
1

A Cost-Efficient Failure-Tolerant Scheme for
Distributed DNN Training

Menglei Chen, Yu Hua, Rong Bai, Jianming Huang
Huazhong University of Science and Technology, China

2

Deep Neural Network (DNN)

Deep Neural Network

Image
Processing

Customized
Recommendation

Chat
Generation

Weather
Forecast

Support Support

Power Power

3

DNN Training

Images

Texts

Forward Propagation

Backward Propagation

Output

Loss

Calculate

Gradient
W4W3W2W1

DNN

G4G3G2G1

Update parameters

4

Distributed DNN Training
Node 1

Images

Texts

Forward Propagation

Backward Propagation

Output

Loss

Calc.
Grad.

W4W3W2W1

Node 2

Images

Texts

Forward Propagation

Backward Propagation

Output

Loss

Calc.
Grad.

W4W3W2W1

Node 3

Images

Texts

Forward Propagation

Backward Propagation

Output

Loss

Calc.
Grad.

W4W3W2W1

Node 4

Images

Texts

Forward Propagation

Backward Propagation

Output

Loss

Calc.
Grad.

W4W3W2W1

TCP/RDMA

Input

Input

Input

Input

Grad.Grad.

Grad. Grad.

Ring AllReduce

Distribute

Parameters

Parameters Parameters

Parameters

Update Parameters

5

The importance of Failure Tolerance

 Checkpointing is an efficient way to ensure failure tolerance

 DNN training is time-consuming and expensive

Training
Progress

Begin

e.g., infrastructure failure or
software bug

Failure Occurs!Recovery Time

Training
Progress

Begin Failure Occurs!

Recovery Time
Checkpoint

Training GPT-3

Thousands of A100 GPUs

Several months

5+ Million dollars

6

Checkpointing in Distributed DNN Training

TCP/RDMA

Node 1

Images

Texts

Output

Loss

Calc.
Grad.

W4W3W2W1

Checkpoint StoreResume

Node 2

Images

Texts

Output

Loss

Calc.
Grad.

W4W3W2W1

Checkpoint StoreResume

Node 3

Images

Texts

Output

Loss

Calc.
Grad.

W4W3W2W1

Checkpoint StoreResume

Node 4

Images

Texts

Output

Loss

Calc.
Grad.

W4W3W2W1

Checkpoint StoreResume

 Frequent job switches in the preemptive GPU cluster scheduling

• The interval between two switches may be only a few seconds

7

The Need of Frequent Checkpointing

 Failures are common in large-scale GPU clusters

• The mean time between failures is low to a few minutes

Frequent Checkpointing

High Runtime Overhead

8

Existing Checkpointing Schemes are Inefficient

 Synchronous checkpointing[1]

• Introduce severe training stall

• Suffer from high runtime overhead

 Asynchronous checkpointing[2-4]

• Two-phase checkpointing

• Pipeline the checkpointing with computation

1 PyTorch@NIPS’19 2 SCAR@ICML’19 3 DeepFreeze@CCGRID’20 4 CheckFreq@FAST’21

• Sub-optimal due to monolithic checkpointing process

• Fail to fully pipeline checkpointing with communication

9

Persistent Memory (PM)

Byte-addressable Fine-grained Persistence Near-DRAM performance

 Intel Optane PM

 Samsung Memory-Semantic CXL (Compute Express Link) SSD

OR

10

Our Design

 Asynchronous layer-wise checkpointing

• Fine-grained pipelining

• Communication-aware

 Efficient persistent memory management

• Direct access

• Metadata-aware

Minimizing training stalls

Fully exploiting persistent memory

LightCheck: A cost-efficient checkpointing scheme for distribued DNN training

11

Checkpointing Strategies
GPU Memory

Model State

DRAM Snapshot

G
P

U
H

o
st

DRAM

GPU Snapshot

PM

Checkpoint

Ligh
tC

h
e

ck-G

LightCheck-C

Ligh
tC

h
e

ck-C

LightCheck-G

W4W3W2W1

W4W3W2W1W4W3W2W1

W4W3W2W1

12

Asynchronous Layer-wise Checkpointing

U

Execution flow of CheckFreq[1]

Execution flow of LightCheck

B3

Training Stream

Checkpointing
Stream

B Backward Propagation

F Forward Propagation

C Communication

U Update Parameters

CHK Checkpointing

B2 B1

C3 C2 C1 U

F1 F2 F3 B3 B2 B1

C3 C2 C1

CHK

Stall

Training Stream

CHK3 CHK2 CHK1
Checkpointing

Stream

No Stall

U3 U2C3 C2 C1 U1 U3 U2C3 C2 C1 U1

B3 B2 B1 F1 F2 F3 B3 B2 B1

[1] J. Mohan, A. Phanishayee, and V. Chidambaram, “Checkfreq: Frequent, fine-grained dnn checkpointing,” in FAST, 2021

13

Efficient persistent memory management

GPU
SM ...SM SM

L2 Cache

GPU Memory

SnapshotModel

CPU
Core ...Core Core

LLC

DDR-T
PM DRAM

DDR-T

Checkpoint Snapshot

Unified virtual addressing (UVA)
P

C
Ie

Data Mapping Region
Continuousl
y

Continuous Tensor Region

Small metadata Large tensor data
128-byte aligned

14

Evaluation

 Platform

• Three nodes connected via 100 Gbps Mellanox InfiniBand switch

 DNN Models

• ResNet-18, VGG-16, Inception-V3, AlexNet, GPT-2, BERT

 Comparisons

• CheckFreq, Pytorch

Machine CPU GPU Memory Storage Network

3 nodes
Intel Xeon Gold
6230R, 26 cores

1 Tesla V100,
16GB

192GB DRAM, 6 X 128GB
Intel Optane PM Modules

3.6TB
HDD

100Gbps Mellanox
InfiniBand Switch

Sever Configuration

Models
Number of IterationsCheckpoint

Size (MB) LightCheck-G LightCheck-C LightCheck-D LightCheck-disk CheckFreq torch.save

ResNet-18

VGG-16

Inception-V3

AlexNet

GPT-2

BERT

90

1,056

183

467

1,508

4,004

1

6

14

8

6

10

1

6

14

8

6

10

1

6

14

8

6

10

7

64

30

95

46

82

20

146

40

164

100

200

102

904

118

1,084

682

1,100

15

Checkpointing Frequency

 Limit runtime overhead within 5%

Up to 10XUp to 2X
LightCheck can achieve frequent checkpointing

with modest runtime overhead
Asynchronous layer-wise checkpointing

reduces the runtime overhead

16

Overall Performance

 With the aboved checkpointing frequency

Incuring high runtime
overhead when performing

frequent checkpointing

with the same checkpointing frequency as LightCheck

< 5% Runtime Overhead

< 7s Recovery Time

LightCheck provides lower
recovery time and overhead

than existing schemes

17

GPU Utilization

Record the GPU utilization every 50 ms, VGG-16

LightCheck eliminates
training stall by leveraging

find-grained pipelining

18

Conclusion

 LightCheck: A cost-efficient checkpointing scheme for DNN training

• Asynchronous layer-wise checkpointing

• Efficient persistent memory management

 More evaluation results and analysis are in the paper

 Available at: https://github.com/LighT-chenml/LightCheck.git

Thank you! Q&A

https://github.com/LighT-chenml/LightCheck.git

