
RMMIO: Enabling Reliable Memory-Mapped I/O
for Persistent Memory Systems

Bo Ding, Wei Tong, Yu Hua, Zhangyu Chen, Xueliang Wei, Dan Feng
Wuhan National Laboratory for Optoelectronics,

Huazhong University of Science and Technology, Wuhan, China
Email:{boding, tongwei, csyhua, chenzy, xueliang wei, dfeng}@hust.edu.cn

Corresponding author: Wei Tong

Abstract—The byte-addressable persistent memory (PM) is
coming to be the next-generation storage device for better I/O
performance. As the traditional I/O path is too lengthy to drive
PM featuring low latency and high bandwidth, prior works have
proposed memory-mapped I/O (MMIO) to shorten the I/O path
to PM. However, native MMIO directly maps files into the user
address space, which puts files at risk of user-space scribbles
and non-atomic I/O interfaces, termed reliability issues. Since
existing reliability schemes cause significant extra overheads, we
propose RMMIO, an efficient user-space library that provides
reliable memory-mapped I/O interfaces for PM systems. RMMIO
achieves a good balance between efficiency and reliability by
introducing a memory-mapped cache layer upon kernel file
systems. The cache layer accelerates I/O requests and carries the
file system’s responsibility for data reliability by data isolation.
In addition, RMMIO further employs lightweight snapshots and
efficient atomic I/O interfaces to guarantee the integrity and
consistency of the data in the cache layer at low costs. The
experimental results show that RMMIO achieves 8.49x higher
throughput than ext4-DAX and 2.31x higher throughput than
state-of-the-art MMIO-based schemes for PM while ensuring
data reliability.

I. INTRODUCTION

Non-volatile memory (NVM) technologies, such as Phase
Change Memory, and Resistive RAM, achieve the advantages
of both DRAM (e.g., low latency, high bandwidth, and byte
addressability) and disk (e.g., persistency). Persistent memory
(PM) powered by NVMs enables the durability of data in
memory space. These remarkable PM features significantly
reduce the hardware I/O overhead, but stick out the software
overhead in traditional file systems. To simplify the software
I/O stack, recent PM-aware file systems, e.g., PMFS [4],
NOVA [10], and ext4-DAX [8], leverages the DAX technology
to bypass page cache. As a result, PM-aware file systems
can directly access the data in PM. However, DAX-enabled
file systems still suffer from the complex indexing structure
and redundant VFS I/O path. To further simplify the I/O path
to PM, SplitFS [5] and Libnvmmio [3] propose user-space
I/O operations that map PM files into user address space
and access data via load/store instructions, termed DAX-style
memory-mapped I/O (MMIO).
MMIO speeds up I/O operations but keeps the mapped

data out of kernel’s protections. Specifically, the file mapped
into user address space could be easily overwritten with
arbitrary data, called scribbles, due to bug-prone software and
unexpected hardware errors. In PM systems, scribbles could
be more dangerous than those in DRAM systems because of
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recently discovered bugs in PM programming. In addition, PM
only guarantees the atomicity for 8-byte write: any write over
8 bytes could be incomplete upon a system crash. Thus even
regular I/O requests can result in data inconsistency due to
the lack of atomic I/O interfaces. Moreover, data corruptions
caused by scribbles and non-atomic I/Os can permanently
corrupt data in PM and exist even after the system restarts,
which dramatically threatens the reliability of data in PM.
To the best of our knowledge, existing works [2]–[7], [11]

do not fully guarantee the reliability of the mapped data or do
not achieve a good balance between performance and relia-
bility. To address these issues, we propose Reliable Memory-
Mapped IO (RMMIO), a user-space library that efficiently
guarantees both data consistency and data integrity for the
memory-mapped data.
To minimize the extra overheads caused by reliability guar-

antees, RMMIO inherits the matured protection mechanisms
of kernel file systems [2], [7], [11] by keeping all files in kernel
space, without mapping them into user address space. Instead,
we use a large contiguous persistent memory region as a cache
layer, called Persistent Page Cache (PPcache), to accelerate
I/O operations. The cache directly resides in user space, so
access to PPcache is as fast as MMIO to the mapped file.
Since PPcache is persistent, I/O requests arriving at PPcache
are treated as completed and persisted immediately, shortening
the I/O path of RMMIO.
Owing to the reliable underlying file system, RMMIO only

needs to take charge of the reliability of the data cached in
PPcache. To guarantee the consistency of PPcache, RMMIO
provides atomic I/O interfaces by employing WAL (Write-
Ahead Log). Specifically, RMMIO builds a two-level structure
for reusing old data as undo log, which significantly decreases
the write amplification in existing WAL. Moreover, to prevent
unrecoverable corruptions caused by scribbles, RMMIO also
supports taking a snapshot for the data buffered in PPcache.
The snapshot provides a consistent backup of PPcache. Once
the scribble happens, RMMIO can recover the target file from
the unaffected snapshots. To simplify the software overhead
of snapshots, RMMIO implements incremental snapshots that
only record updates to a file, which is much more efficient than
full-copy snapshots by avoiding unnecessary data movements.
The experimental results show that RMMIO gains up to

8.49x higher throughput than ext4-DAX [8] and achieves
2.31x higher throughput that the state-of-the-art MMIO-based
schemes [3] in write-intensive workloads, while guaranteeing
data reliability. In the evaluation of real-world applications,
RMMIO also outperforms all existing PM-aware file systems.
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Fig. 1. Overview of RMMIO.

II. RMMIO

The design goal of RMMIO is to provide efficient reliability
guarantees (i.e., data consistency and data integrity) for MMIO
in PM. Thus RMMIO offloads the protections for PM files
to the underlying file system to reduce software overheads
for reliability. However, the kernel-protected files cannot be
mapped into user space, which results in compromised I/O
performance. Therefore, RMMIO employs a memory-mapped
cache region in PM to accelerate the updates to a PM file. As
a result, RMMIO only needs to take charge of the cached data.
The cache is organized as a unique data structure, called FILE,
for every opened file, as shown in Figure 1. FILE maintains a
persistent page cache (PPcache) and a snapshot list for every
file: PPcache buffers the most recent updates to the related
file; snapshot list records the historical updates to the file,
which provide necessary data redundancy to recover RMMIO
from possible data corruptions.
For fast indexing, PPcache and snapshot list are indexed by

mapping tables located in DRAM, which is designed for con-
tinuous indexing in PM. In addition, since memory resources
are valuable, we never preallocate physical persistent memory
pages for the PPcache. All memory resources are dynamically
allocated/recycled by the persistent page allocator.
RMMIO currently provides six main interfaces for MMIO,

i.e., read(), write(), snapshot(), open(), close(), fsync()., whose
usages are aligned with POSIX APIs except for snapshot(). We
will present more details about snapshot() in Section II-C.

A. Guarantee Data Consistency with Two-Level Page Cache
To guarantee data consistency in the PPcache, RMMIO

has to provide atomic I/O interfaces to avoid breaking the
consistent state of PPcache. Since modern processors support
only 8-byte atomic writes for memory [10], RMMIO has to
make efforts on providing atomicity for writes with arbitrary
lengths. However, existing schemes, like WAL [3], [5] and log-
structuring [10], induce extra writes and additional software
overheads for garbage collection, respectively.
Since persistent memory system is sensitive to the efficiency

of software, RMMIO needs to get rid of extra writes and
additional software overheads. To achieve this goal, RMMIO
implements a novel WAL mechanism that does not require
additional writing by reusing old data as undo log. As shown in
Figure 2, RMMIO builds a two-level PPcache to maintain two
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Fig. 2. The Organization Structure of PPcache and Snapshots.

versions of data for each page, i.e., the old data and the new
data. When a writer thread writes data to PPcache, the coming
data overwrites the old data but remains the new data as the
undo log. Once the ongoing write operation is interrupted
by a system crash, RMMIO abandons the incompleted write
and recovers from the undo log. To implement this strategy,
RMMIO sets up a switch for every page to mark the new data.
Each time a write operation is completed, the switch will be
toggled to indicate where the new data is.
To guarantee strict data consistency, every write has to be

committed atomically. However, it is hard for RMMIO to
mark variable-length data across several pages as committed
simultaneously due to the limitation of 8-byte atomic write.
RMMIO addresses this problem by a timestamp-based commit
mechanism, inspired by Libnvmmio [3]. The timestamp-based
commit mechanism includes two main components, i.e., a
logical timestamp called TID (Transaction ID) and a global
timestamp called CID (Committed ID). Since RMMIO divides
each write into several page writes, pages within a write
transaction will be marked with the same TID to indicate
when they are written. To figure out which page has been
committed, RMMIO uses CID to record the timestamp of the
latest transaction. All pages with a TID smaller than or equal
to the CID will be identified as committed. Therefore, we
can simultaneously mark any number of pages as committed
by increasing the CID. Since CID is an 8-byte file-specific
variable, every writer thread can update it atomically. With the
timestamp-based commit mechanism, RMMIO tolerates data
inconsistency after a system crash happens. Because CID is
designed for orderly growth, a page with a TID larger than CID
must be uncommitted. The inconsistent pages can be easily
identified by comparing their TID with the CID.

B. Enable High Scalability for RMMIO
Since PM is byte-addressable, it is easy for DAX-style

MMIO to achieve high scalability. However, challenges come
with opportunities. The native MMIO cannot safely handle
multi-thread workloads due to the lack of threads isolation.
To guarantee thread safety, RMMIO employs a reader or

writer lock for thread isolation. However, we note that the
file-grained lock used in VFS blocks concurrent operations
on a shared file [9], which is a waste of the byte-addressable
PM. Thus RMMIO needs a fine-grained lock to achieve high
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scalability. To determine the most appropriate granularity of a
lock, we evaluate the native MMIO with different I/O patterns
in PM. The experimental results show that the maximum
bandwidth appears when the I/O is 4KB-aligned. According
to the evaluation, the granularity of a lock should be 4KB or
a multiple of 4KB to take full advantage of PM. However,
automatically determining the specific granularity of lock for
different workloads is out of the scope of this paper. Therefore,
we configure the default granularity of a lock as 4KB to fully
expose the raw performance of PM.

RMMIO also ensures thread safety with atomic primitives.
As locking needs to fall into the kernel, locking for every
atomic operation will cause a significant performance decline.
Thus, RMMIO employs atomic primitives provided by glibc to
deliver TID and update CID for working threads. Since these
atomic primitives guarantee the thread safety of the operand,
every writer thread will get the unique TID by using FAA
(i.e., atomic fetch add explicit). Moreover, we use CAS (i.e.,
sync bool compare and swap) to ensure that the CID is

updated in the order of the TID of different threads. The atomic
CAS makes sure that write transactions from different threads
will be committed one by one.

C. Lightweight Incremental Snapshot

Scribble is another essential issue of RMMIO because
scribbles can break the data integrity of PPcache. However,
scribbles are inevitable and unpredictable. The only thing
that we can do against scribbles is to detect and recover the
corrupted data once a scribble happens. RMMIO detects pos-
sible data corruptions by examining the CRC32C checksum
for every page. The page-grained checksum minimizes the
software overhead upon checking the integrity of data. The
corrupted data can be recovered from snapshots in RMMIO,
which provides a consistent backup for the corrupted data.

RMMIO implements an incremental snapshot that only
holds the updates to a file, which is more efficient than the full-
copy snapshot in Nova-fortis [11]. The incremental snapshot
is built on the basis of PPcache. Once a user takes a snapshot,
RMMIO directly converts the current PPcache into a snapshot
and adds the snapshot to the end of the snapshot list, as
shown in Figure 2. In addition, RMMIO further builds an
empty mapping table to be the new PPcache. As a result,
snapshot() in RMMIO only needs to initialize a new mapping
table without any data copying.
We also note that taking snapshots in RMMIO may cause

the performance decline of reads. Because snapshots may still
buffer the latest data of the target file, which increases the
difficulty of read to query the latest data. As Page0 shown in
Figure 2, reads must traverse all snapshots to find the latest
data. Such an inefficient traversal operation extends the I/O
path of RMMIO read, which goes against RMMIO’s design
philosophy. To avoid traversing these snapshots, RMMIO
builds a latest table to store the pointer to the latest data for
each page. As taking a snapshot in RMMIO does not move
any data, the pointer to the latest data will always be constant.
So we can always get the latest data by accessing the latest
table with the time complexity as O(1). The latest table will be
updated along with updates to PPcache and reset after fsync().

The snapshots help RMMIO to recover from possible data
corruptions. Different from backup schemes, snapshots in
RMMIO leverage the historical updates to a file as data
redundancy. Once the latest data is corrupted, RMMIO rolls
back to a historical version by abandoning all affected data.
The affected data includes the pages residing in the same
PPcache/snapshot as the corrupted one. As shown in Figure 2,
once scribbles happen on data11, RMMIO rolls backs back to
CID:8. In this case, data7 can be the successor of data11 for
Page1. For pages that have never been updated, RMMIO does
not need to worry about them since they are well protected
by kernel file systems. Note that the protected file also works
as an RMMIO snapshot. In the worst scenario, RMMIO can
abandon all updates yet still preserves a file’s consistency and
integrity, preventing additional disastrous effects.

III. EVALUATION

We implement and evaluate the proposed designs on a server
equipped with a 2-socket Intel Xeon 6230R, 12 * 16GB DDR4
and 12 * 128GB Optane DC Persistent Memory configured as
App Direct Mode with interleaving. We note that all evaluated
works are not NUMA-optimized. So we employ numactl to
bind all working threads and memory regions to the same
NUMA node. Finally, our evaluation is performed on Linux
kernel 4.13 with FIO [1] as microbenchmark.
Bandwidth.We evaluate RMMIO’s write performance with

variable I/O sizes, as shown in Figure 3(a). Whatever the I/O
size is, RMMIO always shows higher write throughput than
any related work. Specifically, for 512KB sequential writes,
RMMIO achieves a maximum bandwidth of 3,818MB/s,
which is over 44% higher than that of ext4-DAX. Compared
with SplitFS (strict mode), RMMIO obtains performance gains
up to 2.19x owing to the lightweight log strategy. With the
increase of I/O size, the performance improvement ratio of
RMMIO also exceeds the state-of-the-art works. Because the
mapping table in RMMIO is more efficient than the tree-like
index structures, e.g., extent tree in ext4-DAX, radix tree in
Libnvmmio, for contiguous indexing multiple pages.
Latency. As the Cumulative Distribution Function (CDF) of

4KB write shown in Figure 3(b), the write latency of RMMIO
is lower than all related works. Especially, the P99 latency of
RMMIO writes is only 1704ns, which is even lower than the
minimum latency of NOVA (3,728ns), PMFS (2,544ns) and
Libnvmmio (2,864ns). Because RMMIO permanently buffers
the data in the PPcache to avoid kernel overheads. In addition,
the logging strategy of RMMIO does not introduce any extra
write to PM, which further reduces the latency of atomic I/O.
Reliability overheads. In Figure 3(e), we measure and

quantify five major software overheads of RMMIO. The two
main components, i.e., data copy and checksum calculation,
take up more than 80% of the execution time in RMMIO write.
Although RMMIO spends over 20% of time on checksum
calculation, the execution time of data copy is still up to 64%
in write, which is much more efficient than ext4-DAX.
Scalability. The native MMIO is efficient for concurrent

executions owing to byte-addressable PM. To examine the
scalability of RMMIO, we further evaluate RMMIO and its
competitors with concurrent 4KB-sequential writes and 4KB-
read-write mixed I/O to a shared file. Since SplitFS does
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Fig. 3. Performance Overview of RMMIO.

not support concurrent execution in strict mode, we only
present the single-thread performance of SplitFS. According to
Figure 3(c), the maximum bandwidth of RMMIO concurrent
writes exceeds that of NOVA, PMFS, Libnvmmio, and ext4-
DAX by 14.07x, 7.50x, 1.96x, and 8.49x, respectively. The
huge performance gain is because RMMIO employs the page-
grained lock for concurrency control instead of the VFS’s file-
grained lock. The advantage of page-grained lock is evident
in the concurrent writes to a shared file since multi-thread
writes could be fully paralleled. We also note that the write
performance decreases when the thread number exceeds 8. The
analysis of perf indicates the high lock contention to the same
page, which only happens in thread-intensive workloads. In
read-write mixed I/O, the performance advantage of RMMIO
is more pronounced than that in the write-only workloads,
considering that reader threads can share a page at the same
time. According to Figure 3(d), RMMIO gains up to 15.94x
higher throughput than NOVA and 5.97x higher throughput
than ext4-DAX. In addition, due to the higher single-thread
performance, RMMIO also outperforms Libnvmmio by 1.47x,
which also employs a page-grained lock. Given the 4KB-
aligned I/O is nearly twice as fast as the 4KB-unaligned I/O

(Section II-B), RMMIO outperforms Libnvmmio by building
a 4KB-aligned data region (i.e., PPcache).
Real-world Application: RocksDB. We adapt RMMIO

to RocksDB and evaluate RMMIO with two benchmarks in
db bench, i.e., fillrandom and readwhilewriting. Both two
benchmarks contain 10,000,000 entries with 16B key and
1024B value. As shown in Figure 3(f), the throughput of
RMMIO outperforms ext4-DAX by 1.72x with fillrandom.
Because RMMIO accelerates the compaction in RocksDB,
which blocks the foreground insert operation. According to
the statistics of db bench, RMMIO only triggers two times of
level0 slowdown with compaction while ext4-DAX triggers
up to nine times. Figure 3(f) indicates that RMMIO gains
up to 2.46x throughput of NOVA, 1.2x higher throughput
than PMFS, and 1.49x higher throughput than ext4-DAX,
with readwhilewriting. The advantage of RMMIO becomes
greater with readwhilewriting. Such a great advantage does
not come from the fine-grained reader/writer lock of RMMIO
since we only use single-thread compaction in this evaluation.
As readwhilewriting is a mixed read-write benchmark, the
outstanding performance of RMMIO read contributes to the
high throughput of readwhilewriting. Since RMMIO reads are
routed to the PPcache instead of the underlying file system,
RocksDB reads are accelerated by MMIO.

IV. CONCLUSION

We have applied RMMIO to PM-aware file systems to
address the reliability issues induced by MMIO in PM, i.e., the
lack of consistency and integrity guarantees for the mapped
data. The key contribution of RMMIO is that we achieve a
good balance between the efficiency and reliability of MMIO
by introducing PPcache. The experimental results indicate that
RMMIO can accelerate existing IO-intensive workloads by
employing MMIO while considering the reliability of data.
Moreover, RMMIO also shows better scalability and reliability
than prior MMIO-based works.
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