Paper ID: 274

Write-Optimized and Consistent RDMA-
based Non-Volatile Main Memory Systems

Xinxin Liu, Yu Hua, Xuan Li, Qifan Liu

Huazhong University of Science and Technology

ICCD 2021

Background

» Non-Volatile Main Memory (NVMM)
v" Non-volatility, byte-addressability, high density and DRAM-scale latency.

» Remote Direct Memory Access (RDMA)

v" Allow to directly access remote memory via bypassing kernel and zero
memory copy.
v' Two-sided RDMA operations (send and recv):
v' One-sided RDMA operations (read, write and atomic):
v' Provide higher bandwidth/lower latency than two-sided one.
v" Do not involve remote CPU.

Background

» Non-Volatile Main Memory (NVMM)
v" Non-volatility, byte-addressability, high density and DRAM-class latency.

» Remote Direct Memory Access (RDMA)

v" Allow to directly access remote memory via bypassing kernel and zero
memory copy.
v' Two-sided RDMA operations (send and recv):
v' One-sided RDMA operations (read, write and atomic):
v' Provide higher bandwidth/lower latency than two-sided one.
v" Do not involve remote CPU.

NVMM can be directly accessed through the RDMA network.

N

RDMA-based NVMM systems become an important research topic.

Challenges

» RDMA NICs fail to guarantee persistence with NVMM.

N

» Using one-sided RDMA to access remote NVMM needs to address
the challenges of guaranteeing Remote Data Atomicity (RDA):

Client Server’s NIC Server’s NVMM

Challenges

» RDMA NICs fail to guarantee persistence with NVMM.

N

» Using one-sided RDMA to access remote NVMM needs to address
the challenges of guaranteeing Remote Data Atomicity (RDA):

Client Server’s NIC Server’s NVMM

®

Inconsistency!

Challenges

» RDMA NICs fail to guarantee persistence with NVMM.

N

» Using one-sided RDMA to access remote NVMM needs to address
the challenges of guaranteeing Remote Data Atomicity (RDA):

Client Server’s NIC Server’s NVMM

®

Inconsistency!

Challenges

» RDMA NICs fail to guarantee persistence with NVMM.

N

» Using one-sided RDMA to access remote NVMM needs to address
the challenges of guaranteeing Remote Data Atomicity (RDA):

Client Server’s NIC Server’s NVMM

The server is unaware of the inconsistency
due to no CPU involvement.

Cféy/

Inconsistency!

Existing Solutions

Inefficiency due to:

» High Network Overheads
v' Leverage an extra RDMA read after RDMA write(s)

» High CPU Consumption

v' Logging and COW require the remote CPU to control the
seguence among operations.

» Double NVMM Writes
v' Consuming the limited NVMM endurance due to first
checking the written data in buffers, and then applying
them into the destination addresses.

System Design of Erda
~|Clients| ™ Object: (Checksum| K-V Pair |

(g R
Server o Mg
. / ~
Hash (Object Key) Head Array:
p l e N
-~ IMetadata A|Metadata X| - | Hash Table Head 1 I Head 2 I
\ J (G /
s T T ==) |
/ Metadata A: ~~__, Dataa | !
Object KeyI Head ID Is_byte Ato.m ic Write Object M I Object N | |object AIobject Blobject C
L Region) K J
—— I .
_ —— ~ 8-byte Atomic Write Region: | Log Region

1-bit 31-bit 31-bit 1-bit . -
Indicator| (New/Old) Offset | (Old/New) Offset [Reserved . object B

System Design of Erda

/Clients\

S
Server @‘“

/?0/1440bject: [Checksum]: K-V Pair]

Head Array:

~

Hash (Object Key)
|

Ve

e N

- [Metadata A|Metadata X| -+ | Hash Table

Head 1 I Head 2 I

\. J -
’

e
-
-
-
-
-~ —
-
-

v VL

-byte Atomic Wr@

/
y4 Metadata A: - Data:
Object M I Object N

object AIobject BIobject C

. 8
Object KeyI Head ID I Region

\ J

- |

— —— ~ 8-byte Atomic Write Region: |
1-bit 31-bit 31-bit 1-bit

Indicator| (New/Old) Offset | (Old/New) Offset [Reserved

Log Region

object B

@~@) the procedure of reading data

Metadata in server:

Hash (object A)
RDMA read

Verify checksum over object A

(1)~(4) the procedure of writing data

@H @ Return the last written address of log
_ RDMA write_with_imm Server

[.-« |Metadata A| --- Hash Table

@ RDMA write/read object A
Log region in server: If the fetched object is non-atomic,

read a previous version via RDMA.
Head Node P

Clients R
RDMA write_with_imm CPU

Send write requests

write region in metadata A

([object A I object B I object C]

Before:

Indicator (New) Offset (Old) Offset Reserved

[1 I(Versionx+1) (Version x) I]
Offset Offset

\[object B I objectN)

After: @

Indicator (Old) Offset

0 (Version x+1)
Offset

(New) Offset Reserved

(Version x+2)
Offset

|
|
|
|
|
|
|
|
|
|
|
|
Update the 8-byte atomic :
|
|
|
|
|
|
|
|
|
|
|
|

10

Evaluation

Latency (ps)

Erda M Redo Logging [JRead After Write
f %
2 I I
2 78 7 7
é éI i

16

64 1256
Value Size (Bytes)

1024

4096

The latency of the update-heavy workload.

N
v
o

>

Throughput (KOps/s)
5 8 &8 8

o

7 Erda M Redo Logging [Read After Write
7,
é
Z
y
a
T ZyIIFW 4§II(W ?2 = ¢§

1

2 4 8
The number of client threads

16

The throughput of the update-heavy workload.

>

The number of written bytes. N is the size of one KV pair. Size(key) is the key

7 Erda

=
=)
o

Latency (us)

B Redo Logging [Read After Write

/I ?l |

The latency of the read-mostly workload.

e 7
7 Z
64

256 1024
Value Size (Bytes)

4096

w
o
o

M Redo Logging [Read After Write

m-
7 Z
Zmr ?lﬂ élﬂ

AN

» 7 Er
& 250 da
o)

S 200

= 150

Q.

=

<, 100

>

O s0

-

F 0 24 T

1

2 4 8
The number of client threads

16

The throughput of the read-mostly workload.

Create Update Delete
Erda Size(key)+9+N 8+N Size(key)+9
Redo Logging Size(key)+12+2N | 442N | Size(key)+8
Read After Write | Size(key)+12+2N 4+2N Size(key)+8

11

Conclusion

» Challenges of guaranteeing Remote Data Atomicity (RDA):
v High Network Overheads
v High CPU Consumption
v' Double NVMM Writes

» Erda:
v A write-optimized log-structured NVMM design for

Efficient Remote Data Atomicity.
v’ Leverage Out-of-Place Updates & CRC Checksum & 8-Byte

Atomic Write.

» Compared with state-of-the-art schemes, Erda reduces NVMM
writes by 50%, significantly improves throughput and
decreases latency.

12

Thanks! Q&A

