
Consistent RDMA-Friendly Hashing on Remote
Persistent Memory

Xinxin Liu, Yu Hua*, Rong Bai

WNLO, Huazhong University of Science and Technology, Wuhan, Hubei, China

*Corresponding author: Yu Hua

E-mail: {xinxin, csyhua, bair}@hust.edu.cn

Abstract—Coalescing RDMA and Persistent Memory (PM)
delivers high end-to-end performance for networked storage
systems, which requires rethinking the design of efficient hash
structures. In general, existing hashing schemes separately opti-
mize RDMA and PM, thus partially addressing the problems of
RDMA Access Amplification and High-Overhead PM Consistency.
In order to address these problems, we propose a continuity
hashing, which is a “one-stone-two-birds” design to optimize
both RDMA and PM. The continuity hashing leverages a fine-
grained contiguous shared region, called SBuckets, to provide
standby positions for the neighbouring two buckets in case of
hash collisions. In the continuity hashing, remote read only needs
a single RDMA read to directly fetch the home bucket and
the neighbouring SBuckets, which contain all the positions of
maintaining a key-value item, thus alleviating RDMA access am-
plification. Continuity hashing further leverages indicators that
can be atomically modified to support log-free PM consistency
for all the write operations. Evaluation results demonstrate that
compared with state-of-the-art techniques, continuity hashing
achieves high throughput, low latency and the smallest number
of PM writes with acceptable load factors.

I. INTRODUCTION

High-speed networks and efficient persistent storage con-

tribute to the high performance of cloud applications. There-

fore, many schemes coalesce RDMA (remote direct memory

access) and PMs (persistent memories) to deliver high perfor-

mance [1], [2]. The coalesced RDMA and PM require rethink-

ing the design of hash-based index structures. However, apply-

ing hashing schemes to RDMA and PM environments needs to

address two main challenges: RDMA Access Amplification.
RDMA is well-known for one-sided operations (e.g., read,

write and atomic operations), which can bypass remote CPUs

and provide better performance than two-sided operations

over RC (reliable connection) mode [3]. However, a single

one-sided RDMA operation only reads/writes one contiguous

memory region. Therefore, accessing non-contiguous remote

memory requires multiple one-sided RDMA round-trips. We

refer to this problem as RDMA Access Amplification. High-
Overhead PM Consistency. Due to the existence of volatile

parts in PM-based systems (e.g., the CPU caches), in order to

ensure crash consistency in case of a system failure, updating

data larger than the 8-byte atomic write unit usually requires

undo/redo logging or copy-on-write (COW) [2], [4]. How-

ever, double write operations in these mechanisms consume

This work was supported in part by National Natural Science Foundation
of China (NSFC) under Grant No. 61772212.

the limited endurance of PM. Moreover, guaranteeing write

ordering typically needs the aid of flush/fence instructions,

thus resulting in high system performance overheads.

Existing hashing schemes separately optimize RDMA or

PM, and partially address the above challenges. Specifically,

RDMA-friendly hashing schemes are usually designed to

address the problem of RDMA access amplification [3],

[5]. However, these RDMA-friendly hashing schemes fail to

mitigate High-Overhead PM Consistency. For PM-friendly
hashing schemes, many works have been proposed to guar-

antee crash consistency and optimize PM writes [4], [6], [7].

However, these PM-friendly hashing schemes typically cause

RDMA Access Amplification due to indirect layers [4] or non-

contiguous standby positions [6].

Unlike existing hashing schemes, we propose a coalescing

hashing solution for both RDMA and PM, called continuity

hashing, which mitigates RDMA access amplification and PM

writes, as well as guaranteeing PM crash consistency. In the

continuity hashing, two buckets with adjacent bucket numbers

share a contiguous memory region between them, called

shared buckets (SBuckets). These SBuckets provide standby

positions for the neighbouring two buckets in case of hash

collisions. A bucket and the neighbouring SBuckets build a

segment, which contains all the potential positions of a specific

KV item. Therefore, to read a requested record, clients only

need a single RDMA read to directly fetch the corresponding

segment, thus reducing the potential multiple RDMA round-

trips. Write requests are handled by the server in order to sim-

plify read-write competition and ensure consistency with low

overheads. We use an indicator in the SBuckets for each two

overlapping segments to indicate whether each slot in the two

segments contains a consistent KV item. An indicator can be

modified with an 8-byte atomic write, thus supporting log-free

consistency guarantee on PM. Evaluation results demonstrate

that compared with the PM-friendly level hashing [6] and

the RDMA-friendly P-FaRM-KV [5], our continuity hashing

achieves the highest throughputs (i.e., 1.45X – 2.43X). For

latencies, the continuity hashing has better search performance

than P-FaRM-KV, and significantly outperforms the level

hashing by an average of 2.19X . The continuity hashing also

has better write performance than level hashing, and further

achieves a 1.99X improvement on average compared with

P-FaRM-KV. Continuity hashing also achieves the smallest

number of PM writes with acceptable load factors.

174

2021 IEEE 39th International Conference on Computer Design (ICCD)

978-1-6654-3219-1/21/$31.00 ©2021 IEEE
DOI 10.1109/ICCD53106.2021.00037

20
21

 IE
EE

 3
9t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 C
om

pu
te

r D
es

ig
n

(I
C

C
D

) |
 9

78
-1

-6
65

4-
32

19
-1

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
D

O
I:

10
.1

10
9/

IC
C

D
53

10
6.

20
21

.0
00

37

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on January 13,2022 at 02:54:46 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: Continuity hashing index structure.

II. THE DESIGN OF CONTINUITY HASHING

Continuity hash tables have two kinds of hash buckets, i.e.,

the numbered buckets and the unnumbered shared buckets

(SBuckets). Specifically, the numbered buckets are addressable

by a hash function, and two numbered buckets with adja-

cent bucket numbers share a fine-grained contiguous memory

region between them, which consists of several (e.g., 3)

unnumbered SBuckets, as shown in Figure 1. These SBuckets

store conflicting key-value items when the corresponding

home buckets (i.e., the neighbouring two numbered buckets)

are full, playing a similar role of additional storage named

stash. But the differences are that 1) we organize all the

numbered buckets and the SBuckets into a contiguous memory

region, and 2) we adopt a fine-grained shared region between

each two numbered buckets. The design of the contiguous

memory region for hash collisions comes from the RDMA

property that each one-sided RDMA operation can only access

one contiguous memory region. Therefore, all the potential

positions of a specific KV item are in a small contiguous

memory region, which can be fetched with a single one-sided

RDMA operation, thus reducing potential multiple RDMA

round-trips. The fine-grained shared region is designed as a

suitable trade-off between the high space utilization of the

hash table and the small size of the data retrieved via one-

sided RDMA. The number of SBuckets in the fine-grained

shared regions can be flexibly configured each time resizing

occurs. We enable each bucket to contain multiple slots like

existing schemes [4], [6].

As the basic unit of a one-sided RDMA read operation from

clients, a segment is interpreted as a numbered bucket and the

neighbouring several SBuckets. Each two segments overlap

on the SBuckets. For the convenience of description, we call

each two overlapping segments a segment pair. We use an

indicator for each segment pair to indicate whether each slot in

the two segments contains valid data. Specifically, the number

of bits per indicator is the slot number in the corresponding

segment pair, and each indicator is stored at the beginning of

the corresponding SBuckets. Therefore, when a client issues an

RDMA read to fetch a segment, the corresponding indicator

indicates the slots with the valid data, without the need for

another network round-trip. For the example in Figure 1, a

20-bit indicator for a segment pair is sufficient, which can be

modified with an 8-byte atomic write.

The communications between the server and clients leverage

the fast RDMA networking. For the procedure of remote reads

from clients to the server, we explore the advantages of one-

sided RDMA operations that do not involve remote server’s

CPU and have higher bandwidth and lower latency than two-

sided RDMA operations [3], [5]. Clients compute the remote

location of a requested key based on its hash value:

Bucket Number = hash(k)%N (1)

where hash(k) is the hash value, and N is the total number of

the numbered buckets. A one-sided RDMA read can access at

most 1GB contiguous memory region. In order to reduce the

number of network round-trips, clients only use one RDMA

read to directly obtain the corresponding segment, which

contains all the potential locations of the requested KV item

in the continuity hash table. If the computed bucket number

is even (e.g., bucket B0), the offset of the segment to be read

remotely (e.g., segment S0) is:

Ofs = hash(k)%N/2 ∗ (sizese + sizebu) (2)

If the computed bucket number is odd (e.g., bucket B1), the

offset of the segment to be read (e.g., segment S1) is:

Ofs = (hash(k)%N−1)/2∗(sizese+sizebu)+sizebu (3)

where sizese and sizebu are the segment size and the bucket

size respectively. If the requested key exists, clients will find

the KV item locally with the aid of the indicator. For the

procedure of write requests, we put the burden of handling

write requests on the server, and use server’s CPU to guarantee

persistence, like existing schemes [1], [2]. Specifically, clients

query the server using RDMA write with immediate opera-

tions, which have higher throughput than RDMA send/recv

operations over RC [3]. After receiving remote write requests,

the server processes these requests and then notifies the clients

that their requests have been completed.

The local writing process of the server provides log-free

failure-atomicity guarantee. Existing hash tables use a 1-bit

token that is associated with a slot to indicate whether the

corresponding slot is empty [6]. We extend this design and

group a set of tokens, called an indicator for each segment

pair. An indicator is able to be updated in the atomic-write

manner and, enables a log-free failure-atomicity guarantee for

all the write operations on PM. Atomic Insertion: The server

computes the home location via Equation (1), and then checks

each bit of the corresponding indicator to find an empty slot.

After the requested KV item is written to the empty slot,

the server atomically sets the associated bit from 0 to 1.

Even if a system crash occurs during writing the KV pair,

the continuity hash table is still in a consistent state. Because

the associated bit in the indicator has not been changed and

thus the partial write is not visible. Atomic Deletion: After

finding the KV item to be deleted, the server only needs to set

the associated bit in the indicator from 1 to 0 in the atomic-

write manner, and the KV item will be considered invalid

by subsequent requests. Atomic Update: Continuity hashing

adopts out-of-place update, which is a coalescence of insert

and delete operations. To update a KV pair, the server locates

the requested item, and further attempts to identify an empty

175

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on January 13,2022 at 02:54:46 UTC from IEEE Xplore. Restrictions apply.

slot in the same segment. Since the old and the new locations

of the requested item are associated with the same indicator,

the server changes the values of the two corresponding bits

in the indicator with an 8-byte atomic write. The update

to the KV pair is invisible until the atomic update in the

indicator is completed, thus ensuring crash consistency. Log-
free Resizing: Resizing requires rehashing existing KV items

into a new hash table. However, unlike the atomic update

operations, the insertion and deletion for a KV pair during

resizing cannot be completed atomically due to the updates to

two different indicators. In fact, the operation sequence (first

insert and then delete an item) ensures that data will not be

lost in the event of a system failure. After restarting the server,

we check the first existing KV item of the old hash table and

perform a delete or rehash operation based on whether it has

been inserted into the new hash table, thus restoring the hash

table to a consistent state.

The continuity hashing aims to mitigate the access am-
plification via one-sided RDMA. In practice, not too high

space utilization is acceptable due to the large capacity and

the low price of the PM products [8]. But we still provide an

optimization for the space utilization or the load factor (i.e., the

ratio of the number of stored KV items to that of total storage

units) without violating our design goals. We add a new

scheme that dynamically increases the number of SBuckets

for a small percentage of segment pairs before resizing. When

the new SBuckets for a segment pair are added, the server will

return the address and rkey of the added SBuckets region to the

connected clients. Clients can locally know whether a segment

pair has added SBuckets. Specifically, each segment pair will

have at most one SBucket group added before resizing, and

we empirically set the percentage of segment pairs with added

SBuckets to 1/10 by running different configurations. In this

case, for a uniform read workload, a client needs at most

two RDMA round-trips (one for the segment and the other

for the added SBuckets) with a probability of 10%, and only

one RDMA round trip with a probability of 90%. In addition,

our proposed method still supports log-free consistency for all

write operations on PM. Because the added SBuckets use the

same indicator as the original buckets in the segment pair, and

the indicator is able to be updated with an 8-byte atomic write.

III. PERFORMANCE EVALUATION

Our experiments are performed on two Linux machines,

each of which is equipped with a Mellanox ConnectX-5
Infiniband HCA, two 2.1 GHz Intel Xeon Gold6230R CPUs,

192GB DRAM and two 256GB Optane DIMMs. We generate

our workloads via YCSB. YCSB-A is the update-heavy work-

load. YCSB-B is the read-mostly workload. YCSB-C is the

read-only workload. YCSB-F is the read-modify-write work-

load, and consists of 50% reads and 50% read-modify-writes,

where a record will be read, then modified and written back.

Many schemes report that small-sized KV pairs dominate in

production environment [9]. Therefore, we follow the setting

of level hashing, where the key size is 16bytes, and the value

size does not exceed 15bytes [6].

Our proposed scheme is compared with two state-of-the-art

hashing schemes, i.e., level hashing [6] and P-FaRM-KV [5],

[7]. Level hashing is a PM-friendly hashing scheme, and we

add RDMA communication procedures to facilitate compar-

isons, i.e., using one-sided RDMA reads for remote read and

RDMA write with immediate operations for remote write like

our continuity hashing. FaRM [5] proposes an RDMA-friendly

hashing scheme (FaRM-KV) for DRAM-based systems. We

convert FaRM-KV into the PM counterpart (P-FaRM-KV)

following the guidance of RECIPE [7]. Note that even if we

change the structure of FaRM-KV and add a bitmap to each

bucket to support consistency within a bucket, FaRM-KV still

needs to use logging when the updates occur across buckets

for consistency guarantee.

Throughput. Figures 2 – 4 respectively show the aver-

age throughputs with various workloads. For YCSB-A, the

continuity hashing achieves 1.45X and 2.24X throughput

improvements, compared with level hashing and P-FaRM-

KV. The continuity hashing outperforms the PM-friendly level

hashing, since querying data in the level hashing requires

multiple one-sided RDMA round-trips. Moreover, continuity

hashing also significantly outperforms the RDMA-friendly P-

FaRM-KV, since the P-FaRM-KV fails to optimize PM writes

and employs the expensive logging to guarantee consistency.

For YCSB-C, we observe that for level hashing, the average

throughput of searches significantly decreases, since for each

search, the level hashing needs to issue multiple RDMA reads

to query the standby positions. Both continuity hashing and

P-FaRM-KV are optimized for RDMA reads, and each query

only needs nearly one RDMA operation.

Latency. We record the execution time of each individual

operation as latency. Figures 6 and 7 show the average

latencies of two read-dominated workloads. We observe that

compared with level hashing and P-FaRM-KV, the continuity

hashing reduces the latencies by an average of 61% and 9%.

Figures 5 and 8 show the average latencies of YCSB-A and

YCSB-F, which contain a number of write operations. The

average latency of writes increases with the number of threads

due to locking mechanism. Compared with level hashing and

P-FaRM-KV, the continuity hashing reduces the latencies by

an average of 34% and 37%. As shown in Figure 9, for

the latencies of PM update operations, our continuity hashing

respectively achieves 1.39X and 2.14X performance improve-

ments on average, compared with the level hashing and the

P-FaRM-KV. We have optimized the insertion operations of P-

FaRM-KV to reduce PM writes and latency by replacing the

iteratively displacing KV pairs in the original scheme with

at most one movement. The results further demonstrate our

performance advantages over the two state-of-the-art schemes.

The Number of PM Writes. We evaluate the number of PM

writes by counting the number of flush instructions, as shown

in Table I. In our continuity hashing, each insertion and update

needs to sequentially write the KV pair in an empty slot and

modify the associated bit in the indicator from 0 to 1, thus

including two PM writes. Furthermore, a deletion operation

only needs one PM write that modifies the associated bit from

176

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on January 13,2022 at 02:54:46 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: The throughput of YCSB-A. Fig. 3: The throughput of YCSB-B. Fig. 4: The throughput of YCSB-C.

Fig. 5: The latency of YCSB-A. Fig. 6: The latency of YCSB-B. Fig. 7: The latency of YCSB-C.

Fig. 8: The average latency of YCSB-F

(the read-modify-write workload).

Fig. 9: The average latency of the

update-only workload.

Fig. 10: The load factors of continuity

hashing with different schemes.

1 to 0. In the level hashing, the number of PM writes for an

insertion or an update is affected by the load factor of hash

table. When the load rate increases, the probability of using

logging to ensure crash consistency will also increase, which

causes more PM write operations. P-FaRM-KV uses logging

for each write operation, which incurs the highest number of

PM writes among the three hashing schemes.

TABLE I: The number of PM writes with different operations.

Insertion Update Deletion

Continuity 2 2 1

Level 2 – 2.01 2 – 5 1

P-FaRM-KV 5 5 5

Maximum Load Factor. We evaluate the optimization

scheme that dynamically adds SBuckets for a small percentage

of segment pairs to improve load factors. The evaluation uses

YCSB-A workload. In Figure 10, we evaluate the load factors

of continuity hashing and show the effectiveness of the added

SBuckets in terms of space utilization. The initial hash table

contains 20 buckets (i.e., 80 slots). Each resizing expands

the hash table to twice the current capacity. We observe that

as the number of resizing increases, the load factors of our

original solution without added SBuckets gradually decrease.

The optimization schemes with the added Sbuckets for 1/20
and 1/10 segment pairs achieve the load factors of about

70%, which is acceptable due to the large capacity of the

available PM products [8]. We further evaluate the throughput

of continuity hashing with different optional schemes. The

figure is omitted here due to space limit. The results show

that adding SBuckets for 1/10 and 1/20 segment pairs only

slightly reduces the throughput of YCSB-A by 4% – 5%.

IV. CONCLUSION

Designing a high-performance hash structure is important

for memory systems based on coalescing RDMA and PM. In

order to address the problems of RDMA Access Amplification

and High-Overhead PM Consistency, we propose the continu-

ity hashing, a coalescing hashing solution for both RDMA and

PM. The continuity hashing supports efficient remote read via

a single one-sided RDMA operation and log-free consistency

guarantee for all the write operations on PM. The evaluation

demonstrates that our proposed continuity hashing achieves the

high throughput, the low latency as well as the small number

of PM writes, while obtaining acceptable load factors.

REFERENCES

[1] J. Yang, J. Izraelevitz, and S. Swanson, “Orion: A distributed file system
for non-volatile main memory and rdma-capable networks,” in FAST,
2019.

[2] Y. Shan, S.-Y. Tsai, and Y. Zhang, “Distributed shared persistent memory,”
in SOCC, 2017.

[3] X. Wei, Z. Dong, R. Chen, and H. Chen, “Deconstructing rdma-enabled
distributed transactions: Hybrid is better!” in OSDI, 2018.

[4] M. Nam, H. Cha, Y.-r. Choi, S. H. Noh, and B. Nam, “Write-optimized
dynamic hashing for persistent memory,” in FAST, 2019.

[5] A. Dragojević, D. Narayanan, M. Castro, and O. Hodson, “Farm: Fast
remote memory,” in NSDI, 2014.

[6] P. Zuo, Y. Hua, and J. Wu, “Write-optimized and high-performance
hashing index scheme for persistent memory,” in OSDI, 2018.

[7] S. K. Lee, J. Mohan, S. Kashyap, T. Kim, and V. Chidambaram, “Recipe:
converting concurrent dram indexes to persistent-memory indexes,” in
SOSP, 2019.

[8] J. Izraelevitz, J. Yang, L. Zhang, J. Kim, X. Liu, A. Memaripour,
Y. J. Soh, Z. Wang, Y. Xu, S. R. Dulloor et al., “Basic performance
measurements of the intel optane dc persistent memory module,” arXiv
preprint arXiv:1903.05714, 2019.

[9] Y. Chen, Y. Lu, F. Yang, Q. Wang, Y. Wang, and J. Shu, “Flatstore: An
efficient log-structured key-value storage engine for persistent memory,”
in ASPLOS, 2020, pp. 1077–1091.

177

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on January 13,2022 at 02:54:46 UTC from IEEE Xplore. Restrictions apply.

