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DNN Training
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Distributed DNN Training
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The importance of Failure Tolerance

 Checkpointing is an efficient way to ensure failure tolerance

 DNN training is time-consuming and expensive 
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Checkpointing in Distributed DNN Training
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 Frequent job switches in the preemptive GPU cluster scheduling

• The interval between two switches may be only a few seconds
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The Need of Frequent Checkpointing

 Failures are common in large-scale GPU clusters

• The mean time between failures is low to a few minutes

Frequent Checkpointing

High Runtime Overhead
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Existing Checkpointing Schemes are Inefficient

 Synchronous checkpointing[1]

• Introduce severe training stall

• Suffer from high runtime overhead

 Asynchronous  checkpointing[2-4]

• Two-phase checkpointing

• Pipeline the checkpointing with computation

1 PyTorch@NIPS’19    2 SCAR@ICML’19    3 DeepFreeze@CCGRID’20    4 CheckFreq@FAST’21    

• Sub-optimal due to monolithic checkpointing process

• Fail to fully pipeline checkpointing with communication
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Persistent Memory (PM)

Byte-addressable Fine-grained Persistence Near-DRAM performance

 Intel Optane PM

 Samsung Memory-Semantic CXL (Compute Express Link) SSD

OR
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Our Design

 Asynchronous layer-wise checkpointing

• Fine-grained pipelining

• Communication-aware

 Efficient persistent memory management

• Direct access

• Metadata-aware

Minimizing training stalls

Fully exploiting persistent memory

LightCheck: A cost-efficient checkpointing scheme for distribued DNN training
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Checkpointing Strategies
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Asynchronous Layer-wise Checkpointing

U

Execution flow of CheckFreq[1]

Execution flow of LightCheck 
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[1] J. Mohan, A. Phanishayee, and V. Chidambaram, “Checkfreq: Frequent, fine-grained dnn checkpointing,” in FAST, 2021  
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Efficient persistent memory management
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Evaluation

 Platform

• Three nodes connected via 100 Gbps Mellanox InfiniBand switch 

 DNN Models

• ResNet-18, VGG-16, Inception-V3, AlexNet, GPT-2, BERT

 Comparisons

• CheckFreq, Pytorch

Machine CPU GPU Memory Storage Network

3 nodes
Intel Xeon Gold 
6230R, 26 cores

1 Tesla V100, 
16GB

192GB DRAM, 6 X 128GB 
Intel Optane PM Modules

3.6TB 
HDD

100Gbps Mellanox 
InfiniBand Switch

Sever Configuration



Models
Number of IterationsCheckpoint 

Size (MB) LightCheck-G  LightCheck-C  LightCheck-D  LightCheck-disk  CheckFreq  torch.save
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15

Checkpointing Frequency

 Limit runtime overhead within 5%

Up to 10XUp to 2X
LightCheck can achieve frequent checkpointing 

with modest runtime overhead
Asynchronous layer-wise checkpointing 

reduces the runtime overhead
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Overall Performance

 With the aboved checkpointing frequency

Incuring high runtime 
overhead when performing 

frequent checkpointing

with the same checkpointing frequency as LightCheck

< 5% Runtime Overhead

< 7s Recovery Time

LightCheck provides lower 
recovery time and overhead 

than existing schemes
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GPU Utilization

Record the GPU utilization every 50 ms, VGG-16

LightCheck eliminates 
training stall by leveraging 

find-grained pipelining
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Conclusion

 LightCheck: A cost-efficient checkpointing scheme for DNN training

• Asynchronous layer-wise checkpointing

• Efficient persistent memory management

 More evaluation results and analysis are in the paper

 Available at: https://github.com/LighT-chenml/LightCheck.git

Thank you! Q&A

https://github.com/LighT-chenml/LightCheck.git

