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Abstract—Byte-addressable persistent memory (PM) exhibits
salient features of low latency and high capacity. PM can
be memory-mapped to the virtual address space of a pro-
cess and be directly accessed via load and store instructions.
Persistent memory allocator is a fundamental building block
in PM-oriented programs, which provides dynamic memory
allocation/deallocation primitives for developers to efficiently and
safely leverage the PM. Different from DRAM allocators, a PM
allocator needs to guarantee the integrity and consistency of
metadata in the face of a crash. To this end, we propose a
high-efficiency PM allocator, called PMA, with crash consistency
guarantee. PMA uses a two-level memory management strategy
and sets up a private memory pool for each thread to achieve
low fragmentation and high concurrency. Furthermore, PMA
employs per-thread write-ahead undo log to protect the integrity
and consistency of metadata against crashes. PMA also designs a
lightweight persistent pointer to reference an allocated persistent
memory object across runtimes. PMA is implemented as an
easy-to-use library that is independent of specific PM platforms.
Extensive evaluation results on a real PM platform demonstrate
the efficiency and efficacy of our proposed PMA, compared with
state-of-the-art log-based PM allocators.

Index Terms—Persistent Memory, Memory Management,
Memory Allocator, Crash Consistency

I. INTRODUCTION

Persistent memory (PM) coalesces the high performance

of DRAM and the persistence of hard disks, blurring the

boundary between main memory and external storage [3],

[4]. It provides near-DRAM latency and much larger capacity

while also retaining data after power-off. Moreover, a user

process can directly access PM via load/store instructions in

the user space, without kernel involvement [1]. PM creates new

opportunities for constructing a new storage architecture and

building high-efficiency in-memory applications. Although the

first commercial PM product, Intel Optane DC PMM [5], has

been recently discontinued, researches on PM are still going

on. Our work does not rely on Optane DC PMM and can be

used on any other non-volatile memory platform that supports

memory-mapping.

Operating system manages PM via PM file systems [2], [6],

[7], which are similar to traditional hard disk file systems.

The main difference is that a user process can memory-

map a PM file to its virtual address space without kernel

page cache through the direct access (DAX) mechanism. The
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process can further access PM in the user space, eliminating

the high overheads of crossing the user-kernel boundary and

going through the storage stack [7]. But the challenge is

that the user process needs to efficiently manage the PM

space on its own to meet the dynamic memory requirements

from multiple threads. A PM allocator takes the responsibility

for dynamically allocating and reclaiming persistent memory

according to the program’s requirements. It provides easy-

to-use interface for application developers to efficiently and

safely exploit the PM.

Traditional DRAM allocators, such as Hoard [9], jemal-
loc [11] and TCMalloc [10], have achieved low latency, high

scalability, and low fragmentation. They can be applied to PM

due to its byte-addressable property the same as DRAM. How-

ever, if a system crash occurs, the metadata of the allocator

could be corrupted and would remain at an inconsistent state

even after the system restarts due to the persistence of PM [8].

The corruption of metadata leads to serious problems, like

memory leak or deadlocks that cannot be solved by restarting

neither the program nor the system. Therefore, a PM allocator

needs to guarantee the integrity and consistency of metadata in

the face of a crash. Moreover, a persistent pointer is necessary

to persistently reference an allocated memory block across

multiple runs of a program, which will be discussed in details

in Section II-C.

In this paper, we propose a high-performance and crash-

consistent persistent memory allocator, called PMA. PMA uses

a two-level memory management strategy: It divides the whole

PM space into multiple fixed-size superblocks (SBs) and

divides each superblock into several smaller memory blocks.

To mitigate the contentions among multiple user threads, PMA

sets up a private memory pool for each thread. In most cases,

a user thread can easily obtain the free memory blocks from

its own memory pool, which is inaccessible by other threads.

Thus, no lock is needed. PMA employs write-ahead undo log

to protect the integrity and consistency of metadata against

crashes. It reserves a log region for each thread separately

to make them work concurrently. The log space overhead

is acceptable since the amount of metadata is very limited.

PMA implements a lightweight offset-based persistent pointer

to persistently reference an allocated persistent memory object

even when the process is terminated or the PM file is remapped

to a different address. PMA guarantees that the user process

can always access a persistent memory object correctly by
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dereferencing its persistent pointer.

We evaluate PMA on a real PM platform equipped

with Optane DC PMM and compare PMA with state-of-

the-art log-based PM allocators, including libpmemobj [1],

nvm malloc [15] and NVAlloc-log [19], by using multiple

metrics. Extensive experimental results demonstrate that PMA

can achieve up to 3.4x, 1.6x and 19.1x higher throughput

than libpmemobj, nvm malloc and NVAlloc-log, respectively.

PMA also reduces the tail latency of small allocation by orders

of magnitude. Furthermore, PMA recovers 512 uncommitted

transactions in approximately 120 microseconds.

In summary, this paper makes the following contributions:

• We propose a persistent memory allocator PMA with high

throughput, low latency and crash consistency.

• We implement a lightweight offset-based persistent

pointer that can reference a persistent memory object

across runtimes.

• We evaluate PMA on a real PM platform and compare it

with state-of-the-art log-based PM allocators via multiple

performance metrics.

II. BACKGROUND AND MOTIVATION

A. PM and DAX

Byte-addressable persistent memory (PM) has significantly

higher capacity and lower energy consumption than DRAM,

whereas its access latency is on the same order of magnitude

like DRAM [3], [5]. PM is connected on the memory bus

and can be directly accessed by the user process without the

kernel involvement [1]. With the aid of PM, programs can

directly persist data in memory, eliminating data serializa-

tion/deserialization and going through the storage stack, which

would significantly reduce the software overheads.

PM is usually mounted to the file system and managed

in the form of files [2], [6], [7]. As shown in Figure 1,

there are typically two approaches for applications to access

PM. First, traditional applications designed for hard disks can

access PM through POSIX I/O operations (e.g., read()/write())

without any modification, which simply treats the PM as a

faster disk. Second, with the help of the direct access (DAX)

mechanism [1], applications can memory-map a PM file to the

virtual address space without kernel page cache and directly

access the PM via load/store instructions. DAX mechanism

eliminates the overhead of trapping into OS kernel, thus

significantly improving the access performance. According to

our experimental results on a real PM platform, using the

DAX-enabled memory-mapping approach to write/read 1GB

data to/from the PM can reduce the execution time by 81%

and 56%, respectively (as shown in Table I).

TABLE I. The execution time of writing/reading 1GB data to/from the PM
through POSIX I/O operations or DAX-enabled memory-mapping.

I/O operations DAX-enabled memory-mapping

Writing Time (s) 19.54 3.81

Reading Time (s) 1.42 0.63

Fig. 1. The two access paths to PM. One way is through the I/O operations,
and the other is DAX-enabled mmap().

When using the DAX-enabled memory-mapping, the PM

file is guaranteed to be mapped to contiguous virtual address

space. This space is usually called a persistent heap and

the mapped PM file is called a heap file. The PM allocator

takes the responsibility for managing the persistent heap. It

dynamically allocates free memory block from the persistent
heap when a user thread needs and reclaims the memory block

when it is freed.

B. Crash Consistency

Despite using the DAX mechanism, applications cannot

bypass the CPU cache when writing to PM. The data written

to PM is not guaranteed to be persistent immediately due to

possibly residing in the volatile CPU cache. The data will

be persisted only when it is flushed back to PM from the

CPU cache. However, if a crash occurs before the data is

flushed back, the data’s newest version will be lost. Some

data may be partially persisted in arbitrary orders due to the

random cache line evictions, which unfortunately breaks the

integrity and consistency of data [8]. For example, if there is

a string “AAA· · ·A” (128 letters) on PM and we change it

to “BBB· · ·B” (128 letters) in a program. This modification

will take effect after three steps: (1): The string is copied

to the CPU cache for faster access and occupies two cache

lines (since the size of a cache line is typically 64 bytes).

(2): The string in the cache is changed to “BBB· · ·B”. (3):

The two cache lines are flushed back to PM and thus the

string “BBB· · ·B” is persisted. However, if a crash occurs

during step 1 or step 2, the modification will be completely

lost and the string on PM is still “AAA· · ·A”. If a crash occurs

during step 3, perhaps only one of the cache lines is flushed

back to PM while the other is lost, and the order is random.

Finally the string on PM may become “AA· · ·ABB· · ·B” or

“BB· · ·BAA· · ·A”, which are inefficient.

There are some instructions like CLWB and SFENCE to

explicitly flush cache lines back in the specified order [1].

Specifically, CLWB means cache line writing back. It carries

an address as the parameter and flushes the cache line that

contains such address back to the PM immediately. SFENCE

is used to guarantee the execution order of multiple CLWBs.
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The CLWB after a SFENCE can be performed only after the

CLWB before the SFENCE is completed. Therefore, program-

ming with PM requires the developers to properly persist data

with these instructions to ensure the integrity and consistency

of data. To ease the developer’s burden and hide the underlying

details about data persistence, PMA provides some high-level

and easy-to-use interfaces (as shown in Section III-A).

C. Persistent Pointer

Due to the byte-addressable property of PM, a user process

can directly access it through pointers. When a PM allocator

allocates a free memory block for a user thread, it will return

the start address of this memory block and the user thread can

further access this region through the pointer to it. However,

traditional pointers reference the virtual addresses, which are

valid only within the lifetime of the process. After the process

terminates or restarts, the virtual addresses become invalid.

Besides, the heap file may be mapped to different virtual

addresses in different runs of a program due to the address
space layout randomization (ASLR). Therefore, we cannot

permanently reference a memory region on the persistent heap
via its virtual address. Hence a persistent pointer is necessary.

Figure 2 illustrates the aforementioned issue when a heap
file is mapped to different virtual addresses in different runs

of a program. The heap file is mapped to 0x7f31c7600000 at

first, then a memory block at 0x7f31c7600800 is allocated and

this address is assigned to the ptr. Hence, the user process

can access the allocated memory block with ptr. However,

when the program restarts, the heap file is remapped to

0x7f312ab00000 and the previously allocated memory block

should be at 0x7f312ab00800. Hence the previous ptr becomes

invalid. If we still access the persistent heap with ptr, some

unpredictable errors would happen.

Fig. 2. The heap file is mapped to different virtual addresses in different runs
of a program.

III. THE DESIGN OF PMA

We design and implement PMA as an easy-to-use user-

level library. It is built on the top of a kernel file system that

supports DAX-enabled memory-mapping (e.g., ext4-DAX).

PMA is independent of any specific PM platform and can be

used for any non-volatile memory that is byte-addressable. A

PMA heap file is completely self-contained and can be moved,

copied, or transmitted among multiple machines, as long as the

user process accesses the heap file through PMA.

A. Overview and Programming Model

Figure 3 depicts the high-level architecture of PMA. The

PM heap file is memory-mapped to the contiguous virtual

Fig. 3. The framework of PMA.

address space via the memory-mapping system calls provided

by the DAX-enabled kernel file system (e.g., mmap() in ext4-

DAX). PMA further manages the persistent heap in the user

space and allocates free memory blocks from the persistent
heap when required.

The persistent heap is divided into four main regions: the

header region, the log region, the thread-private memory pool

(TPMP) region, and the superblock region. Specifically, the

header region stores some essential metadata for the whole

persistent heap, such as a magic number marking it as a PMA

heap file, the starting address and the length of the persistent
heap, etc. The log region contains the write-ahead undo log

for metadata recovery after a crash (Section III-F). The TPMP

region consists of some TPMP descriptors (Section III-D).

The superblock region is divided into multiple superblocks in

the equal size (16KB by default). PMA takes the superblocks

as basic units when managing the persistent heap and then

manages the interior of each superblock separately at a finer

granularity (Section III-C).

In order to mitigate the memory allocation contentions

among multiple user threads, PMA sets up a TPMP for each

thread (Section III-D). The thread obtains memory directly

from its TPMP, which is inaccessible by other threads and thus

no concurrency control is necessary. The TPMP will be filled

up with the globally accessible superblocks if exhausted. PMA

establishes a TPMP for a user thread automatically when the

thread first calls for memory. All the TPMPs will be flushed

back to the global superblock region before PMA exits. It

is worth noting that the TPMPs only hold small memory

blocks (no more than half the size of a superblock), and

larger memory blocks are allocated directly from the global

superblock region, thus bypassing the TPMP, as discussed in

Section III-E.

PMA provides 8 interface functions for developers to obtain

memory from the persistent heap flexibly and safely, which

are listed in Table II. When using PMA, the user process

184

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on December 29,2023 at 07:41:52 UTC from IEEE Xplore.  Restrictions apply. 



TABLE II. The APIs provided by PMA.

Function Description

PMA start (heapfile, size)
Start the allocator and memory-map the

heap file with the given size.

PMA exit ()
Unmap the heap file and exit the allocator

safely.

PMA malloc (size)
Allocate a free memory block no smaller

than the given size and return its persistent
pointer.

PMA free (pp)
Reclaim the memory block referenced by

the given persistent pointer pp.

PMA getPP (va)
Transform the given virtual address va to a

persistent pointer pp.

PMA getVA (pp)
Transform the given persistent pointer pp

to a virtual address va.

PMA persist (addr, len)
Persist the memory region from addr to

addr+len.

PMA barrier ()
Restrict the execution order of multiple

PMA persist().

first invokes PMA start() to memory-map the heap file. If

the heap file does not exist or is empty, PMA creates a

new heap file of the given size and initializes the basic

structure of the persistent heap. After start up, the user

process can invoke PMA malloc() to allocate a free memory

block from the persistent heap or PMA free() to reclaim it.

PMA malloc() returns the persistent pointer of the allocated

memory block. The user process can transform the persistent

pointer to a virtual address pointer via PMA getVA() or

transform the virtual address pointer to a persistent pointer

via PMA getPP(). PMA persist() is used to persist data in

the given range immediately and PMA barrier() restricts the

execution order of multiple PMA persist(). If a PMA barrier()

is added between two PMA persist(), it is guaranteed that

the latter PMA persist() can be performed only after the

previous one finishes. Otherwise, the executions of multiple

PMA persist() may be disordered.

We further present a program as an example in Figure 4

to show the programming model of PMA. In this example,

we construct a linked list on the persistent heap with PMA.

It is similar to construct a linked list on the DRAM by using

malloc()/free() in the C standard library. The main difference is

that the linked list on the persistent heap is persistent and can

still be accessed via persistent pointers even after the system

reboots.

B. Size Class

In order to normalize the memory allocation sizes and limit

the memory fragmentation rate to an acceptable range, we

predefined 41 standard size classes, such as 8B, 10B, 12B,

14B, 16B, 20B, 24B, 28B, 32B, etc. Other sizes will be aligned

up to the nearest standard size. For example, if the user thread

requires a 30-byte block, PMA will allocate a 32-byte free

block, even though there is a 2-byte internal fragmentation.

We argue this is acceptable due to the large capacity of

PM. Moreover, we eliminate the external fragmentations and

#include<PMA.h>  // The header file for PMA
typedef struct{

int value;
PP next; // Persistent pointer to next node.

} LNode;
int main(void)
{

PMA_start("/mnt/pmem0/heapfile",
4*1024*1024*1024LL);  // 4GB heap file

PP head = PMA_malloc(sizeof(LNode));
PMA_getVA(head)->value = -1;
PMA_getVA(head)->next = NULLPP;
for(int i=1; i <= 10; i++){

PP newNode = PMA_malloc(sizeof(LNode));
PMA_getVA(newNode)->value = i;
PMA_getVA(newNode)->next = PMA_getVA(head)->next;
PMA_getVA(head)->next = newNode;

}
PMA_exit();
return 0;

}

Fig. 4. An instance of constructing a persistent linked list on the persistent
heap with PMA.

limit the internal fragmentation rate to no more than 20% by

appropriately generating standard size classes [12].

C. Superblock

Excluding metadata, the persistent heap is divided into

multiple superblocks of the same size (16KB in our im-

plementation), which are the basic units of global memory

management. Each superblock contains a descriptor in the

head (as shown in Figure 5), which stores the metadata of

this superblock, including the size class of this superblock, the

number of free blocks in this superblock, the index of the first

free block, and the pointer to the prior/next superblock. Apart

from the descriptor, the remaining space of the superblock

is divided into several fixed-size small blocks depending on

the superblock’s size class. The size class of the superblock

determines the size of the internal small blocks. For instance,

the superblock belonging to size class 0 will be divided into

several 8-byte blocks and the superblock belonging to size
class 8 will be divided into several 32-byte blocks. Therefore,

all the blocks in the same superblock have the same size

according to the superblock’s size class, while the blocks in

two different superblocks may have different sizes.

Free blocks in a superblock are coalesced together into a

linked list. Both the header pointer and length of the list are

stored in the superblock’s descriptor. Even though the bitmap

has been widely used to mark free or occupied memory blocks,

we found that the linked list is more efficient. Because we can

obtain a free block from the head of the list with O(1) time

complexity, whereas the bitmap technique needs to find a free

block by scanning the bitmap with O(n) time complexity (n
denotes the size of the bitmap).

According to the number of free blocks inside, a superblock

can be in one of the following three states:
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• Empty. An empty superblock is entirely free, which has

not been initialized and does not belong to any size class
(the SizeClass field in its descriptor is −1).

• Partial. A partial superblock has been initialized and

belongs to a certain size class. It is divided into multiple

small blocks and some have been allocated, but not all.

• Full. All blocks in a full superblock have been allocated

and there are no available free blocks in this superblock.

We use doubly linked lists to manage all superblocks.

Superblocks in the same state and the same size class are

added to the same list. Specifically, all the empty superblocks

are linked into one list since they do not belong to any

size class, whereas partial/full superblocks are linked into

several separate lists based on their size classes. Partial/full

superblocks belonging to the same size class are added to the

same list. Furthermore, the state of a superblock would change

as PMA runs, and hence it would be moved from one list to

another. For instance, when an empty superblock is allocated

and initialized with SizeClass=2, it will be removed from the

Empty List and be added to the Partial[2] List. When all the

blocks are allocated at some point, it will be moved from the

Partial[2] List to the Full[2] List. Note that this process is

reversible when freeing blocks.

typedef struct{ //The descriptor of a superblock
int SizeClass; //The size class it belongs to (from 0 to 40, or -1 for empty SB)
int BlockSize; //The size of small blocks inside
int FirstFreeBlock; //The index of the first free block
int NumOfFreeBlocks;//The number of free blocks
PP prior; //Pointer to the prior SB in the SB list
PP next; //Pointer to the next SB in the SB list

} SBdescriptor;

Fig. 5. The data structure of a superblock descriptor.

D. Thread-Private Memory Pool

To achieve high concurrency, PMA sets up a thread-private

memory pool (TPMP) for each user thread. A TPMP consists

of some free blocks that are only visible and accessible to a

certain thread. These free blocks are coalesced together into

several linked lists based on their size classes and the header

pointers are owned by this thread privately, so other threads

cannot access these free blocks. The descriptor of a TPMP is

defined as shown in Figure 6. There is a separate free block

list for each standard size class (41 lists for 41 size classes in

total). Both the header pointer and the length of the free block

list are stored in the TPMP descriptor.

The size of one TPMP descriptor is 664B. PMA reserves

640KB space for the TPMP region and thus up to 986 user

threads can be supported. When a thread calls for memory for

the first time, PMA occupies a free TPMP for this thread and

allocates some free blocks from the global superblocks to fill

the TPMP. Future memory allocation requests can be handled

by the TPMP without global memory allocation, and thus no

concurrency control is required.

TPMP significantly reduces the overhead of concurrency

control by reducing the occurrence of global memory alloca-

tion. For example, if we fill a TPMP with 1,024 free blocks

every time it runs out, the following 1,024 allocation requests

can be easily handled without concurrency control. In such

case, the occurrence rate of global memory allocation is less

than 0.1%. Hence the overhead of concurrency control is

significantly reduced.

typedef struct{ //The descriptor of a thread-private memory pool
pthread_t tid; //The owner thread of this TPMP.
struct{

PP header; //Header pointer to the free block list.
size_t length; //Length of the free block list.

} freeLists[41];//One free list for one size class. 
} TPMP;

Fig. 6. The data structure of a TPMP descriptor.

E. Allocation and Deallocation

Allocation. When a user thread invokes PMA malloc() to

allocate a free block with a specified size, PMA first checks

whether the allocation size is too large. If the allocation size

is larger than half the size of a superblock (the maximum size

in our standard size classes), this allocation will bypass the

TPMP and be achieved by allocating several contiguous su-

perblocks. For example, a 60KB allocation request will receive

4 contiguous superblocks (64KB in total). Small allocation

request will be aligned up to the nearest standard size class
and allocated from the TPMP. If the TPMP is empty, PMA

will allocate some partial superblocks in the same size class
to fill it. If there is no suitable partial superblock, PMA will

allocate an empty superblock and add it to such size class.

Deallocation. When a user thread invokes PMA free() to

reclaim a block, PMA needs to find the superblock that

contains such block at first. This can be achieved elegantly by

aligning the address down to 16KB (the size of a superblock),

since the start address of a superblock is guaranteed to be

a multiple of 16KB. PMA further obtains the size class of

this block in the superblock descriptor and adds the block to

the TPMP. If the TPMP is full (the number of free blocks

inside exceeds a threshold), PMA will flush half of the free

blocks back to the global superblocks. Like allocation, the

deallocation requests of huge blocks will also be handled

bypassing the TPMP. Moreover, there is an issue that needs

to be clarified: If a memory block allocated by thread T1 is

deallocated by thread T2, it will be added to T2’s TPMP rather

than T1’s, since T2 cannot access T1’s TPMP. This would not

cause any problem since the block is no longer needed by T1

and will be returned back to a global superblock eventually

no matter if it is in T1’s TPMP or T2’s.

F. Per-Thread Log

When allocating memory, PMA employs write-ahead undo

log to guarantee the integrity and consistency of metadata,

which writes the old version of metadata to the log region

before updating the metadata. Hence the persistent heap can be

rolled back to the nearest consistent state based on the undo log

after a system crash. Moreover, PMA reserves an individual

log region for each thread to allow them to work concurrently.

Figure 7 shows the layout of the entire log region. The whole

log region (256KB) is divided into 1,024 subregions (256B)
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and thus at most 1,024 threads can run concurrently. Each sub-

region contains the TID (the owner thread of this subregion),

the state of the transaction (RUNNING or COMMITTED),

the type of the transaction (which will be discussed in the

following paragraph), and the buffer to hold the old version

of metadata.

There are three kinds of transactions in PMA. We will

analyze the metadata that need to be updated in each kind

of transaction below:

1) Moving a superblock from one list to another (as pre-

viously mentioned in Section III-C). In this transaction,

five superblock descriptors need to be updated atomi-

cally: the superblock itself, the prior and next superblock

in the old list, and the prior and next superblock in the

new list.

2) Adding a free block to a TPMP from a global superblock

or vice versa. In this transaction, both the superblock de-

scriptor and the TPMP descriptor need to be atomically

updated.

3) Allocating/Deallocating a block from/to a TPMP. In

this transaction, only the TPMP descriptor needs to be

atomically updated.

According to the above analysis, there are at most five

metadata items to be updated in a transaction. PMA divides the

buffer holding the old version of metadata into five entries and

each entry contains the address, length, and old version value

of the metadata (as shown in Figure 7). PMA reserves a 32B

field in each entry to hold the old version value of metadata,

because the size of a superblock descriptor is 32B. Although

the size of a TPMP descriptor is larger than 32B (actually

664B), only one of the 41 free block lists in the TPMP will

be modified each time and thus only 16B metadata will be

updated.

The execution process of the transaction in PMA is sum-

marized below:

1) Write the transaction type and old version metadata to

the log region and persist the log region.

2) Set the state of the transaction to RUNNING.

3) Update the metadata and persist the new version.

4) Set the state of the transaction to COMMITTED.

Note that a PMA barrier() is required between any two

steps to make sure that the undo log has been persisted before

modifying the metadata. If a system failure occurs, PMA will

scan the log region after restarting to find out uncommitted

transactions remaining at RUNNING state and roll them back

according to the write-ahead undo log.

G. Persistent Pointer

We design a lightweight offset-based persistent pointer

based on the insight that even though the virtual address of a

certain position would change after memory remap, its offset

relative to the start of the persistent heap keeps constant.

Hence, a persistent pointer in PMA holds the offset of a

memory block relative to the start of the persistent heap. A

persistent pointer can be transformed to a virtual address in

Fig. 7. The layout of the log region.

real time by adding the current base address of the persistent
heap, and vice versa. Existing PM allocators simply return the

virtual address of the allocated memory block. The developers

need to manually transform the virtual address into offset by

subtracting the start address of the persistent heap. PMA hides

these details by providing the persistent pointer abstraction.

IV. PERFORMANCE EVALUATION

A. Experimental Setup

Our experiments run on a Linux server (Ubuntu 18.04)

equipped with 768GB Intel Optane DC PMM 100 Series

(128GB × 6) and 192GB DRAM (16GB × 12). There are two

CPU sockets in the server and each socket is equipped with

a 26-core Intel Xeon Gold 6230R at 2.10GHz. Each core has

32KB L1 data/instruction cache and 1MB L2 cache. The cores

of one processor share 35.75MB L3 cache. The Optane DC

PMMs are connected to the same CPU socket and configured

in interleaved and App Direct Modes [3].

PMA is compared with the state-of-the-art log-based PM

allocators, including libpmemobj, nvm malloc and NValloc-
log. The libpmemobj is a transactional object store library in

the persistent memory development kit (PMDK) [1] developed

by Intel. The nvm malloc [15] is an allocator designed for non-

volatile memory (NVM) and guarantees the ACID (atomicity,

consistency, isolation, durability) of metadata. There are two

versions of NVAlloc [19]: NVAlloc-GC and NVAlloc-log. The

NVAlloc-GC is based on offline garbage collection, while the

NVAlloc-log is based on write-ahead log. We use the log

version for fair comparison. The comparisons with other GC-

based NVM allocators like Makalu [17] and Ralloc [18] are

out of the scope in this paper.

B. Allocation/Deallocation Performance

We spawn multiple threads in the test program to concur-

rently allocate 106 fixed-size memory blocks in total and then

deallocate them all, repeating for 100 iterations. We record

the execution time of each allocation operation and the total

execution time of the program.

Throughput. We use the total number of allocation and

deallocation operations divided by the total execution time of

the program as the throughput. The evaluation results of the

four allocators are shown in Figure 8. The X-coordinate is the
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(a) Allocating 64B (b) Allocating 32KB

Fig. 8. Throughput of allocation and deallocation operations.

number of user threads and the Y-coordinate is the throughput

(kilo-operations per second, log10 scaled). Both the small

allocation size (64B) and large allocation size (32KB) are eval-

uated. PMA achieves better performance than the competitors

in the small allocation test, as shown in Figure 8(a). It delivers

up to 3.4x, 1.6x and 19.1x higher throughput than libpmemobj,
nvm malloc and NVAlloc-log, respectively. The performance

improvements come from our TPMP mechanism, which not

only shortens the critical path of the allocation process, but

also reduces the overheads of concurrency control. However,

in the large allocation, as shown in Figure 8(b), PMA shows

similar performance to nvm malloc. Because 32KB is larger

than the maximum standard size class (8KB) in PMA and thus

the TPMP is disabled. This will be improved in our future

work.

Tail Latency. We regard the maximum execution time of all

allocation operations as the tail latency of allocation, as shown

in Figure 9. PMA shows orders of magnitude lower tail latency

than its competitors in the small allocation (Figure 9(a)), but

higher tail latency in the large allocation (Figure 9(b)). This

is because PMA bypasses the TPMP and uses mutex locks to

achieve concurrency control in large allocation, which causes

the blocking of threads and introduces high tail latency.

Allocation Size Sensitivity. We evaluate the size sensitivity

of allocators in terms of various allocation sizes. As shown in

Figure 10, PMA delivers higher and more stable throughput

than the three competitors, when the allocation size is smaller

than 8KB. This is because the sizes no larger than 8KB will

be aligned to a standard size class and benefit from the TPMP

mechanism. However, PMA suffers from a sharp drop of

performance when the allocation size exceeds 8KB, which is

exactly the largest standard size class in our implementation.

This can be improved by expanding the standard size classes
or including the large allocation into the TPMP, which will be

explored in our future research. Nevertheless, the performance

of PMDK and nvm malloc decreases rapidly as well when the

allocation size grows.

C. Log and Flush Overheads

To evaluate the overheads of log operations and flush in-

structions, we remove these functions from PMA and compare

it with the original version. We employ multiple threads

to concurrently allocate 106 memory blocks of 64B and

deallocate them after, repeating for 100 iterations. Figure 11

shows the execution time of different PMA versions. The

PMA represents a fully functional allocator, the PMA-nolog

(a) Allocating 64B (b) Allocating 32KB

Fig. 9. Tail latency of allocation.

Fig. 10. Throughput of various allocation sizes.

represents an allocator without write-ahead log, and the PMA-
noflush represents an allocator without persistence (no log

as well). The experimental results demonstrate that the log

operations account for more than 60% of the execution time

and the flush operations account for more than 95%. The

write-ahead log introduces more than double writes to the

PM, since some metadata are packed into the log entry as

well (Section III-F). The flush operations are so costly because

the writing speed of PM is still much slower than the CPU

cache. But both the log and the flush operations are necessary

for crash consistency. Metadata is at risk of being corrupted

without the log or the flush operations.

D. Recovery Performance

Upon system crash, PMA can automatically roll back all

uncommitted transactions and restore the metadata to the

nearest consistent state based on the write-ahead undo log

after restart. To evaluate the recovery performance of PMA,

we remove all TX COMMIT() in the program, which results

in some transactions remaining uncommitted after the program

exits. We further restart the program and the recovery routine

will be invoked automatically in PMA start(). It will scan

the log region and figure out all uncommitted transactions

based on the state flag in the log entry. Once an uncommitted

transaction is found, PMA restores the metadata that has

been modified by this transaction with the old version of

the metadata in the log entry. After the recovery, PMA can

continue to normally work.

The execution time of the recovery routine is determined

by the size of the log region (scanning time) and the number

of uncommitted transactions (recovering time). The size of

the log region is fixed at 256KB in our implementation,

which supports at most 1,024 threads to concurrently work, as

discussed in Section III-F. Figure 12 shows the recovery time

for different numbers of uncommitted transactions. When the

number of uncommitted transactions is small, the scanning
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Fig. 11. Overheads of logs and flushes.

Fig. 12. The recovery performance of PMA.

time dominates (approximately 30 microseconds on aver-

age). However, when the number of uncommitted transactions

grows, the recovery time linearly increases. According to our

experiments, 512 uncommitted transactions can be recovered

in approximately 120 microseconds.

V. RELATED WORK

DRAM Allocators. Hoard [9] is a fast, highly scalable,

and memory-efficient allocator that has been widely used in

various platforms. This allocator achieves good scalability and

avoids false sharing simultaneously. Jemalloc [11] is an allo-

cator for FreeBSD to provide scalable concurrent allocation

for multi-processor computer systems. TCMalloc [10] is a

commercial allocator developed by Google, which employs

thread-caching mechanism to provide high performance. LR-
Malloc [12] is a modern lock-free allocator that leverages

atomic instruction CAS to achieve high-efficiency concurrency

control. These allocators are all designed for volatile memory.

Log-based PM Allocators. Persistent memory allocators

need to consider the states of metadata (persisted or not),

preventing metadata from corruption when a system failure

occurs. Write-ahead log is employed in many PM allocators,

such as Poseidon [13], NVMalloc [14], nvm malloc [15],

PAllocator [16] and NVAlloc-log [19]. Log-based allocators

can roll back their metadata to the nearest consistent state

after a crash.

GC-based PM Allocators. To reduce the overheads of

writing logs and flushing metadata, some modern PM allo-

cators, like Makalu [17], Ralloc [18] and NVAlloc-GC [19],

adopt offline garbage collection (GC) to relax the online

constraints of heap metadata persistence. They generate some

root objects in the heap to trace all live user objects and

traverse the persistent heap from the persistent root pointers

during garbage collection. Any object that is unreachable from

the root object will be reclaimed. They eliminate the overheads

of write-ahead log but also introduce the overheads of GC.

VI. CONCLUSION

This paper elaborates the essential problems about persis-

tent memory allocation/deallocation, including the corruption

of metadata and the invalidity of virtual address pointers

after a crash. To address these problems, we propose a

persistent memory allocator (PMA) with high efficiency and

crash consistency guarantee. PMA uses a two-level memory

management strategy and reserves a private memory pool

for each thread to achieve high concurrency. PMA designs

a lightweight write-ahead log to protect the integrity and

consistency of metadata and implements a lightweight per-

sistent pointer to permanently reference a persistent memory

object. We evaluate PMA on a real PM platform in terms of

multiple metrics. Experimental results demonstrate that PMA

can improve the throughput of allocation operations by up to

19.1x and reduce the tail latency by orders of magnitude under

some certain workloads. The source code of PMA is available

at https://github.com/HUSTxyxiang/PMA/.
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