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Abstract—Resistive Random Access Memory (RRAM) tech-
nology is proposed as a promising replacement candidate for
DRAM-based main memory due to its good scalability, low
standby power, and non-volatility. The structure of Triple-Level
Cell (TLC) can offer higher data density over Single-Level
Cell (SLC). However, TLC RRAM suffers from high write
energy and latency. Data compression techniques can reduce the
size of the data to store. In contrast, data encoding methods
such as Incomplete Data Mapping (IDM) can ‘expand’ the
size for latency and energy reduction. We observe that the
compression ratio of each cacheline varies, and therefore the
saved space of each compressed cacheline is different. On the
other hand, we find that different IDMs have different tradeoffs
in capacity and write latency/energy. To fully exploit the space
saved by compression for reducing the write latency/energy, and
improving the performance of TLC RRAM-based main memory
system, Compression-Ratio-Aware Data Encoding (CRADE) is
proposed. The key idea of CRADE is to dynamically select
the best-performing IDM according to the compression ratio of
each cacheline. The cacheline is compressed first, and then the
compressed cacheline is encoded by IDM. For each compressed
cacheline, the IDM which uses the fewest states to encode is
applied on the condition that the encoded data size will not
exceed the cacheline size. Experimental results show that CRADE
can reduce the write energy by 15%, decrease the write latency
by 19%, reduce the read latency by 4%, and improve the IPC
performance by 2% compared with the state-of-the-art scheme.

I. INTRODUCTION

Non-volatile memory (NVM) technologies such as Phase

change memory (PCM), Spin Transfer Torque Random Access

Memory (STT-RAM) and Resistive Random Access Memory

(RRAM) have emerged as potential replacement candidates

of DRAM technology. Among these NVMs, RRAM has the

advantages in write latency, energy efficiency and 3D stackable

property [1]–[3]. Triple-Level Cell (TLC) RRAM can store

three bits of information in a single cell and the density can

be further improved compared with Single-Level Cell (SLC)

[4]. Although TLC RRAM can provide outstanding density,

its iterative programming method leads to high write en-

ergy/latency and results in design challenges for TLC RRAM-
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based main memory [2]. According to the recent study, the

write random-access latency of a 4Mb SLC RRAM testchip

is 7.2ns, while the write random-access latency of Multi-Level

Cell is 160ns [1]. The write latency of TLC RRAM is higher

than both MLC and SLC, and may be higher than 160ns.

Besides, the write energy of TLC RRAM is about seven times

more than SLC RRAM [2], [5]. The high write energy and

write latency are design concerns of TLC RRAM-based main

memory.

Data compression techniques, such as frequent pattern com-

pression (FPC) [6] and base-delta-immediate compression [7]

can reduce the size of the data to store. In contrast, Incomplete

Data Mapping (IDM) [2], which uses several low energy

and low latency states out of all the eight states of TLC

to encode, can sacrifice the capacity for low latency/energy.

Incomplete Data Mapping can be expressed as the general

form ‘IDM((p, q), r)’. IDM((p, q), r) uses q states out of a

p-state cell (q < p) to encode, and r q-state cells are converted

into binary digits, as shown in Fig. 3 of Section III-B.

If the compression ratio (sizeoriginal/sizecompressed) of a

cacheline is greater than 3/2, IDM((8, 4), 1) can be applied

to reduce the write energy/latency without incurring memory

overhead [5]. We observe that the compressed cacheline sizes

are various, and cachelines with higher compression ratios

can save more space, while cachelines with lower compres-

sion ratios offer less space. Meanwhile, different IDMs have

different tradeoffs in capacity and write latency/energy. The

IDM which uses fewer states to encode can sacrifice more

capacity for lower latency and energy. To fully exploit the

space saved by compression for reducing latency/energy and

improving performance of TLC RRAM-based main memory

system, Compression-Ratio-Aware Data Encoding (CRADE)

is proposed. CRADE dynamically chooses the best-performing

IDM according to the compression ratio of a cacheline. For

example, if the compression ratio of a cacheline is greater than

3, IDM((8, 2), 1) rather than IDM((8, 4), 1) can be applied

to the compressed data for more latency and energy reduction.

We have the following contributions in this paper.

• We observe that the compression ratios of cachelines are

various, and the IDM which uses fewer states to encode
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can sacrifice more capacity for lower latency and energy.

• To maximize the use of the space saved by com-

pression for latency and energy reduction, we propose

Compression-Ratio-Aware Data Encoding (CRADE).

CRADE dynamically selects the best-performing IDM

according to the compression ratio of a cacheline.

• Experimental results show that our scheme can reduce

write energy by 15%, decrease the write latency by 19%,

reduce the read latency by 4%, and improve the IPC

performance by 2% than the state-of-the-art CompEx [5].

The rest of this paper is organized as follows. Section II

describes the background of RRAM. Section III presents the

observation and motivation. Section IV introduces the design

and implementation. Section V and Section VI analyze the

experimental results and discuss the related work. Section VII

offers conclusions.

II. BACKGROUND

A. The architecture of RRAM

A RRAM cell consists of a top electrode and a bottom

electrode, and a metal-oxide layer between them. The logical

values are stored in RRAM by changing the resistance of

the RRAM cells. The high resistance state (HRS) is used to

represent logical value ‘0’, and low resistance state (LRS) is

used to represent ‘1’. In order to change the resistance of a

RRAM cell, an external voltage (Vset and Vreset) is applied

across the cell. The switch event from HRS to LRS is called

set operation, and the switch event from LRS to HRS is called

reset operation. To read the data from a RRAM cell, a small

voltage is applied to detect whether the cell is in HRS or not.

B. Program-and-verify of TLC

Prior works reported that the resistance differences between

HRS and LRS are very large (the ratio of HRS and LRS

exceeds 100) [1], [2], and the wide range resistance can

be divided into four levels (MLC) or eight levels (TLC)

to store two or three bits in a single cell. TLC can offer

higher data density than SLC, but its write process is more

complex. Program-and-verify (P&V) is commonly used in

TLC programming. The P&V programming strategy starts

from a set or reset operation, followed by several shorter reset

or set pulses. A read operation follows each short write pulse

to verify the state of the cell. If the resistance of the RRAM

cell reaches the target value, the write operation terminates.

Set-to-reset (STR) and Reset-to-set (RTS) [4] are proposed to

reduce the number of iterations. If the Most Significant Bit

(MSB) of the target state is ‘1’, we can reach the final states

in fewer iterations through reset-to-set. Otherwise, Set-to-reset

is used.

The writes to TLC NVMs require much higher energy and

latency due to the iterative P&V method. The write energy

and latency of TLC are several times more than SLC [2], [5].

The iterative P&V method leads to the characteristic that the

write latency and write energy of TLC are dependent on the

data written into the cell, as shown in Fig. 1. A TLC has eight

resistance states, and the states on the side (e.g., state ‘0’ and

0 1 2 3 4 5 6 7

15.2 46.8 98.3 143 150 101 52.7 12.1

2 6.7 19.3 35.1 35.6 19.6 8.5 1.5

Cell States

Latency(ns)

Energy(pJ)

Fig. 1. The write latency/energy of different resistance states [2], [5].

‘7’) of the TLC require fewer iterations, while the states in

the middle (e.g., state ‘3’ and ‘4’) need more iterations. For

example, programming resistance states ‘7’ and ‘0’ need only

a single set and reset operation, while programming resistance

states ‘3’ and ‘4’ require several iterations apart from reset and

set. More iterations will result in higher write latency/energy,

and therefore programming the states on the side needs shorter

latency and less energy than the middle states. As illustrated

in Fig. 1, the write latency/energy of resistance states ‘3’ and

‘4’ are the highest, while the write latency/energy of ‘0’ and

‘7’ are the lowest.

III. MOTIVATION

Different cachelines have various compression ratios. For

those cachelines with higher compression ratios, more space

is saved. Different IDMs have different tradeoffs in capacity

and write energy/latency. Compression ratios and IDMs can be

delicately combined to maximize the use of the space saved

by compression for the most latency and energy reduction.

A. Compression ratio varies

Different compression techniques can be used for bit-write

reduction. We evaluate frequent pattern compression (FPC)

[6] in this work because of its high performance and low

implementation overhead. FPC is proposed for 32-bit words,

and can be extended for 64-bit words [5]. Table I lists the data

patterns that 64-bit FPC can compress. The compressed words

are stored along with their 3-bit prefixes. A 64-bit word can

be compressed to 3, 11, 19 or 35 bits. For a cacheline which

consists of eight words, each word is compressed separately

and the compressed size of each word is also different. The

total number of bits of the cacheline may range from 24 to 512.

To get the sizes of compressed cachelines, we do experiment

and Fig. 2 shows the distribution of compressed cacheline

sizes for a set of representative benchmarks. The details of

our evaluation are described in Section V-A. The sizes of

compressed cachelines vary significantly. Some of them are

smaller than a word, while some others are more than seven

words. For example, in the cactusADM benchmark, the sizes
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of about 25% compressed cachelines are smaller than a word

and about 30% are between seven words and eight words. The

compression ratio is defined as the ratio of original size and

compressed size. The compressed cacheline size varies, and

therefore the compression ratio is various. The compression

ratio may range from 1 to 64/3 (512/24).
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Fig. 2. The distribution of compressed cacheline sizes with the FPC [6]
compression algorithm.

B. Tradeoffs exist in different IDMs

Incomplete Data Mapping (IDM) [2] which maps only part

of TLC RRAM resistance states into binary values can reduce

the write latency/energy of TLC RRAM. As shown in Fig. 3,

the q states out of a p-state cell (q < p) are used to encode, and

r q-state cells are converted into binary digits. This denotes

as IDM((p, q), r). Complete Data Mapping (CDM) is the

opposite of IDM, which uses all the p states to encode. The

similar encoding method ‘expansion coding’ is also used in

CompEx [5].

Physical cell: p states

Logical cell: q states

IDM((p, q), r)   r cells   k binary digits

qr≈ 2k

Fig. 3. The coding of IDM((p, q), r). q states out of a p-state cell (q < p)
are used to encode, and r q-state cells are converted into binary digits.

IDM is different from morphable MLC [8]–[16] which

dynamically configured MLC as SLC, Tri-state Cell or MLC,

and Fig. 4 illustrates the difference between morphable MLC

and IDM((4, 2), 1). Morphable MLC should support the

programming strategies of MLC, Tri-state Cell and SLC. To

reconfigure MLC to SLC or Tri-state Cell, the set or reset pulse

generators to program the cells and the associated iteration

control logic should be modified [10], [16]. IDM uses the low

energy/latency states (‘00’ and ‘11’) to encode, and incurs no

modification of the read or write circuit.

By eliminating some latency/energy critical states, IDM

can reduce the write latency and the average write energy

significantly. However, IDM will sacrifice the capacity of

TLC RRAM because only a part of the states are used. An

example is illustrated in Fig. 5. The data to write are binary

‘000’, ‘001’, ‘010’ ... ‘111’. Eight CDM (Complete Data

Mapping) cells with resistance states S0 (stores ‘001’), S1

MLC

Tri-state

SLC

IDM

Morphable

MLC

Fig. 4. The resistance states of morphable MLC and IDM((4, 2), 1).

(stores ‘001’) ... S7 (stores ‘111’) can store all the binary

digits. If only two low latency/energy states (S0 and S7) are

used (IDM((8, 2), 1)), each 1-bit binary digit needs an indi-

vidual IDM cell to store and twenty-four cells are consumed.

IDM((8, 2), 1) consumes twice more capacity than CDM,

however the write energy and latency are decreased by 67%

and 90%, respectively.

Logical cell: 8 states
001 010 011000 100 101 110 111

S1 S2 S3S0 S4 S5 S6 S7

  Energy = 128.3pJ, Latency = 150ns, TLC cells used =  8

Logical cell: 2 states

S0S0S7 S0S7S0 S0S7S7S0S0S0 S7S0S0 S7S0S7 S7S7S0 S7S7S7

Energy = 42pJ, Latency = 15.2ns, TLC cells used = 24

001 010 011000 100 101 110 111

Fig. 5. The energy/latency/capacity comparison of CDM and
IDM((8, 2), 1).

The IDM which uses fewer states to encode can sacrifice

more capacity for more write latency and energy reduction.

Equation 1 is used to evaluate the write energy, write latency

and capacity of different IDMs. In Equation 1, Energy and

Latency are the latency and energy of the eight states arranged

from the smallest to largest. k is the number of states used

to encode, and Ek, Lk, Ck are the energy, latency and

capacity normalized to CDM TLC cells. Fig. 6 describes

the relationship between write energy, write latency, capacity

and the number of states used to encode. All the values

of energy/latency/capacity are normalized to Complete Data

Mapping (CDM) TLC RRAM. As shown in Fig. 6, the

capacity, latency and energy increase with the number of

states. The write latency and energy are the smallest when two

states are used to encode (IDM((8, 2), 1)). The write latency

(energy) of IDM((8, 2), 1) are 90% (67%) smaller than the

maximum latency (energy). However, the capacity is also the

smallest when two states are used, and is about one third of

the maximum capacity.

Ek = (

k∑

i=1

Energyi)/(k ∗ log2 k)

Lk = Latencyk

Ck = log2(k)/3

(1)
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TABLE I
THE DATA PATTERNS 64-BIT FPC CAN COMPRESS [5], [6]. THE 3-BIT PREFIX IS INDICATED IN RED COLOR.

Prefix Pattern encoded Example Compressed Encoded size

000 Zero run 0x0000000000000000 0x0 3 bits

001 8-bits sign-extended 0x000000000000007F 0x17F 11 bits

010 16-bits sign-extended 0xFFFFFFFFFFFFB6B6 0x2B6B6 19 bits

011 Half-word sign-extended 0x0000000076543210 0x376543210 35 bits

100 Half-word, padded with a zero half-word 0x7654321000000000 0x476543210 35 bits

101 Two half-words, each two bytes sign-extended 0xFFFFBEEF00003CAB 0x5BEEF3CAB 35 bits

110 Consisting of four repeated double bytes 0xCAFECAFECAFECAFE 0x6CAFE 19 bits

The number of states used to encode
2 3 4 5 6 7 8
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Fig. 6. The tradeoffs of write energy, write latency and capacity in different
IDMs.

IV. DESIGN AND IMPLEMENTATION

The compression ratios of cachelines are various. Some

cachelines have higher compression ratios, while other cache-

lines may have lower compression ratios. No matter what’s the

compression ratio of a cacheline, there is a best-performing

IDM which can fit well with the compressed data. For exam-

ple, IDM((8, 2), 1) will fit well with those cachelines whose

compressed sizes are smaller than two words. Even though

IDM((8, 2), 1) is applied, their encoded sizes will not exceed

eight words. On the other hand, IDM((8, 2), 1) can reduce the

more write latency/energy than other IDMs. IDM((8, 2), 1)
cannot be applied to these compressed cachelines between four

words and five words, because the size of data after IDM

encoding will exceed eight words. Instead, IDM((8, 6), 2)
will fit well with those compressed cachelines between four

words and five words. The best-performing IDM should be

dynamically selected according to the compression ratios of

cachelines. This motivates us to propose Compression-Ratio-

Aware Data Encoding (CRADE).

A. The design of CRADE

CRADE selectively applies the best-performing IDM to

each compressed cacheline according to the compression ratio

of the cacheline. A cacheline consists of eight words, and is

compressed word by word. Some words can be compressed,

and some cannot. If each word is encoded by IDM separately,

the write latency of the compressed word will reduce, while

the write latency of uncompressible word will not reduce.

However, the write latency of a cacheline is determined by

the worst-performance cell of the whole cacheline. Therefore,

the write latency of a cacheline is restricted by the slightly

compressed word if IDM is applied at the granularity of word.

To decrease the write latency of the cacheline, IDM should be

used at the granularity of cacheline. After the compression of

each word, the compressed sizes of the eight words are added

to calculate the compressed cacheline size. The compression

ratio can be obtained according to the compressed cacheline

size. Then, the IDM which uses the fewest states to encode

is applied to the compressed cacheline on the condition that

the encoded data size will not exceed the cacheline size.

Cachelines with different compression ratios are encoded by

different IDMs. For example, if the compression ratio of a

cacheline is greater than 3, IDM((8, 2), 1) will yield the

most energy and latency benefits of compression and incur

no memory overhead. Table II illustrates the best-performing

IDMs used according to the compression ratios. The percent-

age of cachelines different IDMs can encode and the write

energy/latency normalized to CDM are also described in Table

II. About 35% cachelines can be encoded by IDM((8, 2), 1),
and about 12% cachelines cannot be encoded by any IDM.

Four different IDMs are evaluated in this paper. The remaining

two IDMs which use five states and seven states out of TLC are

not adopted, because they have nearly the same improvements

as IDM((8, 6), 2) and CDM, and it’s difficult to convert five

states and seven states to binary digits.

Additional 8-bit compression tag is required to indicate

whether a word is compressed or not. The 8-bit compression

tag is considered when calculating the compression ratio, i.e.,

compression ratio is ‘(512+8)/(compressed cacheline size+8)’.

The 512-bit cacheline is encoded or decoded by IDM together

with the compression tag. Another TLC cell (IDM type

tag) is needed to indicate which IDM method is used. To

ensure that the IDM type tag is not the bottleneck of write

operation, the states ‘7’, ‘0’, ‘1’, ‘6’ and ‘2’ are used to

represent IDM((8, 2), 1), IDM((8, 3), 2), IDM((8, 4), 1),
IDM((8, 6), 2) and CDM respectively. Fig. 7 describes the

percentage of cachelines different IDM methods can be used.

B. Implementation

The architecture of CRADE is illustrated in Fig. 8. The

CRADE logic consists of Encoder and Decoder, and is imple-

mented inside the NVM controller. The Encoder and Decoder

are on the write path and read path respectively.
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TABLE II
FOUR DIFFERENT IDMS ARE EVALUATED.

Compression
ratio

IDM method Percentage Energy Latency

[3, 65/4] IDM((8, 2), 1) 35% 0.33 0.10

[2, 3) IDM((8, 3), 2) 20% 0.40 0.31

[3/2, 2) IDM((8, 4), 1) 20% 0.44 0.35

[6/5, 3/2) IDM((8, 6), 2) 13% 0.69 0.67

[1, 6/5) CDM 12% 1 1
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Fig. 7. The proportion of different IDMs can encode in different benchmarks.

When the TLC RRAM-based main memory receives a

write request from the processor, the Encoder works as Fig.

9 illustrates. The cacheline is first sent to the compression

logic to attempt data compression. Each word of a cache-

line is compared with the data patterns shown in Table I.

The corresponding compression tag bit is set if the word

is compressible. The eight compressed words are compacted

and stored contiguously. Then the total number of bits of the

compressed cacheline is calculated. The best-performing IDM

method is selected to ‘expand’ the compressed data according

to the compression ratio. The 8-bit compression tag and the

512-bit cacheline are encoded by IDM together. The type of

IDM used is stored in an additional cell (IDM type tag).

Uncompressible cachelines are sent to the write circuit without

compression or encoding.

When the TLC RRAM-based main memory receives a

read access from the processor, the Decoder works as Fig.

10 shows. The IDM type tag, compression tag and 512-bit

cacheline stored in the TLC RRAM array are read, and the

cacheline with 8-bit compression tag is decoded by IDM

according to the value of IDM type tag. After that, the

compression tag bit and the prefix of each word are used

to decompress the cacheline word by word. Uncompressed

cachelines are sent to the read buffer without decoding or

decompression.

C. Overhead

The circuit of Encoder and Decoder incurs additional space

and latency overhead. The Encoder or Decoder consists of

three parts, i.e., FPC, Multiplexer and IDM. The Multiplexer

Write buffer Read buffer

Encoder Decoder

CPU

L1, L2, 

L3 cache

Memory Controller

RRAM Device Array

RRAM Write 

Controller

RRAM Read 

Controller

Compression

Encoding of 

IDM

Decompression

Decoding of 

IDM

Fig. 8. The architecture of CRADE.

Word7 Word6 Word5 Word4 Word3 Word2 Word1 Word0
Compres

sion tag

IDM 

type

Compres

sion tag

Compres

sion tag

IDM 

type

XXX
IDM 

type

Expanded cacheline XXX
IDM 

type

Compressi

on tag

512-bit cacheline8-bit3-bit

The cacheline is compressed by FPC word by word

The compressed words are compacted

Calculate compression ratio, and choose an IDM

Fig. 9. The Encoder compresses the cacheline and encodes the compressed
data using IDM.

Expanded cacheline XXX
IDM 

type

Compressi

on tag

512-bit cacheline with 8-bit Compression tag3-bit

Compres

sion tag
XXX

IDM 

type

Decoding of IDM

Compres

sion tag

IDM 

type
Word7 Word6 Word5 Word4 Word3 Word2 Word1 Word0

Compression tag and prefixes are used to decompress 

Fig. 10. The Decoder decodes the ‘expanded cacheline’ and decompresses
the compressed cacheline.

calculates the total number of bits of a compressed cache-

line and selects the correct IDM. We use Synopsys Design

Compiler to evaluate the overhead of the Multiplexer in

130nm technology. The Multiplexer incurs 891 gates, 1.75ns
encoding latency. The circuit overhead of Multiplexer will be

smaller when the technology node is scaled down to 22nm.

We estimate the overhead of FPC and IDM based on the

prior works [2], [5], [6]. FPC [6] is a simple and widely

used compression scheme that has a low compression and

decompression overhead. The latencies of compression and

decompression are estimated to be 2ns and 1ns [5], [6]. The

encoding and decoding of IDM need another 1ns [2]. The

latency of Encoder (Decoder) is estimated to be 5ns (2ns).

The Encoder or Decoder will not affect the uncompressible

cachelines, because uncompressible cachelines will not pass

through the Encoder or Decoder. The compressible cachelines
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will pass through the Encoder and Decoder. However, the

write latency will reduce due to the encoding of IDM. The

estimated logic overhead of FPC and IDM((8, 4), 1) is about

10k gates, which is less than 0.1% of the TLC RRAM-based

main memory [5]. Our method has three other IDM choices,

and the logic overhead will not exceed 0.4% of the NVM

module.

Besides, our scheme incurs small capacity overhead. Each

word needs a compression tag bit to indicate whether it’s

compressed or not, and an additional IDM type cell is used

to indicate the IDM type of a cacheline. The overall capacity

overhead is 11 bits, and is about 2.1% of a cacheline.

V. EXPERIMENT

A. Experiment setup

We evaluate our scheme using a cycle-accurate system

simulator Gem5 [17]. The main memory model is based on

NVMain [18]. NVMain is a cycle-level main memory simula-

tor designed to simulate emerging NVMs at the architectural

level and the RRAM controller is modified to support the

Encoder and Decoder. The configuration of the target system

is given in Table III. The system is based on a four-core

processor. The L1 instruction/data cache and L2 cache are

private 32KB, 2 way set-associative and private 1MB, 8 way

set-associative respectively. The size of cacheline in L1 and L2

cache is 64 Bytes. The L3 cache is 16 way set-associative and

shared by four cores. The size of L3 cache is 16MB. Twelve

benchmarks selected from SPEC CPU 2006 [19] are used in

our experiment. For each benchmark, one billion instructions

are simulated. We evaluate three different schemes in four-core

systems respectively:

• FPC + IDM((8, 4), 1) [5]: IDM((8, 4), 1) is applied

to the compressed data only if the compression ratio is

greater than 3/2.

• FPC + IDM((8, 6), 2): IDM((8, 6), 2) is applied to the

compressed data only if the compression ratio is greater

than 6/5.

• CRADE: The best-performing IDM is selected according

to the compression ratio of the cacheline.

B. Experimental results

The IPC performance, write latency, write energy and read

latency are evaluated in this part. All the values are normalized

to the CompEx (FPC + IDM((8, 4), 1)) [5].
1) IPC performance: Fig. 11 shows the normalized IPC

for each benchmark. The average IPC improvements of FPC

+ IDM((8, 6), 2) and CRADE are -2% and 2%. Compar-

ing FPC + IDM((8, 4), 1) with FPC + IDM((8, 6), 2),
we can find that a certain IDM may fit well with some

benchmarks, but performs badly in other benchmarks. FPC

+ IDM((8, 6), 2) outperforms FPC + IDM((8, 4), 1) in

sjeng, wrf, leslie3d and sphinx3, but FPC + IDM((8, 6), 2)
falls below FPC + IDM((8, 4), 1) in other benchmarks. In

leslie3d, the compression ratios of most cachelines (22%)

are between 6/5 and 3/2. IDM((8, 4), 1) cannot apply to

these cachelines, while IDM((8, 6), 2) can fit well with these

TABLE III
SYSTEM CONFIGURATIONS

Cores 4-Core, 3.2GHz, out-of-order

L1 I/D cache

private, 32KB SRAM per core

LRU, 64B cacheline, 2-way

write back, 2-cycle access latency

L2 Cache

private, 1MB SRAM per core

LRU, 64B cacheline, 8-way

write back, 20-cycle access latency

L3 Cache

16MB SRAM/4-core

shared, 64B cacheline, 16-way

write back, 50-cycle access latency

Memory Controller FRFCFS

Memory Organization
4GB TLC RRAM

Read 25ns, 4 channels, 4 banks

cachelines. Therefore, FPC + IDM((8, 6), 2) outperforms

FPC + IDM((8, 4), 1) in leslie3d. CRADE outperforms FPC

+ IDM((8, 4), 1) and FPC + IDM((8, 6), 2) in almost all the

benchmarks, because cachelines with different compression

ratios can benefit most from the space saved by compression.

In bwaves, the IPC improvement is the most significant (9.5%),

because the compression ratios of 60% cachelines are greater

than 3 and the IPC benefits more from IDM((8, 2), 1) than

IDM((8, 4), 1). The IPC has almost no improvement in

xalancbmk because the compression ratios of most cachelines

(44%) are between 3/2 and 2, and IDM((8, 4), 1) can fit well

with these cachelines.

bwaves

cactusADM milc astar
sjeng wrf

bzip2 gcc

omnetpp

xalancbmk
leslie

3d
sphinx3

N
or

m
al

iz
ed

 I
PC

0

0.2

0.4

0.6

0.8

1

1.2

FPC+IDM((8,4),1)
FPC+IDM((8,6),2)
CRADE

Fig. 11. IPC of different benchmarks (normalized to FPC + IDM((8, 4), 1)).

2) Write latency: The latency of each write access is

determined by the slowest cell of a cacheline. IDM can

reduce the maximum write latency of the RRAM cells, and

therefore the write latency of a cacheline will decrease. Fig.

12 illustrates the write latency of the three different schemes.

The average write latency reduction of FPC + IDM((8, 6), 2)
and CRADE is -28% and 19%. FPC + IDM((8, 6), 2) outper-

forms FPC + IDM((8, 4), 1) in leslie3d, but falls below FPC

+ IDM((8, 4), 1) in other benchmarks. CRADE outperforms

both FPC + IDM((8, 6), 2) and FPC + IDM((8, 4), 1) in all

the benchmarks, because cachelines with different compres-

sion ratios can make full use of the saved space to decrease
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the write latency. CRADE reduces the write latency by about

50% (the maximum reduction) in bwaves, gcc and omnetpp.
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Fig. 12. The write latency of different benchmarks (normalized to FPC +
IDM((8, 4), 1))

3) Write energy: Fig. 13 describes the write energy of the

three different schemes. The average write energy reduction of

FPC + IDM((8, 6), 2) and CRADE is -22% and 15%. FPC

+ IDM((8, 6), 2) can reduce more write energy than FPC +

IDM((8, 4), 1) in milc, wrf and leslie3d. The reduction of

write energy is similar to write latency. Compared with FPC

+ IDM((8, 4), 1), CRADE can decrease more write energy

in all the benchmarks.
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Fig. 13. The write energy consumption of different benchmarks (normalized
to FPC + IDM((8, 4), 1))

4) Read latency: Read operations are on the critical path

of the whole system performance, and short read latency will

boost the IPC performance. Our scheme can decrease the write

latency, and read requests will benefit from the reduction of

waiting time. Therefore, the read latency can be reduced. Fig.

14 illustrates the read latency of the three different schemes.

The average read latency reduction of FPC + IDM((8, 6), 2)
and CRADE is -6% and 4%. CRADE outperforms both

FPC + IDM((8, 6), 2) and FPC + IDM((8, 4), 1) in all the

benchmarks. In CRADE, the reduction of read latency is the

most (about 10%) in bwaves and omnetpp.

VI. RELATED WORK

There have been many studies on improving the perfor-

mance of MLC/TLC NVMs, and the related work can be

divided into three categories.
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Fig. 14. The read latency of different benchmarks (normalized to FPC +
IDM((8, 4), 1))

A. State remapping

State remapping was proposed based on the observation

that the write energy and latency of MLC/TLC NVMs are

significantly dependent on the value written into the cell. For

example, writing ‘10’ consumes twenty-five times more energy

than ‘11’ in MLC PCM [20]. The most frequently appearing

data patterns should correspond to the most energy-efficient

resistance states. Static and dynamic mapping methods have

been proposed. Some researchers [20]–[22] proposed to map

the frequent data patterns to the energy-efficient resistance

states at runtime. Some other researchers [23], [24] proposed

static remapping techniques with low implementation over-

head.

B. Morphable MLC

There are compromises between capacity and en-

ergy/latency on designing NVM cells. MLC and TLC offer

high capacity, but they suffer from high write energy/latency.

MLC can be configured as SLC or Tri-state Cell to guarantee

the reliability and the fast access speed when large capacity

is not necessary. Dong et al. [16] proposed a circuit-level

adaptive MLC/SLC PCM array. Qureshi et al. [11] configured

MLC as MLC or SLC to meet the memory requirements

of high capacity or low latency. Arjomand et al. [10] coded

redundant zero MLC cells into limited bits that were storable

in the SLC form. Jiang et al. [13] proposed storing highly

compressible cachelines in the SLC form. Nak Hee Seong et

al. [12] proposed Tri-state-cell PCM to improve the reliability

of PCM. Jiang et al. [14] adopted data compression and

proposed fraction encoding to store compressed data using 2, 3

or 4 states MLC. Lee et al. [15] proposed a compression-based

hybrid MLC/SLC PCM management technique to obtain the

performance of SLC with capacity of MLC simultaneously.

Zhang et al. [8] utilized only three states of MLC, and involved

only fast state transitions by proactive set. Mengying Zhao et

al. [9] proposed SLC-enabled wear leveling scheme through

dynamic and adaptive mode transformation from MLC to SLC.

Additional circuit and architectural changes are needed to

dynamically configure MLC as SLC or Tri-state Cell [5], [10],

[16], and the design of NVM cells will become more complex.
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C. Incomplete data mapping

Incomplete data mapping (IDM) [2], [5] can reduce the

write energy/latency of MLC/TLC NVMs without incurring

any modification of TLC RRAM circuit. Liu et al. [2] proposed

incomplete data mapping (IDM) which maps only part of

TLC RRAM resistance states into binary values. For a TLC

RRAM cell, the 2 most critical states (state ‘3’ and ‘4’)

are eliminated in IDM((8, 6), 2), and two six-state cells can

represent 5 (log2(6 × 6) ≈ 5) digit bits. Two TLCs could

have represented 6 digit bits, and therefore IDM((8, 6), 2)
incurs 20% extra space overhead. CompEx [5] is the first

work to integrate data compression with ‘expansion coding’

(the same as IDM) to reduce write energy and latency of TLC

RRAM. CompEx is made up of two parts, i.e., compression

and expansion coding. Only one type of expansion coding

(IDM((8, 4), 1)) is used in CompEx. To ensure the data after

expansion coding will not exceed the cacheline size (512

bits), IDM((8, 4), 1) is applied only if the size of compressed

cacheline is smaller than 341 (2×512/3) bits. CompEx cannot

fully exploit the space saved by compression for latency and

energy reduction, because the compression ratios and the saved

space are various. To maximum the use of the space saved by

compression for energy and latency reduction, CRADE selects

the best-performing IDM according to the compression ratio

of the cacheline, and CRADE shows better performance than

CompEx. Besides, we use FPC in cacheline-level write other

than word-level write in CompEx. However, CRADE incurs

2.1% more capacity overhead than CompEx.

VII. CONCLUSION

In this paper, we propose Compression-Ratio-Aware Data

Encoding (CRADE) to reduce the write latency/energy and im-

prove the IPC performance of TLC RRAM-based main mem-

ory system. CRADE dynamically chooses the best-performing

IDM method according to the compression ratio of the cache-

line, and can fully exploit the space saved by compression for

latency and energy reduction. CRADE is agnostic to the choice

of compression technique, and FPC is applied to compress the

cacheline data in our work. Experimental results show that

CRADE can reduce the write energy by 15%, decrease the

write latency by 19%, reduce the read latency by 4%, and

improve the IPC performance by 2% with only 2.1% capacity

overhead.
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