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Abstract—To deliver high performance in cloud computing,
many efforts leverage RDMA (Remote Direct Memory Access)
in networking and NVMM (Non-Volatile Main Memory) in end
systems. Due to no CPU involvement, one-sided RDMA becomes
efficient to access the remote memory, and NVMM technologies
have the strengths of non-volatility, byte-addressability and
DRAM-like latency. However, due to the need to guarantee
Remote Data Atomicity (RDA), the synergized scheme has to
consume extra network round-trips, remote CPU participation
and double NVMM writes. In order to address these problems,
we propose a write-optimized log-structured NVMM design for
Efficient Remote Data Atomicity, called Erda. In Erda, clients
directly transfer data to the destination memory addresses in the
logs on servers via one-sided RDMA writes without redundant
copies and remote CPU consumption. To detect the atomicity
of the fetched data, we verify a checksum without client-
server coordination. We further ensure metadata consistency
by leveraging an 8-byte atomic update in a hash table, which
also contains the addresses of previous versions of data in the
log for consistency. When a failure occurs, the server properly
and efficiently restores to become consistent. Experimental results
show that compared with state-of-the-art schemes, Erda reduces
NVMM writes approximately by 50%, significantly improves
throughput and decreases latency.

I. INTRODUCTION

Cloud computing requires high performance in both net-

work transmission and local I/O throughput. RDMA (Remote

Direct Memory Access) allows to directly access remote

memory via bypassing kernel and zero memory copy. Due

to no CPU involvement, one-sided RDMA operations (read,

write and atomic) provide higher bandwidth and lower latency

than two-sided one (send and recv). Moreover, NVMM (non-

volatile main memory) technologies have the strengths of non-

volatility, byte-addressability, high density and DRAM-class

latency in end systems. Many schemes thus synergize RDMA

and NVMM to deliver end-to-end high performance [1]–[5].

However, RDMA NICs fail to guarantee persistence with

NVMM [1], [3], and thus using one-sided RDMA to access

remote NVMM becomes inefficient due to the challenges of

guaranteeing Remote Data Atomicity (RDA): Non-atomic

writes from failures are durable in NVMM, which results in

the inconsistency of data. The server is unaware of the non-

atomic and invalid data in NVMM due to no CPU involvement

in the context of the one-sided RDMA. The client is also

This work was supported in part by National Natural Science Foundation
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unaware of the possible data loss in the server, because the

returned ACK of RDMA write from the server merely means

that the data have reached the volatile cache of the server NIC,

and possibly fail to be flushed into NVMM.

Currently, in order to guarantee RDA, some schemes lever-

age an extra RDMA read operation after RDMA write to

force data to be persistent and integrated [3], [6]. Undo/redo

logging and copy-on-write (COW) are popular consistency

mechanisms in persistent memory systems [5], [7]. There

also exist some RDMA-based NVMM systems that ensure

RDA by CPU involvement [1], [5]. However, these solutions

fail to be efficient due to the following three problems. (1)

High Network Overheads: existing schemes that leverage

an extra RDMA read operation after RDMA write cause

extra network round-trips for each RDMA write. (2) High
CPU Consumption: logging and COW require the remote

CPU to control the sequence among operations. However,

CPU involvement decreases the benefits of using one-sided

RDMA operations. (3) Double NVMM Writes: some CPU

involvement solutions [8] need to check the written data in

log regions or buffers, and then apply them into the destination

memory addresses. These operations essentially require double

NVMM writes, consuming the limited NVMM endurance.

In order to address these problems, we propose Erda (Ef-

ficient Remote Data Atomicity) that is an efficient write-

optimized log-structured NVMM design. In Erda, an object

with a CRC checksum inside is the basic unit of access opera-

tions. Clients read and write objects by interacting with remote

servers. For the update operation from clients to servers, the

metadata in a hash table are modified with an 8-byte atomic

write, and then the object is directly transferred from clients to

the destination memory address on servers without redundant

buffer and server CPUs. The non-atomicity of the written ob-

ject will be detected by subsequent read requests via verifying

checksums. Once the verification results show that the fetched

object is non-atomic, clients will re-read the previous version

of the object, whose address information is also contained in

the hash table, to ensure the consistency and atomicity of the

fetched object. At the same time, servers are notified about

the inconsistency and properly restore to a consistent version.

Evaluation results demonstrate that compared with Read After

Write and Redo Logging schemes, Erda significantly improves

the throughput and decreases the latency, as well as reduces

the NVMM writes approximately by 50%.
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Fig. 1: The overall architecture of Erda.

II. SYSTEM DESIGN

Data and metadata are persistent in the server’s NVMM.

The Structure of an Object: As shown in Figure 1, an object

is the basic unit of one access, which consists of a 32-bit

CRC checksum and a KV pair. Specifically, the 32-bit CRC

checksum computed over the KV pair is used to check the

atomicity of the object. The Structure of a Log Region:
We store and manage objects using a log-structured manner.

We use a head array of the fixed addresses to link logs, and

the Head ID is used to distinguish different head nodes. Each

head links a continuous memory region (such as 1GB) as a

log region. For scalability, when a larger memory region is

needed, we allocate and register another continuous memory

region and link it to the first 1GB memory region following

the same head. To enable one-sided RDMA reads from clients

to a log region, we analyze workloads and predefine a size for

a unit that stores an object in the log region. When the size

of the object is no larger than the preset size, the object is

stored in the log region. Otherwise, the log region stores the

pointer that points to the full object outside the log region.

Metadata in a Hash Table: We adopt the RDMA-friendly

hopscotch hashing to index objects. The hash entries store the

metadata of objects. We design a structure for the metadata,

which consists of the object key, the head ID and an 8-byte

atomic write region, including 1-bit Indicator which indicates

whether the following 31-bit offset is “new” (the latest address

of the object) or “old” (the previous address of the object),

31-bit new/old offset, 31-bit old/new offset and 1-bit reserved

position to support variable-size objects. All the information

in this region can be updated in an 8-byte atomic write.

Figure 2 shows the procedures of reading and writing data

(objects) using RDMA. Once the connection is established, the

server will send the head array containing the corresponding

relationships between head IDs and pointers to the client. To

read an object, the client hashes the requested object key, and

uses one-sided RDMA read to directly read the corresponding

hash entry in the server. Then, after verifying the received

object key, the client queries the local cached head array for

the pointer corresponding to the received head ID. Finally,

with the aid of the 8-byte atomic write region and the pointer,

the client directly fetches the requested object using one-

sided RDMA read. When the client verifies the checksum

of the object correctly, this RDMA read operation finishes.

To write an object, the client sends a write request to query
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Fig. 2: The procedures of reading and writing objects.

the server about the last written address of the log using

RDMA write with imm, which notifies the receiver of the

immediate value. The server further updates the hash entry of

desired key’s metadata and returns the last written address of

the log. With the returned information, the client posts one-

sided RDMA writes to directly write data in the log region of

the server without the participation of the server’s CPU, and

thus the server obtains higher processing capacity and removes

redundant copies.

Erda is able to provide Remote Data Atomicity (RDA)

guarantee to ensure crash consistency under RDMA and

NVMM scenarios: Out-of-Place Updates. We adopt a log-

structured NVMM design to prevent in-place updates, and

always maintain an “old” version of the updated object (similar

to an undo log). CRC Checksum. We add a 32-bit CRC

checksum over each object, so clients can detect the atomicity

of the fetched object by verifying the checksum. Once the

fetched object becomes non-atomic, the client can issue an-

other RDMA read to fetch the previous version of the object.

8-Byte Atomic Write. We design an 8-byte atomic write

region in the hash entry to ensure metadata consistency. The

update operation only needs to modify the atomic write region

in the metadata. Therefore, the inconsistency will only occur

when the metadata have been atomically updated but a failure

occurs before the object data have been fully written into a

log. Fortunately, the 8-byte atomic write region also contains

the address information for the “old” object version. When

a failure occurs, the client can fetch the previous version,

and the server can properly restore to a consistent version.

However, for create and delete operations, the entire hash

entry needs to be modified, which is larger than 8 bytes. In

order to guarantee the consistency for the create operation, the

atomic write region in a hash entry is the last modified part.

Hence, if the metadata is partially written, the data offsets in

the atomic write region will be equal to 0. During recovery,

the server compares the key in that hash entry with the key of

the first object in the log region. If the two are not the same,

the server will delete this entry. For the delete operation, the

8-byte atomic write region is cleared before the rest of the

metadata entry, in order to ensure consistency across failures.

III. IMPLEMENTATION DETAILS

Read-Write Competition. In Erda, there are three read-

write scenarios. 1) After receiving an update request, a server

atomically modifies a hash entry, but the client has not
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completed the object write. Thus, synchronous read operations

from other clients find that the object is invalid by checking

the checksum. In this case, the clients issuing the read requests

will read a previous version of the requested object by using

the old offset from the obtained hash entry. Then the client

will notify the server to correct the inconsistency. 2) Clients

remotely read a hash entry that is being created/deleted by the

server and hasn’t been completed. The clients will know if the

metadata is partially created/deleted by comparing the key in

the hash entry with the key of the object whose data offset is 0
within the log region. In addition, the scenario, where clients

remotely read the object whose hash entry has been created

but the object write has not been completed, is similar to the

first scenario. 3) When a client has read the entry but not the

corresponding object, another client concurrently writes the

updated object in the log after requesting the server to modify

the same entry. This read-write competition does not lead to

errors, because the update in our log-structured mechanism

is an out-of-place update, which does not affect the previous

version of the object to be read by the first client.

Lock-Free Log Cleaning. Log cleaning reclaims free space

of the append-only log by removing deleted objects and stale

versions of objects for space saving. When the occupied space

following a head reaches a pre-defined threshold, the cleaner

in a server will allocate another continuous memory region,

and starts log cleaning after notifying the connected clients

and waiting maximum round trip time. After receiving the

notification, clients can still read and write objects, but in

different ways: clients issue read/write requests using RDMA

write with imm. Furthermore, in the 8-byte atomic write

region of metadata, the server does not flip the Indicator.

The previous “new offset” region in metadata now stores the

address of the original log region (Region 1), and the previous

“old offset” region in metadata now stores the address of the

newly allocated region (Region 2). Log cleaning consists of

two phases: log merging and replication. In the log merging

phase, the cleaner traverses Region 1, writes the latest version

of objects to Region 2 and updates the “old offset” region

as metadata. For read/write requests from clients, the server

accesses the “new offset” region where the address information

of Region 1 is stored. In the replication phase, the cleaner

replicates objects that were written by clients after the start

of the log cleaning into Region 2, and the server handles

new read/write requests concurrently. Specifically, for the

write requests, the server updates the “old offset” region,

and appends the new object into Region 2. When the log

cleaning is completed, the server changes the pointer of the

corresponding head from pointing to Region 1 to Region 2.

Then, the server flips the Indicators in the hash table, returns

the new pointer to the connected clients and notifies these

clients that the log cleaning finishes.

IV. PERFORMANCE EVALUATION AND ANALYSIS

Our experiments run upon 2 – 4 servers for different per-

formance metrics, each of which contains two 2.4 GHz Intel

Xeon E5620 CPUs (4 cores) and 12GB of DDR3 RAM. Each

server is also equipped with a 40Gbps Mellanox ConnectX

InfiniBand network adapter and runs on CentOS 7.3. we

add 150ns as extra write latencies of DRAM to simulate

NVMM [9]. We use YCSB to generate three workloads

that follow Zipfian distribution: the update-heavy workload

(YCSB-A), the read-mostly workload (YCSB-B) and the read-

only workload (YCSB-C).

We compare Erda with two consistency schemes: Redo Log-

ging (a CPU involvement scheme) [7] and Read After Write

(a network-dominant scheme) [6]. Redo Logging scheme

adopts two-sided RDMA (RPC) to access remote NVMM. To

write objects, all a client needs to do is to send a request

to the redo log region of a server using RDMA send. The

server asynchronously verifies the atomicity of the message in

the redo log and applies the write request to the destination

memory address. To read objects, after a client issues a request

via RDMA send, the server looks for the object in the redo log

and the destination memory address. For Read After Write
scheme, to write objects, a client first sends a request to a

server like Erda and obtains the address to be written in the

ring buffers. Moreover, the client uses one-sided RDMA write

to push the object into the ring buffers, and issues RDMA read

following the RDMA write to force the object to be persistent

and integrated into the ring buffers. The server CPU polls

for these operations asynchronously and applies them to the

destination memory address. The procedure of read operations

follows the operations of redo logging scheme.

Latency. In Figures 3 – 5, compared with Redo Logging

and Read After Write, Erda reduces the average latencies

by approximately 34.40% and 34.43% respectively. Erda per-

forms especially better for YCSB-B and YCSB-C where read

operations dominate, because the clients of Erda use two one-

sided RDMA reads to perform read operations (one for the

metadata, and the other for directly fetching the requested

object) without the CPU involvements of servers.

Throughput. Figures 6 – 8 show the throughputs with

different workloads and numbers of client threads. The value

size is 16Bytes. We observe that the average throughput

of Erda is 1.53x and 1.51x those of Redo Logging and

Read After Write respectively. We further evaluate Erda’s

throughput using one server and three clients (each client with

one thread). As shown in Figure 9, the system scalability has

been significantly improved since Erda’s remote reads do not

occupy the server CPUs, and the remote writes require the

participation of the server CPUs only when requesting the

remote addresses to be written.

The Number of Written Bytes. Table I shows the benefits

of Erda in terms of NVMM endurance. N is the size of

one KV pair. Size(key) is the key size. For Erda, a create

operation first writes metadata in the hash table, i.e., an object

key, a head ID (1Byte), an Indicator and an offset (4Bytes).

Then a client directly writes an object (4Bytes+N ) in a log

region. For an update operation in Erda, the server rewrites

an Indicator and an offset (4Bytes) in metadata, and then

writes the updated object (4Bytes+N ) in a log region. A delete

operation in Erda is to directly delete/reset the corresponding
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Fig. 3: The latency of YCSB-A. Fig. 4: The latency of YCSB-B. Fig. 5: The latency of YCSB-C.

Fig. 6: The throughput of YCSB-A. Fig. 7: The throughput of YCSB-B. Fig. 8: The throughput of YCSB-C.

Fig. 9: The throughput with multiple

client nodes. The value size is 16Bytes.

Fig. 10: The normalized CPU costs at

server side (64Bytes value size).

Fig. 11: The latencies during log clean-

ing (1, 024Bytes value size).

hash entry, which contains an object key, a 1-byte head ID and

an 8-byte atomic write region. For Redo Logging and Read

After Write, the metadata consists of a key and an address

(8Bytes). We omit the detailed analysis due to space limit.

TABLE I: The number of written bytes in different operations.

Create Update Delete

Erda Size(key)+9+N 8+N Size(key)+9

Redo Logging Size(key)+12+2N 4+2N Size(key)+8

Read After Write Size(key)+12+2N 4+2N Size(key)+8

Server CPU Utilization. Figure 10 evaluates the utilization

of the server CPU that possibly becomes a bottleneck when

handling a large number of client requests on a fast network.

For YCSB-C, the CPU cost of Erda is 0 since the read

procedure of Erda does not involve server CPUs. Hence the

normalized CPU costs of the other two schemes are positive

infinity. The normalized CPU costs of Redo Logging and Read

After Write for YCSB-B are on average 20.90x and 21.75x

higher than the cost of Erda, respectively. For YCSB-A, the

normalized CPU costs of Redo Logging and Read After Write

are on average 1.92x and 2x respectively.

Log Cleaning. We evaluate the impact of log cleaning on

the concurrent read/write requests. In Figure 11, “Log Clean-

ing” represents the average latencies of read/write requests

during the log cleaning. “Normal” represents the average

latencies of read/write requests under the normal cases of Erda.

The average latencies during the log cleaning are worse than

those under the normal cases of Erda. The main reason is that

the read procedure of Erda does not involve server CPUs with

one-sided RDMA read, while the read procedure during the

log cleaning uses RDMA write with imm involving server

CPUs (similar to Redo Logging and Read After Write).

V. CONCLUSION

In order to address the problems of high network overheads,

high CPU consumption and double NVMM writes when

ensuring RDA with RDMA and NVMM, we propose an

efficient write-optimized log-structured NVMM design, called

Erda. Erda transfers data directly to the destination memory

address without buffer and copy, and guarantees consistency

and atomicity by leveraging out-of-place updates, the CRC

checksum and the 8-byte atomic write. Evaluation results

demonstrate that Erda reduces NVMM writes approximately

by 50%, significantly reduces CPU costs, decreases the laten-

cies and improves the throughputs of existing schemes.
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