
A Cost-Efficient Failure-Tolerant Scheme for
Distributed DNN Training

Menglei Chen, Yu Hua*, Rong Bai, Jianming Huang
WNLO, Huazhong University of Science and Technology, Wuhan, Hubei, China

*Corresponding author: Yu Hua

E-mail: {chenml, csyhua, bair, jmhuang}@hust.edu.cn

Abstract—Distributed deep neural network (DNN) training
is important to support artificial intelligence (AI) applications,
such as image classification, natural language processing, and
autonomous driving. Unfortunately, the distributed property
makes the DNN training vulnerable to system failures. Check-
pointing is generally used to support failure tolerance, which
however suffers from high runtime overheads. In order to enable
high-performance and low-latency checkpointing, we propose a
lightweight checkpointing system for distributed DNN training,
called LightCheck. To reduce the checkpointing overheads, we
leverage fine-grained asynchronous checkpointing by pipelining
checkpointing in a layer-wise way. To further decrease the
checkpointing latency, we leverage the software-hardware co-
design methodology by coalescing new hardware devices into our
checkpointing system via a persistent memory (PM) manager. Ex-
perimental results on six representative real-world DNN models
demonstrate that LightCheck offers more than 10× higher check-
pointing frequency with lower runtime overheads than state-
of-the-art checkpointing schemes. We have released the open-
source codes for public use in https://github.com/LighT-chenml/
LightCheck.git.

Index Terms—Computer systems, Checkpointing systems, Fail-
ure tolerance, Deep neural networks

I. INTRODUCTION

Deep neural networks (DNNs) have been widely adopted

in many domains, such as image classification [1], natural

language processing [2], and autonomous driving [3]. In

general, DNNs need to be frequently trained to achieve high

accuracy. However, training DNN models is time-consuming

and expensive, even if deploying models across multiple GPUs

to accelerate DNN training (called distributed DNN training).

For example, training a large language model (LLM) GPT-3

consumes up to thousands of NVIDIA A100 GPUs and several

months, which spends more than 5 million dollars [2].

The time-consuming DNN training is vulnerable to system

failures (e.g., infrastructure failure or software bug). When

a failure occurs, the trained model states will be lost, thus

causing significant waste of time and training resources.

Unfortunately, failures are common during the long training

process [4]. Studies from Microsoft [4], [5] show that the mean

time between failures (MTBF) varies from a few minutes to

several days when training DNNs in large-scale GPU clusters.

Hence, the model states (i.e., model parameters and optimizer

states) are regularly written to persistent storage for failure

This work was supported in part by National Natural Science Foundation
of China (NSFC) under Grant No. 62125202, U22B2022 and 61821003.

tolerance, which is termed checkpointing. By using check-

pointing, when a failure occurs, only the training progress

between two checkpoints will be lost, and others are efficiently

saved. Except for failure tolerance, checkpointing is also

critical for other scenarios in DNN training. For example, in

the preemptive GPU cluster scheduling, the scheduler adopts

a round-based scheduling scheme to share resources among

multiple training jobs with optimization objectives, such as

average job completion time (JCT) [6] or GPU resource

utilization [7]. When switching jobs, the current training job

is interrupted and its training states are checkpointed before

loading the states of other training jobs. The interval between

two switches may be only a few seconds. Such frequent

switches in scheduling require fast checkpointing to achieve

high performance.

Unfortunately, in DNN training, since the size of the model

states is often larger than hundreds of megabytes (MB) or even

gigabytes (GB), it is not cost-efficient to frequently checkpoint

such large model states. Hence, existing DNN training frame-

works usually perform checkpointing at the end of each epoch.

However, such epoch-level checkpointing would lose more

training progress after failures or interruptions. To achieve fre-

quent checkpointing with low runtime overhead, prior designs

focus on moving checkpointing out of the critical path in DNN

training. DeepFreeze [8] and Check-N-Run [9] first copy the

model states in memory and then asynchronously save the

data copy into non-volatile storage via the background threads.

However, these two checkpointing strategies need to block

the training when copying the model states, so the overhead

is still high compared with the millisecond-level iteration

time. CheckFreq [10] pipelines the in-memory copy operation

with computation. But CheckFreq focuses on the single-node

DNN training, which fails to fully utilize the parallelism

among computation, communication, and checkpointing in the

distributed DNN training.

In recent years, a new class of storage media called per-

sistent memory (PM), has received extensive attention [11]–

[14]. PM enables byte-addressable access and large capacity

with near-DRAM performance, which has been widely used

in high-performance database [15], file system [16], and dis-

tributed transaction system [17]. PM provides an opportunity

to achieve fast resilience for DNN training. Prior schemes [18],

[19] leverage PM to provide byte-addressable persistence to

GPU kernels, thus improving the performance of GPU appli-

150

2023 IEEE 41st International Conference on Computer Design (ICCD)

2576-6996/23/$31.00 ©2023 IEEE
DOI 10.1109/ICCD58817.2023.00031

20
23

 IE
EE

 4
1s

t I
nt

er
na

tio
na

l C
on

fe
re

nc
e

on
 C

om
pu

te
r D

es
ig

n
(I

C
C

D
) |

 9
79

-8
-3

50
3-

42
91

-8
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
IC

C
D

58
81

7.
20

23
.0

00
31

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on December 29,2023 at 07:41:18 UTC from IEEE Xplore. Restrictions apply.

cations. However, to fully utilize PM and PCIe (i.e., peripheral

component interconnect express) bandwidth in checkpointing,

the process of writing checkpoints needs to further consider

the features of PM. Specifically, PM bandwidth is sensitive

to the access pattern of running applications [20], [21], and

GPU interacts with PM through the PCIe interface at 128-byte

granularity.

In this work, we present a lightweight checkpointing system

called LightCheck, which provides frequent checkpointing

with low overheads for distributed DNN training. Specifi-

cally, LightCheck pipelines checkpointing with computation

and communication in a layer-wise way, thus mitigating the

impact of checkpointing on training performance. Besides,

LightCheck efficiently coalesces the direct access (DAX) fea-

ture [22] of PM and the unified virtual addressing (UVA) tech-

nique to map PM into the GPU virtual address space, which

allows direct access to PM from GPU. LightCheck further uses

CUDA (i.e., compute unified device architecture) streams and

events to overlap GPU-PM data transfer via GPU computation.

To improve the PM write throughput, LightCheck separates the

storage of tensor metadata and tensor data in PM, thus making

tensor data accesses continuous for small writes and aligned

for large writes. Furthermore, for ease of use, we extend

the high-level training framework to facilitate the availability

of LightCheck, users can easily use LightCheck to achieve

fast checkpointing in the DNN training without any code

modification to existing DNN training frameworks.

To show the efficiency of our LightCheck, we compare

LightCheck with state-of-the-art checkpointing schemes on

six popular DNN models. The experimental results show

that LightCheck provides 10× higher checkpointing fre-

quency with lower runtime overhead in distributed DNN

training, compared with the state-of-the-art schemes. In addi-

tion, LightCheck significantly reduces the re-training time for

failure recovery. The collection of GPU utilization statistics

further indicates that LightCheck incurs no GPU resource

utilization degradation when performing checkpointing. Be-

sides, we demonstrate that LightCheck does not decrease

the final accuracy of the trained model when resumed from

the checkpoints. Moreover, the results also demonstrate the

efficiency of our separated checkpoint data storage, which

improves the PM write throughput by up to 2.8×. Through

extensive analysis, LightCheck shows great abilities to offer

efficient checkpointing for distributed DNN training.

II. BACKGROUND AND RELATED WORK

A. DNN Training

To achieve high accuracy, DNNs need to be trained with

massive training data. Due to the complex structures of DNN

models and large volumes of training data, the training is often

a time-consuming task. To improve the training performance,

distributed DNN training has been widely used, which is

divided into two types: data parallel and model parallel. In the

data parallel training, different training nodes have the same

parameters. The training data are partitioned into several non-

overlapping parts and fed to the training nodes. In the model

Fig. 1: The overview of the distributed DNN training.

parallel training, the whole model is partitioned into several

parts, and different training nodes are responsible for training

different parts of the model. We focus on data parallel training.

As shown in Fig. 1, the model parameters (i.e., weights and

bias) are replicated to all nodes, and the training data (e.g.,

images and texts) are uniformly distributed to all nodes.

Training proceeds in iterations. Each iteration consists of for-

ward propagation, backward propagation, communication, and

updating parameters. Specifically, after processing the input

data into the input tensors, the training system performs tensor

operations on the input tensors and the model parameters to

obtain the output tensors. This procedure is called forward
propagation. Based on the output tensors and loss functions

of DNN models, we calculate the gradients of the model

parameters. This procedure is called backward propagation.

Moreover, we collect the gradients of all nodes via TCP or

RDMA (i.e., remote direct memory access) communication

functions and calculate the global gradients. At the end of an

iteration, each node leverages the global gradients to update

the model parameters via the model optimizer. In general, we

perform the training for multiple epochs. An epoch consists

of several iterations and traverses the entire training dataset.

B. Checkpointing for DNN Training

Training a DNN model consumes high costs, including the

training time and computing resources. The parameters of

the DNN model are maintained in the volatile GPU memory

during training. Any interruption to the training system, e.g.,

system crashes, tasks preemption, or job migration, causes

the training failures. Upon a failure, the training states will

be lost, the DNN needs to re-train from scratch, causing

significant waste of resources. To address this problem, the

model states are periodically checkpointed, i.e., the model

states are persisted into the non-volatile storage. The train-

ing frameworks such as TensorFlow [23] and PyTorch [24]

provide specific functions to save model states as files and

load checkpoints. After interruptions, the system recovers the

DNN training from the checkpoint. However, the intermediate

151

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on December 29,2023 at 07:41:18 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: Schematic diagram of different checkpointing strategies

in LightCheck.

states/data between the current training point and checkpoint

are lost. Such training loss can be mitigated by increasing

the frequency of checkpoints, which unfortunately introduces

training stall, and hence significantly decreasing the training

performance.

To improve the performance of checkpointing, SCAR [25]

leverages the behavior that machine learning models have

the capability of tolerating perturbations to model parameters,

thus proposes low-cost partial recovery for checkpointing.

DeepFreeze [8] adopts the multi-level checkpointing that is

previously applied to HPC for deep learning, and pipelines

the serialization I/O with model training. It also utilizes tensor

sharding to reduce I/O overhead. Check-N-Run [9] proposes

the incremental checkpointing method based on the parameter

update characteristics of recommendation models, and uses

quantization technique to reduce checkpoint size. Check-

Freq [10] pipelines both model state copy and serialization

I/O with computation to enable iteration-level checkpointing,

and the checkpoint frequency is auto-tuned to control the

checkpoint overhead within a fixed threshold. However, above

checkpointing systems cannot fully utilize the parallelism

among computation, communication, and checkpointing in the

distributed DNN training, thus failing to achieve low-cost

frequent checkpointing.

III. THE DESIGN OF LIGHTCHECK

We present LightCheck, which is a checkpointing system

for facilitating frequent checkpointing with low overheads in

distributed DNN training. LightCheck consists of two main

components, including an efficient checkpointing scheme and

a persistent memory manager. The checkpointing scheme

asynchronously checkpoints the latest updated parts of model

states based on the data dependency between model training

and checkpointing in distributed training process. Moreover,

the persistent memory manager enables effective data transfer

between GPU memory and persistent memory by mapping PM

into GPU virtual memory space and organizing the storage

location of checkpoint data in PM. Besides, LightCheck is

integrated into the high-level training framework, providing

a transparent and automatic checkpointing approach to users.

When interruptions happen, LightCheck loads the latest check-

point from PM to resume training.

Fig. 3: The execution flows of LightCheck and CheckFreq.

A. Checkpointing Strategies

To efficiently perform checkpointing with minimum inter-

ference to the training process, we consider different trade-offs

in LightCheck. There are three different checkpointing strate-

gies in LightCheck, including LightCheck-G, LightCheck-

C, and LightCheck-D (Fig. 2). Specifically, LightCheck-G

constructs a copy of model states in GPU memory and writes

the copy from GPU memory to PM. Since writing a copy

in GPU memory is much faster than writing a copy in CPU

memory or PM, LightCheck-G consumes minimal snapshot

time. However, LightCheck-G suffers from high GPU memory

consumption. Furthermore, LightCheck-C replicates the model

states from GPU memory to CPU memory and then saves

the CPU copy into PM. LightCheck-C can leverage existing

GPU-CPU and CPU-PM data paths but may interfere with

the running processes (e.g., preprocessing input images) on

the CPU. LightCheck-D directly transfers the model states

from GPU memory to PM in a layer-wise way. LightCheck-

D does not need extra GPU and CPU resource consumption

for copying model states. However, since PM has a lower

bandwidth than DRAM and exhibits complex performance

characteristics [21], for LightCheck-D, we carefully write

checkpoint data to PM to fully utilize PM bandwidth.

B. Asynchronous Layer-wise Checkpointing

In general, the DNN training framework performs epoch-

level checkpointing in a monolithic and synchronous way to

guarantee the consistency of checkpoint data. If the parameters

are updated during the execution of the checkpoint operation,

the checkpoint data may be partially updated, which would

corrupt the checkpoint file. Hence, during checkpointing, the

training framework stalls the training and continues training af-

ter completing checkpointing. Such design ensures checkpoint

data consistency since the model states remain unchanged

during checkpointing, and thus the training can recover from

the checkpoints. However, the synchronous checkpointing

incurs high overheads, i.e., decreasing the computing resource

utilization and increasing the overall training time.

Recent asynchronous DNN checkpointing schemes, such as

CheckFreq [10], pipeline the checkpointing process with the

forward and backward propagations to reduce training stall

time incurred by checkpointing and performs iteration-level

checkpointing. The top half in Fig. 3 shows the execution flow

of CheckFreq when training a DNN model with three layers

on multiple training nodes (C1 indicates the communication

of layer 1). CheckFreq starts the checkpoint operation of

152

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on December 29,2023 at 07:41:18 UTC from IEEE Xplore. Restrictions apply.

Fig. 4: The interconnections among GPU, CPU and PM.

iteration i after updating the parameters and further executes

the training computation phases (i.e., forward and backward

propagation) of iteration i + 1 and checkpointing of iteration

i in parallel. When the parameter update phase of iteration

i + 1 arrives, the training is blocked to wait for completing

the checkpoint operation of iteration i. However, CheckFreq is

sub-optimal due to the monolithic checkpointing process (i.e.,

the whole model states are continuously copied at once). In

addition, CheckFreq does not fully explore the data depen-

dency in the training process. Unlike CheckFreq, we explore

and exploit the data dependency of distributed DNN training

models to reduce the runtime overhead of checkpointing.

LightCheck introduces the asynchronous layer-wise check-

pointing design for distributed DNN training models. We

observe that the communication for model parameter syn-

chronization often accounts for a large fraction of training

time in the distributed DNN training [26], [27], which can be

pipelined with checkpointing. Multiple nodes synchronize the

model parameters layer-by-layer during communication. For

example, in a communication scheduler with the FIFO order,

when the backward propagation of layer i+ 1 is finished, the

scheduler needs to wait until the parameter synchronization

for layer i to finish and then starts the parameter transmission

for layer i+ 1 through underlying communication stack.

Based on this observation, our LightCheck pipelines check-

pointing with computation and communication to embed

checkpointing into the training data flow. Since the check-

pointing of iteration i needs to be completed before updating

the corresponding parameters in iteration i + 1, the check-

pointing needs to be performed as soon as possible. When

the gradient synchronization and parameters update of one

layer are finished, the checkpointing of this layer is ready

to start. We put the checkpoint operation into a FIFO queue

and asynchronously execute it using a background thread.

To guarantee the checkpoint data consistency, LightCheck

starts the checkpointing of layer j in iteration i after the

parameter synchronization of this layer, and the updates to

layer j of iteration i + 1 need to wait for ongoing check-

pointing of layer j to complete. The bottom half in Fig. 3

shows the LightCheck’s execution flows of model training and

checkpointing. By executing computation and communication

in parallel during checkpointing, LightCheck asynchronously

schedules the layer-wise checkpointing, thus improving the

training resources utilization in case of interruptions.

C. The Interconnection between GPU and PM

Currently, GPU-CPU [28] and CPU-PM [29] systems have

been widely studied for a long time, but there are few discus-

sions on how GPU accesses PM. CUDA library provides three

techniques for developers to facilitate the data communication

between host memory and GPU [30]. The first one is the

direct memory access (DMA) technique, which utilizes a

pinned buffer as a staging area for the data transfer between

host memory and GPU memory. Since we can leverage the

DAX feature of PM to directly map PM into CPU address

space, this technique can be applied to persistent memory.

We can transfer data between PM and GPU memory via

cudaMemcpy API through the DMA data path. However,

transferring data through the DMA data path still needs to go

through the pinned buffer in the CPU memory, hindering the

transfer performance. The second one is the unified memory

(UM) technique, which further manages the device and host

memory in the global memory address space, and automati-

cally migrates memory pages between PM and GPU memory.

This technique simplifies programming but still needs implicit

page migration, which is hard to expand unified memory to

include PM. The third one is the unified virtual addressing

(UVA) technique, which enables zero-copy access over PCIe

using the global memory address space. This technique allows

GPU kernels to directly access PM after mapping PM into

GPU virtual address space. Compared with DMA and UM, the

UVA technique enables high performance and improves easy

of use. Hence, we use the UVA technique to transfer data

between PM and GPU memory in LightCheck. Specifically,

LightCheck first maps PM into GPU virtual address space.

LightCheck then disables data direct IO (DDIO) to control the

destination of GPU writes via PCIe, since GPU moves the data

into the last level cache (LLC) with DDIO enabled (Fig. 4).

GPM [19] has revealed that disabling DDIO with a GPU

fence instruction (i.e., threadfence system()) is capable

of guaranteeing data persistence.

In tandem with the asynchronous layer-wise checkpointing

design, LightCheck pipelines the data transfer between GPU

and PM with GPU computation. The memory copies are

performed on an extra CUDA stream by using the background

thread. In addition, since the training needs to check whether

the checkpointing process has finished, LightCheck monitors

the progress of GPU-PM memory copies via CUDA events.

After initiating a data transfer task, LightCheck records a

CUDA event to mark a GPU stream execution. When the

CUDA event is ready, it is guaranteed that all tasks that launch

before the event have been completed.

D. Checkpoint Storage Management

For checkpointing, except for tensor metadata and some

additional states (e.g., current epoch, current iteration, and

training data index), almost all data are constructed in the

tensor format. In general, the checkpoint data are organized in

the form of a dictionary. It is important to replicate and main-

tain the data structure in PM to match the training framework

interface for loading model states (i.e., load state dict()).
However, since PM is sensitive to small random writes [20],

the GPU-PM access via the PCIe interface needs to align with

128-byte granularity for better PCIe bandwidth utilization [30].

A misaligned access generates two separate PCIe requests,

153

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on December 29,2023 at 07:41:18 UTC from IEEE Xplore. Restrictions apply.

causing high PM write amplification. Therefore, to efficiently

access PM from GPU, LightCheck divides the checkpoint data

space into a data mapping region and a continuous tensor

region. The data mapping consists of the addresses of tensor

data in PM and the number of bytes of tensor data. The data

mapping stored in PM is accessible for all GPUs and CPUs.

Based on the UVA technique, each tensor in PM has a global

virtual address for all GPUs and CPUs, and the processors

can directly write tensors to the corresponding location in PM.

During checkpointing file initialization, LightCheck allocates

PM space and creates the data mapping for tensors. When

allocating space in PM, LightCheck continuously stores small

tensor data according to the access order, and sequentially

allocates memory for tensors larger than 128 bytes at aligned

PCIe granularity in the continuous tensor data region. Thanks

to the separated checkpoint storage management, LightCheck

can significantly alleviate the PM write amplification and

reduce the number of required PCIe requests for writing

checkpoints from GPU memory to PM.

In addition, although the checkpoints are frequently per-

formed, LightCheck only maintains two checkpoint data map-

pings for a training model. Once one checkpoint is completed,

the other checkpoint is obsoleted. Thus, LightCheck overwrites

the obsoleted checkpoint with new checkpoint data, which

reduces the PM space consumption and avoids memory al-

location contention when multiple GPUs and training models

share PM space. If a failure occurs, LightCheck guarantees that

there exists at least one complete checkpoint data for recovery.

IV. PERFORMANCE EVALUATION

A. Experimental Setup

We conduct experiments on three machines, each of which

is equipped with two 26-core Intel Xeon Gold 6230R CPUs,

one Tesla V100 GPU, 192 GB DRAM, six interleaved 128

GB Intel Optane DC PM modules, 3.6 TB HDD (i.e., hard

disk drive) and one 100 Gbps Mellanox ConnectX-5 Infini-

Band RNIC. The three servers are connected via a 100Gbps

Mellanox InfiniBand switch. All servers are installed with

64-bit Ubuntu 18.04. The CUDA version is 11.1. The PCIe

interconnect is Gen 3.0×16.

We use six representative DNN models in our experiments,

including four image classification models and two language

processing models. The four image classification models

(ResNet-18 [1], AlexNet [31], Inception-V3 [32], and VGG-

16 [33]) use the Imagenet dataset [34], and the two language

processing models (GPT-2 [35] and BERT [36]) use the

WikiText-2 dataset [37]. We use Horovod with PyTorch 1.8.1

as the training framework, which wraps PyTorch optimizer

with Horovod DistributedOptimizer and supports layer-wise

all-reduce communication scheduling [38].

We compare three checkpointing strategies in LightCheck

(i.e., LightCheck-G, LightCheck-C, LightCheck-D) with the

state-of-the-art checkpointing system CheckFreq [10] and

the torch.save() from PyTorch. Unless otherwise stated,

LightCheck uses the LightCheck-D checkpointing strategy.

Since CheckFreq uses disk storage to persist checkpoint data,

TABLE I: The checkpoint sizes and the intervals.

Models Checkpoint
Size (MB)

Checkpointing Interval (iterations)
LightCheck

-G/C/D
LightCheck

-disk
CheckFreq torch.save

ResNet-18 90 1 7 20 102

VGG 16 1,056 6 64 146 904

Inception-V3 183 14 30 40 118

AlexNet 467 8 95 164 1,084

GPT-2 1,508 6 46 100 682

BERT 4,004 10 82 200 1,100

1.0
1.5

4.0

1.6
1.0

2.5
2.0 2.0

2.8

2.1 2.2
2.7

2.0

3.2

4.0

2.1
1.8

3.2

2.0

3.8
4.4 4.2

2.6

3.5
4.0

5.9

5.2

4.5
4.9

4.4

3.7

4.4

6.4
6.0

5.1

4.4

ResNet-18 VGG-16 Inception-V3 AlexNet GPT-2 BERT
0

2

4

6

8

R
un
tim
e
O
ve
rh
ea
d
(%
)

LightCheck-G LightCheck-C LightCheck-D LightCheck-disk
CheckFreq CheckFreq-same torch.save torch.save-same

14.0 57.6 15.9 70.0 8.1 23.0 11.0 66.0 13.4 74.8 14.2 69.0

Fig. 5: The runtime overheads of different checkpointing

systems.

we implement our asynchronous layer-wise checkpointing to

write checkpoint data into disks, called LightCheck-disk, to fa-

cilitate fair comparisons. Besides, we evaluate CheckFreq and

torch.save with the same checkpoint frequency as LightCheck-

disk, i.e., CheckFreq-same and torch.save-same.

B. Checkpointing Performance

Checkpointing Overhead. We compare the checkpointing

frequency and runtime overhead of different checkpointing

strategies with multiple DNN models. Table I shows the

model sizes of different DNN models and the checkpointing

intervals in different checkpointing strategies that limit runtime

overhead within a threshold (i.e., 5%). For example, in ResNet-

18, LightCheck-G/LightCheck-C/LightCheck-D/LightCheck-

disk/CheckFreq save a checkpoint per 1/1/1/7/20 iterations.

Note that the checkpointing frequency of CheckFreq follows

its open-source code. Fig. 5 shows the runtime overheads of

different checkpointing strategies in distributed DNN training.

From the experimental results, we obtain the following

observations. First, compared with CheckFreq, LightCheck-

G/LightCheck-C/LightCheck-D enables more than 10× higher

checkpointing frequency with lower runtime overhead for

most DNN models. For example, the runtime overhead of

LightCheck is only up to 4%, i.e., LightCheck-D in Inception-

V3. The reason is that LightCheck efficiently pipelines check-

pointing with communication and computation in the training

process. Moreover, these results show that LightCheck incurs

negligible runtime overhead when performing frequent check-

pointing, which is important for unstable training scenarios.

In fact, checkpointing efficiency is critical to the systems that

frequently perform transparent preemption and migration for

training tasks in a GPU cluster. Second, our LightCheck-disk

also outperforms CheckFreq in all evaluated models. Specifi-

cally, LightCheck-disk significantly reduces up to 10% runtime

overhead compared with CheckFreq-same. The improvement

stems from our asynchronous layer-wise checkpointing in

LightCheck. Third, LightCheck efficiently exploits PM to

improve checkpointing performance. LightCheck-disk not only

consumes a long time to complete but also suffers from

154

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on December 29,2023 at 07:41:18 UTC from IEEE Xplore. Restrictions apply.

0.2

2.4
3.4

1.0
2.0

7.0

0.2

2.4
3.4

1.0
2.0

7.0

0.2

2.4
3.4

1.0
2.0

7.0

0.2

2.4
3.4

1.0
2.0

7.0

ResNet-18 VGG-16 Inception-V3 AlexNet GPT-2 BERT
0

5

10

15

R
ec
ov
er
y
Ti
m
e
(s
)

LightCheck-G LightCheck-C LightCheck-D LightCheck-disk
CheckFreq CheckFreq-same torch.save torch.save-same

2.5 2.5

4040 165165

8.7 8.7

2626 18 18 71 71 31 31 205205 97 97 517517

12 12

Fig. 6: The recovery times of different checkpointing systems.

0 15 30 45 60 75 90 105 120
0

25

50

75

M
em
or
y
U
til
iz
at
io
n
(%
)

Time (s)

LightCheck CheckFreq

Stall Stall Stall

Fig. 7: The GPU memory utilizations of LightCheck and

CheckFreq.

the coarse-grained scheduling in the training system and the

high startup overhead of store operation. On the other hand,

LightCheck benefits from its fine-grained thread scheduling

and the direct data transfer path with fast PM. Fourth, com-

pared with LightCheck-G and LightCheck-C, LightCheck-D

achieves comparable checkpointing performance without extra

memory consumption, which demonstrates the effectiveness of

direct GPU-PM data transfer. The reason is that LightCheck-

D fully utilizes the PCIe bandwidth by organizing the storage

location of checkpoint data in PM.

Recovery Time. We evaluate the time overhead of recovering

the training models from checkpoints. The recovery time

consists of the time to load the model states from the latest

saved checkpoint and re-train the model to the state before

the interruption. Hence, the recovery time depends on the

checkpoint frequency. If the checkpoint frequency is high,

only a few iterations of training progress are lost after the

interruption, and thus the re-training time is short. As shown in

Fig. 6, with LightCheck, training can be resumed within 7 sec-

onds for all models. Compared with CheckFreq and torch.save,

LightCheck significantly improves the recovery performance.

The three checkpointing strategies of LightCheck have similar

recovery performances. For example, they reduce the recovery

time to 7 seconds when training the BERT model.

Resource Utilization. We monitor and record the GPU

memory utilization and computation utilization through the

NVIDIA system management interface every 50 ms when

training VGG-16 model. As shown in Fig. 7, LightCheck

improves the memory utilization up to 60% higher than that

of CheckFreq during training. Besides, the memory utilization

of CheckFreq drops to 0 when performing checkpointing,

which significantly affects the training performance. Unlike

CheckFreq, our LightCheck shows stable memory utilization,

because the asynchronous layer-wise checkpointing is efficient

to mitigate the waste of GPU resources during checkpoint

saving. The computation utilization exhibits a similar trend

as the memory utilization (Fig. 8).

Total Training Time. We evaluate the impact of different

0 15 30 45 60 75 90 105 120
0

25

50

75

100

C
om
pu
ta
tio
n
U
til
iz
at
io
n
(%
)

Time (s)

LightCheck CheckFreq

Stall Stall Stall

Fig. 8: The GPU computation utilizations of LightCheck and

CheckFreq.

TABLE II: The total training time of different checkpointing

systems.

Models
Total Training Time (h)

No Failure LightCheck CheckFreq torch.save

ResNet-18 10.7 10.9 11.1 11.2

VGG 16 67.5 69.7 72.3 73.7

Inception-V3 79.7 83.0 84.1 85.4

AlexNet 6.0 6.1 6.3 6.5

GPT-2 161.7 164.6 171.1 179.7

BERT 501.3 514.8 537.5 598.6

checkpointing strategies on total training time in the presence

of failures. We inject failures into the training process with a

fixed MTBF (i.e., one hour) and record the total training time

of different checkpointing strategies. Table II shows the total

training time of different checkpointing systems. Compared

with CheckFreq and torch.save, LightCheck mitigates the im-

pact of failures on total training time. We further demonstrate

the impact of MTBF on total training time. Fig. 9 shows

the total training time with different MTBFs when training

BERT. The ideal line exhibits the total training time when

training without failures. LightCheck provides lower total

training time than CheckFreq and torch.save. Moreover, when

failures frequently occur, the total training time of torch.save

significantly increases, while LightCheck can maintain stable

total training time.

C. The Benefits of Asynchronous Layer-wise Checkpointing

To better understand the performance benefit of the asyn-

chronous layer-wise checkpointing scheme, we evaluate the

runtime overheads of checkpointing when using persistent

memory to save checkpoints for both LightCheck and Check-

Freq. LightCheck directly copies the model states from GPU

memory to PM in a layer-wise way. Here, CheckFreq-PM also

copies the entire model state to PM after updating parameters,

and does not need to persist the copy, since this copy has

already existed in PM. When the corresponding parameter

update phase of the next iteration arrives, if the checkpoint

operation is not completed, the model training is blocked to

guarantee checkpoint data consistency. We measure the three

large DNN models. As shown in Fig. 10, LightCheck incurs

up to 10% runtime overhead when performing checkpointing,

while the runtime overhead of CheckFreq-PM is up to 41%.

The experimental results show that the asynchronous layer-

wise checkpointing scheme significantly reduces the runtime

overhead.

D. Efficiency of Separated Checkpoint Storage Management

We measure the benefits of the optimized checkpoint data

storage. When initializing the checkpoint data structure in

155

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on December 29,2023 at 07:41:18 UTC from IEEE Xplore. Restrictions apply.

0 5 10 15 20
450

600

750

900

1,050

To
ta
lT
ra
in
in
g
Ti
m
e
(h
) torch.save CheckFreq

LightCheck Ideal

MTBF (h)

0 1 2 3
450

600

750

Fig. 9: The impact of MTBF on the total training time.

7.54 8.54 9.42

32.48
27.44

41.02

VGG-16 GPT-2 BERT
0

10

20

30

40

50

R
un
tim
e
O
ve
rh
ea
d
(%
) LightCheck CheckFreq-PM

Fig. 10: The checkpointing

overheads of LightCheck and

CheckFreq-PM.

26.48

227.56

92.62 106.88

479.22

949.04

10.84

96.46

30.1 43.76

148.06

350.94

ResNet-18 VGG-16 Inception-V3 AlexNet GPT-2 BERT
0

150

300

450

1050

C
he
ck
po
in
tin
g
Ti
m
e
(m
s) Baseline

Separated

Fig. 11: The checkpointing

times of different checkpoint

storage managements.

the dictionary form, the Baseline does not distinguish the

checkpoint data attributes (e.g., tensor metadata, tensor data,

or some additional states) and stores them together in PM.

Therefore, when saving checkpoints, tensor data will be writ-

ten out-of-order, causing high write amplification. In contrast,

the Separated storage management continuously writes tensor

data, keeping the write amplification at 1× and reducing the

number of PCIe requests for transferring the same amount of

data. Fig. 11 shows the checkpointing time for various models

in PM. The separated storage achieves 2.1-2.8× speedup

compared with the Baseline, demonstrating its effectiveness

in fully utilizing PM and PCIe bandwidth.

E. The Impact of Data Direct IO (DDIO) on Checkpointing

We observe that DDIO has a great performance impact on

the data transfer between GPU memory and PM. As shown in

Fig. 12, the throughput of GPU sequential writes only reaches

3.5 GB/s with DDIO enabled. On the other hand, the write

throughput achieves 11.5 GB/s with DDIO disabled, which is

close to the maximum bandwidth of PCIe 3.0. The reason

is that when DDIO is enabled, GPU sequential writes are

first cached in the last level cache (LLC), and then the LLC

randomly evicts data to PM at the cache-line granularity. The

GPU sequential writes are changed to random writes, thus

causing high write amplification. We further measure PM write

amplification when running the sequential access benchmark

via ipmctl tool. The results show that enabling DDIO incurs

about 2.6-3.0× write amplification for sequential GPU writes

under various payload sizes (Fig. 13). In contrast, disabling

DDIO keeps the write amplification around 1×. Overall,

disabling DDIO provides better checkpointing performance.

F. Checkpointing in GPU Cluster Scheduling

We evaluate the effect of checkpointing in frequent preemp-

tive scheduling scenarios. We adopt the Gavel [6] scheduler to

1 2 4 8 16 32 64 128 256 512 1,0242,0484,096
0

5

10

15

Th
ro
ug
hp
ut
(G
B/
s)

Payload Size (KB)

Enable DDIO
Disable DDIO

Fig. 12: The write through-

puts of checkpointing with and

without DDIO.

1 2 4 8 16 32 64 128 256 512 1,0242,0484,096
0

1

2

3

4

W
rit
e
Am

pl
ifi
ca
tio
n

Payload Size (KB)

Enable DDIO Disable DDIO

Fig. 13: The write amplifi-

cations of checkpointing with

and without DDIO.

TABLE III: The effects of different checkpointing systems on

GPU cluster scheduling.

Checkpointing
Systems

Trace Metrics Physical (h) Simulation (h)

torch.save static average JCT 2.38 2.33

LightCheck static average JCT 2.20 2.09

torch.save continuous average JCT 1.67 1.60

LightCheck continuous average JCT 1.38 1.37

run the least attained service (LAS) policy [39] with physical

and simulated experiments on two types of traces: 1) Static.

All jobs arrive when starting execution. 2) Continuous. Jobs

are continuously added during execution. Gavel sets the round

duration to 6 minutes, which means that it computes job

allocation according to LAS and switches tasks to be executed

in every round. By default, the state of preempted jobs is

saved via torch.save(). For efficient comparisons, we use

our LightCheck to checkpoint the preempted jobs. The two

traces in the physical experiments run 25 jobs on 3 machines,

and the job types are uniformly sampled from the six DNN

models. As shown in Table III, compared with torch.save,

LightCheck reduces average job completion time by 8% and

17% for the static and continuous traces, respectively. In

the simulation, we inject preemption overheads measured by

running specific models on actual GPUs. The results show that

the difference between physical evaluation and simulation is

small. Furthermore, we simulate a cluster with 90 NVIDIA

V100 GPUs, the trace has varied input job rates, and the

completion time of jobs with ID 4,000-5,000 is measured.

The results show that LightCheck reduces average JCT by

12% at the low load rate, and supports the higher load rate

than torch.save (Fig. 14).

G. Model Accuracy

We demonstrate the impact of checkpointing on accuracy.

We train the ResNet-18 model to the target accuracy (i.e.,

96%) using the mini-imagenet dataset. We train ResNet-18

in two different scenarios: 1) No interruption. The model is

trained without interruption until its completion. LightCheck

does not perform checkpointing in this scenario. 2) Resumed

from checkpoints. In this scenario, LightCheck performs

checkpointing during model training. The training process is

interrupted at the fixed interval (one epoch), then resumes from

the latest checkpoint and continues to train the model. We

present the top-1 validation accuracy against the cumulative

training time in Fig. 15. The final model accuracy of the

second training scenario is similar to that of the model

156

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on December 29,2023 at 07:41:18 UTC from IEEE Xplore. Restrictions apply.

3.2 3.6 4.0 4.4 4.8 5.2 5.6 6.0
0

50

100

150

Av
er
ag
e
JC
T
(h
)

Input Job Rate (jobs/h)

torch.save
LightCheck

Fig. 14: The simulated av-

erage JCT with different in-

put job rates under different

checkpointing systems in GPU

cluster scheduling.

0 500 1,000 1,500 2,000 2,500 3,000 3,500
0

20

40

60

80

100

To
p-
1
Ac
cu
ra
cy
(%
)

Time (s)

Resume from checkpoints

No interruption

96%

Fig. 15: The top-1 validation

accuracy against the

cumulative training time

when training ResNet-18 with

LightCheck.

without interruption, which indicates that the checkpointing

in LightCheck has a negligible impact on training accuracy.

V. CONCLUSION

Distributed DNN training is important for AI applications

in many domains. While distributed DNN training requires

checkpointing for failure tolerance, it is a challenge to provide

frequent checkpointing with low runtime overhead. In this

work, we present LightCheck, a lightweight checkpointing

system for distributed DNN training. We propose an efficient

checkpointing scheme and a persistent memory manager for

LightCheck to achieve fast checkpointing. The checkpointing

scheme achieves fine-grained asynchronous checkpointing by

pipelining checkpointing with computation and communica-

tion in a layer-wise way, which reduces the checkpointing

overhead in DNN training. Moreover, the persistent memory

manager enables effective data access to PM from GPU by

mapping PM into GPU virtual memory space and separating

the storage of tensor metadata and tensor data in PM. Our

experimental results show that LightCheck reduces the run-

time overhead of checkpointing while providing 10× higher

checkpointing frequency in distributed DNN training.

REFERENCES

[1] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in CVPR, 2016.

[2] T. B. Brown, B. Mann et al., “Language models are few-shot learners,”
in NIPS, 2020.

[3] S. Casas, A. Sadat, and R. Urtasun, “MP3: A unified model to map,
perceive, predict and plan,” in CVPR, 2021.

[4] R. Zhang, W. Xiao, H. Zhang, Y. Liu, H. Lin, and M. Yang, “An
empirical study on program failures of deep learning jobs,” in ICSE,
2020.

[5] M. Jeon, S. Venkataraman, A. Phanishayee, J. Qian, W. Xiao, and
F. Yang, “Analysis of large-scale multi-tenant gpu clusters for dnn
training workloads,” in USENIX ATC, 2019.

[6] D. Narayanan, K. Santhanam, F. Kazhamiaka, A. Phanishayee, and
M. Zaharia, “Heterogeneity-aware cluster scheduling policies for deep
learning workloads,” in OSDI, 2020.

[7] W. Xiao, R. Bhardwaj, R. Ramjee, M. Sivathanu, N. Kwatra, Z. Han,
P. Patel, X. Peng, H. Zhao, Q. Zhang, F. Yang, and L. Zhou, “Gandiva:
Introspective cluster scheduling for deep learning,” in OSDI, 2018.

[8] B. Nicolae, J. Li, J. M. Wozniak, G. Bosilca, M. Dorier, and F. Cappello,
“Deepfreeze: Towards scalable asynchronous checkpointing of deep
learning models,” in CCGRID, 2020.

[9] A. Eisenman, K. K. Matam, S. Ingram, D. Mudigere, R. Krishnamoorthi,
K. Nair, M. Smelyanskiy, and M. Annavaram, “Check-n-run: a check-
pointing system for training deep learning recommendation models,” in
NSDI, 2022.

[10] J. Mohan, A. Phanishayee, and V. Chidambaram, “Checkfreq: Frequent,
fine-grained dnn checkpointing,” in FAST, 2021.

[11] C. Ruan, Y. Zhang, C. Bi, X. Ma, H. Chen, F. Li, X. Yang, C. Li,
A. Aboulnaga, and Y. Xu, “Persistent memory disaggregation for cloud-
native relational databases,” in ASPLOS, 2023.

[12] H. Bae, M. Kwon, D. Gouk, S. Han, S. Koh, C. Lee, D. Park, and
M. Jung, “Empirical guide to use of persistent memory for large-scale
in-memory graph analysis,” in ICCD, 2021.

[13] X. Li, H. Cui, and L. Liu, “NRHI: A concurrent non-rehashing hash
index for persistent memory,” in ICCD, 2021.

[14] X. Liu, Y. Hua, and R. Bai, “Consistent rdma-friendly hashing on remote
persistent memory,” in ICCD, 2021.

[15] W. Kim, C. Park, D. Kim, H. Park, Y. Choi, A. Sussman, and B. Nam,
“Listdb: Union of write-ahead logs and persistent skiplists for incremen-
tal checkpointing on persistent memory,” in OSDI, 2022.

[16] J. Xu and S. Swanson, “NOVA: A log-structured file system for hybrid
volatile/non-volatile main memories,” in FAST, 2016.

[17] M. Zhang, Y. Hua, P. Zuo, and L. Liu, “FORD: fast one-sided rdma-
based distributed transactions for disaggregated persistent memory,” in
FAST, 2022.

[18] P. Markthub, M. E. Belviranli, S. Lee, J. S. Vetter, and S. Matsuoka,
“Dragon: breaking gpu memory capacity limits with direct nvm access,”
in SC, 2018.

[19] S. Pandey, A. K. Kamath, and A. Basu, “Gpm: leveraging persistent
memory from a gpu,” in ASPLOS, 2022.

[20] S. Gugnani, A. Kashyap, and X. Lu, “Understanding the idiosyncrasies
of real persistent memory,” in VLDB, 2020.

[21] J. Yang, J. Kim, M. Hoseinzadeh, J. Izraelevitz, and S. Swanson, “An
empirical guide to the behavior and use of scalable persistent memory,”
in FAST, 2020.

[22] Y. Chen, J. Shu, J. Ou, and Y. Lu, “Hinfs: A persistent memory file
system with both buffering and direct-access,” in TOS, 2018.

[23] M. Abadi, P. Barham et al., “Tensorflow: A system for large-scale
machine learning,” in OSDI, 2016.

[24] A. Paszke, S. Gross et al., “Pytorch: An imperative style, high-
performance deep learning library,” in NIPS, 2019.

[25] A. Qiao, B. Aragam, B. Zhang, and E. Xing, “Fault tolerance in iterative-
convergent machine learning,” in ICML, 2019.

[26] H. Zhang, Z. Zheng, S. Xu, W. Dai, Q. Ho, X. Liang, Z. Hu, J. Wei,
P. Xie, and E. P. Xing, “Poseidon: An efficient communication archi-
tecture for distributed deep learning on gpu clusters,” in USENIX ATC,
2017.

[27] D. Narayanan, A. Harlap, A. Phanishayee, V. Seshadri, N. R. Devanur,
G. R. Ganger, P. B. Gibbons, and M. Zaharia, “Pipedream: generalized
pipeline parallelism for dnn training,” in SOSP, 2019.

[28] J. Ren, S. Rajbhandari, R. Y. Aminabadi, O. Ruwase, S. Yang, M. Zhang,
D. Li, and Y. He, “ZeRO-Offload: Democratizing Billion-Scale model
training,” in USENIX ATC, 2021.

[29] L. Lersch, X. Hao, I. Oukid, T. Wang, and T. Willhalm, “Evaluating
persistent memory range indexes,” in VLDB, 2019.

[30] S. Min, K. Wu, S. Huang, M. Hidayetoglu, J. Xiong, E. Ebrahimi,
D. Chen, and W. W. Hwu, “Large graph convolutional network training
with gpu-oriented data communication architecture,” in VLDB, 2021.

[31] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in NIPS, 2012.

[32] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking
the inception architecture for computer vision,” in CVPR, 2016.

[33] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in ICLR, 2015.

[34] O. Vinyals, C. Blundell, T. Lillicrap, K. Kavukcuoglu, and D. Wierstra,
“Matching networks for one shot learning,” in NIPS, 2016.

[35] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever et al.,
“Language models are unsupervised multitask learners,” in OpenAI blog,
2019.

[36] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” in arXiv
preprint arXiv:1810.04805, 2018.

[37] S. Merity, C. Xiong, J. Bradbury, and R. Socher, “Pointer sentinel
mixture models,” in arXiv preprint arXiv:1609.07843, 2016.

[38] A. Sergeev and M. Del Balso, “Horovod: fast and easy distributed deep
learning in tensorflow,” in arXiv preprint arXiv:1802.05799, 2018.

[39] J. Gu, M. Chowdhury, K. G. Shin, Y. Zhu, M. Jeon, J. Qian, H. H.
Liu, and C. Guo, “Tiresias: A gpu cluster manager for distributed deep
learning,” in NSDI, 2019.

157

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on December 29,2023 at 07:41:18 UTC from IEEE Xplore. Restrictions apply.

