: The journal blocks in this area belong to the

current committing transaction. The pointer p commit always

points to the last block written to the NVM-based journal area,

which is the block just before p first free block pointed to.

During the system recovery process (described in Section III-

F), the journal blocks in this area should be discarded.

C. Transaction Commit Process in NJS

In order to minimize the amount of journal writes to NVM,

we redesign the process of transaction committing, in which

only the metadata and over-write data are needed to be written

to NVM as write-ahead logging, and the append-write data

blocks are directly issued to the file system. This technique of

differentiating over-writes from append-writes first appears in

[22], but it is used in the traditional journaling scheme. We
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synergize this technique in an NVM-based journaling scheme.

In our NJS, eliminating append-writes to NVM can alleviate

the relatively slow write and endurance limitation of NVM.

Fig. 4: Transaction commit process in NJS

As illustrated in Figure 4, each transaction in NJS contains

two linked lists: one for append-write data blocks, and the oth-

er for over-write and metadata blocks. The transaction commit

process is executed according to the following steps: (1) When

the commit process starts, Running Transaction is converted to

Committing Transaction. Meanwhile, Running Transaction is

initialized to accept newly updated blocks. (2) The data blocks

in the append-write list of Committing Transaction are directly

written to the file system through block interface. (3) The over-

write data blocks and the modified file system metadata blocks

are written to NVM-based journaling area through memcpy.

And the pointer p commit always points to the last block

written to the journal space. When a memcpy finishes, the

corresponding cachelines should be flushed (clflush) and then

a memory fence (mfence) is issued. (4) After all the append-

write data blocks and over-write data/metadata blocks have

been persisted to the file system and NVM-based journaling

area, p checkpoint is updated to the block p commit pointed

to by an 8-byte atomic write followed by clflush and mfence
to indicate the committing transaction commits successfully.

D. Byte Level Journal Update Scheme

Since over-write data and metadata blocks are stored in the

NVM-based journaling area, these blocks may be updated a-

gain in a very short time due to workload locality. Specifically,

metadata blocks are accessed and updated more frequently

than data blocks [23]. Thus different versions of the same

block possibly exist in the NVM-based journaling area, and

the difference (i.e. delta) between different versions can be

as small as several bytes according to the content locality

[24], e.g., an update to an inode or a bitmap. Based on this

observation, when a journal block has to be updated, for the

frequently updated journal blocks in NJS, we only write the

modified bytes (i.e. delta) to the existing journal block instead

of writing another entire block. This update scheme not only

leverages the byte-accessibility characteristic of NVM, but also

further reduces the journal writes to NVM.

However, we can not directly write the delta to the latest

version of journal block. If a system crash occurs during

the update process, the latest version of journal block can

be partially updated and damaged. The data consistency is

compromised. Therefore, an old version is maintained for each

journal block in addition to the latest version. We hence write

the delta to the old version of journal block to complete

the update. In order to improve the search efficiency, the

version information of the journal blocks is kept in a hash

table, as shown in Figure 5. Note that the hash table is only

used to improve the search efficiency of journal block version

information. And the version information is also maintained in

the corresponding journal header (e.g. valid/invalid, old/latest),

thus the hash table is kept in DRAM, instead of persistent

NVM. The hash table consists of a table head array and some

entry lists. The unit of the table head array is called hash slot.

In each hash slot, the content is an address that points to an

entry list. Each entry has the following items:

blocknr: the logical block number of the file system.

old: the address of the journal header of the old version

journal block.

latest: the address of the journal header of the latest version

journal block.

next: the pointer to the next item in the entry list.

Fig. 5: Hash table for improving search efficiency

When committing a journal block to the NVM-based jour-

naling area, we first search the corresponding hash slot by

hashing the logical block number of that journal block, then

search the entry list in the slot. There are three cases:

(1) Neither the old version nor the latest version exists. It

means that this journal block is a new block. In this case, the

committing journal block is directly written to the first block

of free area. We allocate a new entry in the entry list, and

add the journal header of this block to latest item. Then the

journal block is tagged as the latest version.

(2) We find this block in the entry list and only latest item

contains the journal header of this block. It implies that the

latest version exists but the old version does not exist. In this

case, the committing journal block is still written to the first

block of free area directly. The existing latest version of the

block is tagged as the old version and the journal header is

added to old item. The committing journal block is tagged as

the latest version and the journal header of this block is added

to latest item.

(3) We find this block in the entry list and both latest item

and old item contain journal headers. This implies that we
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can write the delta to the existing old version of journal block

instead of writing another entire block. In this case, the old

version of journal block is possibly in the checkpoint area due

to being committed to the journaling area earlier in previous

transactions. In our design, the commit process of a transaction

is performed in the commit area, and all the journal blocks

in the checkpoint area should be kept in a consistent state.

To avoid directly modifying journal block in the checkpoint

area, we swap out the old version of journal block with the

currently first free block before writing the target journal block

to the NVM-based journaling area. For example, as shown in

Figure 6, block A is contained in the committing transaction.

The committing version is A3. The latest version A2 and the

old version A1 exist. The update process of A is executed

according to the following steps: 1) Before writing A3 to the

journal space, the old version A1 is swapped out with the

currently first free block, and the free block exchanged to the

checkpoint area is tagged invalid. 2) The difference (block D)

between A3 and A1 is calculated. D(i) represents the i-th byte

of block D. If D(i) is not all zero bytes, the i-th byte of A3

and A1 is different. 3) A1 is in-place updated to A3 with D.

Only the different bytes between A3 and A1 are needed to be

written. 4) A3 is tagged to the latest version, A2 is tagged to

old version, and the corresponding version information in the

hash table is updated.

Fig. 6: The process of journal block update

The swap operation is implemented by updating the cor-

responding journal block address maintained in the journal

header instead of simply copying the contents of the journal

blocks. Note that the latest version block A2 and its journal

header are not modified, the consistency of the NVM-based

journaling area is not decreased.

Even though there are extra overheads in the proposed

journal update technique, such as search on the hash table,

a read operation on journal block before writing and XOR

calculation overhead. The experimental results in Section IV-

C prove that these overheads are negligible compared with the

reduction of journal writes.

E. Garbage Collection and Checkpointing in NJS

In traditional journaling schemes, checkpointing is per-

formed when the free journal space is lower than a predefined

threshold. In our NJS, as invalid blocks exist in the NVM-

based journaling area, we propose a garbage collection mech-

anism to recycle the invalid blocks and delay the checkpointing

process. The garbage collection step is shown in Figure 7.

Before garbage collection begins, the pointer first points to

the first block in the checkpoint area and last points to the

last block in the checkpoint area. When garbage collection

starts, the state of each journal block should be examined, if

the block first pointed to is invalid and meanwhile the block

last pointed to is valid, the two blocks will be swapped. Then

pointer first advances to the next journal block and last retreats

to the previous journal block. When first and last point to

the same block, the garbage collection process finishes. Then

the pointer p checkpoint is updated to the last valid block

by an 8-byte atomic write. In the garbage collection process,

as the journal headers of latest journal blocks are modified

during the swap operation, the modifications of the updated

journal headers are performed in the copy-on-write manner

by using the reserved journal headers (described in Section

III-B). Specifically, before updating a journal header of the

valid journal block, it is copied to the first journal header

of the reserved journal headers. After the swap operation

completes, the current persistent copy in the reserved journal

header is cleared to store the next persistent copy. Under the

proposed garbage collection mechanism, the invalid journal

blocks can be recycled, more journal blocks can be stored in

the journaling area, and the checkpointing process is delayed.

Fig. 7: Garbage collection

If the free journal space is still lower than a predefined

threshold after garbage collection or the periodical checkpoint-

ing time interval arrives, the latest version of valid journal

blocks in the checkpoint area are then checkpointed to the file

system. After that, all of the journal blocks in the journal space

are marked invalid and another round of garbage collection

process is performed. And all of the corresponding block

entries in the hash table are deleted.

By using the proposed journal update and garbage collection

schemes, the redundant journal updates are absorbed, the

process of checkpointing is delayed, the writes to the file

system are reduced, and some random writes can be merged

into sequential ones. In this way, the file system performance

is further improved.

F. System Recovery

When unexpected system crashes or power losses occur,

the file system must recover to the last consistent state. As
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file systems are possible to be in an inconsistent state only

when system crashes occur during data updating, we classify

the possible cases into two scenarios.

First, a system crash occurs during a commit operation.

The current commit transaction is possible not to completely

committed, including the append-write data to the file system

and journal blocks to the NVM-based journal space. As an

append-write does not modify any original data, we simply

discard the append-write data blocks and journal blocks in

the current commit transaction. In order to restore to the last

consistent state, NJS scans the whole checkpoint area (the data

blocks between p first block and p checkpoint). Note that

system crashes possibly occur during the garbage collection

step, the data blocks of the reserved journal headers also need

to be scanned. The latest version of valid journal blocks should

be written to their home locations in the file system. After all

the latest version of journal blocks have been updated to their

home locations, the file system recovers to the last consistent

state that the last transaction is committed successfully.

In the second scenario, a system crash occurs during a

checkpoint operation. The journal blocks in the NVM-based

journal space are partially reflected to the file system. How-

ever, the journal blocks still remain in the journaling area

and are in consistent state. NJS restores the file system to

the consistent state by simply replaying the journal blocks to

their original locations in the file system again.

IV. PERFORMANCE EVALUATION

A. Experimental Setup

We implement a prototype of NJS on Linux 3.12 and

integrate it into Ext4 file system. Since NVM is not yet

commercially available, we develop a simple NVM simulator

based on the simulator used in Mnemosyne [19] to evaluate our

NJS’s performance. We prototype NJS with the characteristics

of PCM because it is mature and more promising for com-

mercial deployment [15], [16], and our simulator can be also

used in other NVMs. Like previous research works on NVM

[18], [19], we introduce extra latency in our NVM simulator

to account for NVM’s slower writes. In our experiments, we

set NVM latency to 300ns by default [8], [18]. Besides the

write latency, we set the write bandwidth of NVM to 1GB/s,

about 1/8 of the DRAM’s bandwidth [8], [18]. The capacity

of NVM we use in NJS is 128MB as it is the default journal

size value in Ext4 file system.

For fairness, we compare our work (NJS) with Ext4 file

system that uses the same capacity ramdisk with the above

NVM performance model as its journaling device (Journal on

Ramdisk). The journaling mode of Ext4 is set to journal, which

logs both data and metadata, to provide version consistency

like NJS. And we also add the non-journaling mode of Ext4

(No Journal) into the evaluation comparison. The commit

interval is set to 5 seconds according to the conventional

configurations. In NJS, garbage collection is performed when

three fourths of journal space is filled, and checkpoint is

either triggered by a 5-minute timer or the utilization of the

journaling area being over 75% after garbage collection.

The used server is configured with an Intel Xeon E5-2620

CPU, 8GB DRAM, and WD 1TB HDD. Three well-known

and popular storage benchmarks are used to measure the

performance of our NJS work: IOzone [25], Postmark [26],

and Filebench [12]. The main parameters of the workloads

used in our experiments are shown in Table I.

TABLE I: Parameters of Different Workloads

Benchmark Workload
R/W
Ratio

# of
Files

File Size Write Type

IOzone
Sequential

Write
Write 1 8GB Append-write

IOzone Re-write Write 1 8GB Over-write

IOzone
Random

Write
Write 1 8GB Over-write

Postmark Postmark 1:1 10K 1KB∼1MB Append-write

Filebench Fileserver 1:2 50K 128KB Append-write

Filebench Varmail 1:1 400K 16KB Append-write

The purpose of NJS is to reduce the journaling overhead of

traditional file systems, we only choose Fileserver and Varmail

in Filebench, because these two workloads contain a large

proportion of write operations.

B. Overall Performance

In the synthetic workloads, we use Sequential Write, Re-

write and Random Write scenarios in IOzone benchmark to

evaluate the throughput performance. As shown in Figure 8

(a), NJS outperforms Journal on Ramdisk by 24.4%, 56.3%

and 137.1% in Sequential Write, Re-write and Random Write

scenarios respectively. In Sequential Write, all writes are

append-write, and only metadata blocks are written to the

NVM-based journal area. The proportion of metadata is very

small as IOzone benchmark creates a single large file in

the evaluation. Thus the function of journaling reduction and

delayed checkpointing in NJS can not be fully leveraged.

In Re-write and Random Write, all writes are over-write,

both metadata and data blocks are written to the NVM-based

journal area, and NJS even performs better than No Journal. In

this case, the delayed checkpointing plays an important role

for NJS, especially in Random Write due to the long seek

latencies of HDDs.
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Fig. 8: The Throughput

In the macro workloads, we use Postmark, Fileserver and

Varmail to evaluate the throughput performance. Figure 8 (b)

shows the throughput performance comparison of Journal on

Ramdisk, NJS and No Journal. As shown in the figure, NJS

exhibits better than Journal on Ramdisk by 53.9%, 43.1% and

50.6% in Postmark, Fileserver and Varmail respectively. In

these benchmarks, all the writes are append-write, and for
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NJS, only metadata blocks need to be logged to NVM. Large

amounts of journal writes can be eliminated. For Journal on

Ramdisk, although all the updates are written to the ramdisk-

based journal device, the software overheads are still non-

trivial.

C. Effect of the Byte-level Journal Update Scheme

The proportion of the difference between the old and new

versions of journal blocks can affect the performance. We add

another run of Re-write test while changing the proportions of

differences from 0% to 100%. And we add NJS without the

byte-level journal update scheme (referred as NJS-no-BJ) into

the comparison. Figure 9 (a) shows the results normalized to

the throughput of Journal on Ramdisk. NJS achieves the per-

formance improvement of up to 20.1%, and 10.8% on average

compared with NJS-no-BJ. It is clear that the more similar

the contents of the two blocks are, the more performance

improvement can be achieved. In 100% case, which is the

worst case, the throughput of NJS is a bit (under 1%) less

than that of NJS-no-BJ. The reason is that, in this case, NJS

has to update the entire block like NJS-no-BJ with some extra

overheads mentioned in Section III-D, thus these overheads

are negligible. Actually, the differences between new and

old versions are usually very small due to workload locality.

The worst case hardly appears. Furthermore, we observe that

even in 100% case, NJS still performs better than Journal on

Ramdisk by 30.1%. This is because the delayed checkpointing

plays an important role in improving the performance.
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Fig. 9: Effect of the Byte-level Update Scheme

In order to evaluate the journal write reductions from the

byte-level journal update scheme, we measure the journal write

amounts of Postmark, Fileserver and Varmail. Figure 9 (b)

shows the results normalized to Journal on Ramdisk. It is

clear that both NJS-no-BJ and NJS gain significantly journal

write reductions compared with Journal on Ramdisk. This is

because all the writes in Postmark, Fileserver and Varmail

are append-write and the data journal writes can be elimi-

nated. Specifically, NJS reduces the journal write amount by

41.7%, 30.3% and 45.4% in Postmark, Fileserver and Varmail

respectively compared with NJS-no-BJ. The byte-level journal

update scheme further reduces the journal writes. We observe

that the amount of journal write reduction in Fileserver is less

than that in Postmark and Varmail. The reason is that Postmark

and Varmail are metadata intensive workloads, the proportion

of metadata in Postmark and Varmail are higher than that in

Fileserver, thus the byte-level journal update scheme reduces

more journal writes.

D. Effect of the Delayed Checkpointing

To evaluate performance gains from the delayed checkpoint-

ing function, we test the throughput of NJS, NJS without the

function of delayed checkpointing (NJS-no-DC) and Journal

on Ramdisk under the aforementioned macro-benchmarks.

Figure 10 shows the results normalized to the throughput

of Journal on Ramdisk. NJS performs better than NJS-no-

DC by 31.5%, 20.3% and 32.1% in Postmark, Fileserver and

Varmail respectively. The results indicate that the function of

delayed checkpointing plays an important role in improving

the performance. Note that the improvement in Fileserver is

less than that in Postmark and Varmail. The reason is that

Postmark and Varmail are metadata intensive workloads, the

proportion of metadata in Fileserver is lower than that in

Postmark and Varmail.
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E. Effect of Eliminating Append-write to NVM

At last we examine the effect of eliminating append-write

to NVM. We evaluate the throughput of NJS, NJS with all of

the data blocks logged to NVM (NJS-all-journal) and Journal

on Ramdisk under the aforesaid macro-benchmarks. Figure 11

shows the results normalized to the throughput of Journal on

Ramdisk. In three workloads, NJS-all-journal outperforms N-

JS. But the improvements in Postmark, Filebench and Varmail

are only 7.2%, 5.5% and 6.9%, respectively. The reason is that,

for NJS-all-journal, even though all of the data are logged to

NVM and written back to the file system with delay, the file

system is frozen during garbage collection and checkpointing

step, larger journal results in longer garbage collection and

checkpointing. But as shown in Figure 9 (b), the amount of

journal writes in NJS-all-journal is much more than that in

NJS. Therefore, it is not necessary to log append-write data

to NVM.

V. RELATED WORK

NVM-based file systems. BPFS [27] uses short-circuit

shadow paging technique and 8-byte atomic write to provide

consistency. SCMFS [9] utilizes the existing OS VMM module

and maps files to a large contiguous virtual address, thus

reducing the complexity of the file system. Shortcut-JFS [28]

is a journaling file system that assumes PCM as its standalone

storage device, it proposes differential logging and in-place

checkpointing techniques to reduce the journaling overhead.

PMFS [18] is a lightweight POSIX file system designed for

persistent memory, it bypasses the page cache and eliminates

the copy overheads to improve performance. NOVA [8] is a
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recently proposed NVM file system that adapts conventional

log-structured file system techniques to guarantee strong con-

sistency. Different from the above mentioned NVM-based file

systems, our NJS deploys NVM as journaling storage device

to reduce the journaling overhead of traditional file systems.

In the meanwhile, HDDs/SSDs can be used as major storage

devices, thus NVM can be used to improve the performance

of storage systems in a cost-effective way.

NVM-based journaling schemes. Lee et al. [2] proposed a

buffer cache architecture UBJ that subsumes the functionality

of caching and journaling with NVM. However, copy-on-write

is used in journal block updating which does not exploit

the byte-accessibility characteristic of NVM. Moreover, UBJ

does not consider reducing journal writes to NVM. Zeng et
al. [29] proposed an NVM-based journaling mechanism SJM

with write reduction. Kim et al. [30] proposed a journaling

technique that uses a small NVM to store a journal block

as a compressed delta for mobile devices. However, these

two works only use NVM as journal storage device, and

does not consider NVM delays checkpointing. Chen et al.
[11] proposed a fine-grained metadata journaling technique

on NVM, and this is the most related work to ours. However,

the proposed journaling technique only uses NVM to store

the file system metadata, and provides data consistency. In

contrast, our NJS logs the file system metadata and over-write

data to NVM as write-ahead logging, and provides version

consistency, which is a higher consistency level compared with

data consistency.

VI. CONCLUSION

In this paper, we present an NVM-based journaling scheme,

called NJS, to reduce the journaling overhead for traditional

file systems. In order to minimize the amount of write to

NVM due to its relatively long write latency and limited

write cycles, NJS only logs the file system metadata and over-

write data to NVM as write-ahead logging, and directly issues

the append-write data to the file system. Furthermore, we

design a byte-level journal update scheme in which journal

block can be updated in the byte-granularity based on the

difference of the old and new versions of journal blocks so

as to exploit the unique byte-accessibility characteristic of

NVM. NJS also includes a garbage collection mechanism that

absorbs the redundant journal updates, and actively delays the

checkpointing to the file system. Thus, the journaling overhead

can be reduced significantly. Evaluation results show that Ext4

with NJS outperforms Ext4 with a ramdisk-based journaling

device by 60.9% on average in different workloads.
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