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Abstract—In distributed key-value stores, performance fluc-
tuations generally occur across servers, especially when the
servers are deployed in a cloud environment. Hence, the replica
selected for a request will directly affect the response latency.
In the context of key-value stores, even the state-of-the-art
algorithm of replica selection still has considerable room for
improving the response latency. In this paper, we present the
fundamental factors that prevent replica selection algorithms
from being effective. We address these factors by proposing
NetRS, a framework that enables in-network replica selection
for key-value stores. NetRS exploits emerging network devices,
including programmable switches and network accelerators, to
select replicas for requests. NetRS supports diverse algorithms
of replica selection and is suited to the network topology of
modern data centers. Compared with the conventional scheme
of clients selecting replicas for requests, NetRS could effectively
cut the response latency according to our extensive evaluations.
Specifically, NetRS reduces the average latency by up to 48.4%,
and the 99th latency by up to 68.7%.

Keywords-In-network computing; Key-value store; Replica
selection; Response latency;

I. INTRODUCTION

The distributed key-value store is a vital component of
modern Web applications [1]–[3]. For such applications,
minimizing the response latency is critical due to their
interactive nature. Even the poor tail latency in the key-
value store may have a dramatic impact on user-perceived
latencies because serving only one end-user request typically
requires hundreds or thousands of storage accesses [4].

Distributed key-value stores (e.g. Cassandra [5], Dy-
namo [6], Voldemort [7], Couchbase [8], etc.) generally
replicate data over multiple servers to be highly available
and reliable. As server performance fluctuations are the
norm [9]–[11] (especially in cloud environments where
multiple tenants share resources), the replica selection has a
direct impact on the response latency of reading request.
Considering that the workloads of key-value stores are
commonly read dominant [12], the replica selection scheme
plays an important role in cutting response latency. Redun-
dant requests [9] (a client issues the same request to multiple
replica servers, and uses the response that arrives first) can
also help eliminate the impact of the performance variability
of servers. However, using redundant requests cannot always

reduce the latency [10] since it is a trade-off between system
utilization and response latency [13].

In the context of key-value stores, there are several replica
selection algorithms [5], [10] that address the dynamically
changing performance of servers from both academia and in-
dustry. As requests in key-value stores typically access small
size data (about 1KB) [4], these replica selection algorithms
work in a distributed manner to avoid the latency penalties
of network communications or cross-hosts coordinations at
the per-request level. With the conventional scheme, each
client is one Replica Selection Node (RSNode). An RSNode
independently selects replicas for requests based on its
local information, including the data collected by itself (e.g.
the number of pending requests) and/or the server status
piggybacked in responses. Piggybacking data in response
packets is the typical approach to delivering server status
to clients. Piggybacking avoids the overheads of network
protocols due to not constructing separate network packets
for the status of a few bytes.

When clients are used as RSNodes, there are two factors
that reduce the effectiveness of replica selection algorithms.
(i) A client is likely to select a poorly-performing server for a
request due to its inaccurate estimation of server status. The
accuracy of the estimation depends on the recency of client’s
local information. As clients rely on requests and responses
to update local information, the traffic flowing through a
client will determine the recency of its local information.
Considering that one client typically sees a small portion
of the traffic, there will be lots of clients selecting replicas
based on stale and limited local information. (ii) Servers
may suffer from load oscillations due to “herd behavior”
(multiple RSNodes simultaneously choose the same replica
server for requests). The occurrence of “herd behavior” is
positively correlated to the number of independent RSNodes.
Due to the large number of clients in key-value stores,
servers are highly likely to suffer from load oscillations.
As a matter of fact, even the state-of-the-art algorithm of
replica selection, C3 [10], still has considerable room for
improving the response latency. It is worth mentioning that
the above analysis does not apply to storage systems that
are not latency-critical (e.g. HDFS [14]). In such systems,
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clients send requests to centralized end-hosts (e.g. proxy
servers) for better replica selection. The latency penalties
are negligible because a request commonly reads several
megabytes of data.

We propose NetRS to address the factors that prevent
replica selection algorithms from being effective. NetRS is
a framework that enables the in-network replica selection
for key-value stores in data centers. Instead of using clients
as RSNodes, NetRS offloads tasks of replica selection to
programmable network devices, including programmable
switches (e.g. Barefoot Tofino [15], Intel’s FlexPipe [16])
and network accelerators (e.g. Cavium’s OCTEON [17],
Netronome’s NFE-3240 [18]). In addition to the control
plane programmability with Software Defined Networking
(SDN) switches [19], programmable network devices enable
the data plane programmability. Specifically, programmable
switches are able to parse application-specific packet head-
ers, match custom fields in headers and perform correspond-
ing actions. Network accelerators can perform application-
layer computations for each packet with a low-power multi-
core processor. As network devices (e.g. switches) are much
fewer than end-hosts in data centers, network devices can
automatically gather traffic. Hence, NetRS has two advan-
tages over client-based replica selection. First, compared
with clients, network device could obtain more recent local
information by gathering traffic. Then, as RSNodes, network
devices are more likely to choose better replicas for requests.
Second, NetRS could reduce the occurrence of “herd behav-
ior” with fewer RSNodes because one network device could
select replicas for requests from multiple clients.

Nevertheless, offloading replica selection to data center
network is nontrivial due to the following reasons. (i) Mul-
tiple Paths. Modern data centers typically use redundant
switches to provide higher robustness and performance.
Thus, a request and its response may flow through different
network paths (different sets of switches). However, on
one hand, replica selection algorithms may rank replicas
according to metrics determined by both the requests and
their responses, e.g. the number of pending requests. On
the other hand, unbalanced requests and responses flowing
through an RSNode can result in bad replica selections.
For example, there is an RSNode that sees 80% requests
and 20% responses. Due to receiving only 20% responses,
this RSNode will select replicas for 80% requests based on
the relatively stale status of servers. Hence, NetRS should
guarantee that one request and its corresponding response
flow through the same RSNode. (ii) Multiple Hops. In a
data center, a request from a client needs to flow through
multiple switches until arriving at the server. Moreover, with
the flexibility of SDN forwarding rules, a request could flow
through any switches out of the default (shortest) network
paths by taking extra hops. Although any hop can be the
RSNode for a request, we should carefully determine the
placement of RSNodes with comprehensive considerations,

including the requirements of the replica selection algorithm,
the capacity of the network devices, and the network over-
heads caused by extra hops.

In summary, our contributions include:
(i) Architecture of NetRS. In the context of data center

networks that support multipath communications, we design
the NetRS framework that enables in-network replica se-
lection for key-value stores. NetRS integrates the strengths
of programmable switches and network accelerators by
designing flexible formats of NetRS packets and customizing
processing pipelines for each network device. Moreover,
NetRS could support diverse replica selection algorithms.

(ii) Algorithm of RSNodes placement. We propose an
algorithm to arrange RSNodes in the modern data cen-
ter network with a complex topology. Our algorithm first
formalizes the placement problem as an Integer Linear
Programming (ILP) problem, then determines the placement
of RSNodes by solving the ILP.

(iii) System evaluation. We evaluate NetRS using simula-
tions in a variety of scenarios. We vary the number of clients,
the demand skewness of clients, the system utilization and
the service time of servers. Compared with selecting replica
by clients, NetRS reduces the mean latency by up to 48.4%,
and the 99th latency by up to 68.7%.

II. OVERVIEW OF NETRS

This section provides an overview of NetRS architecture.
We describe the design of NetRS and show how NetRS is
suited to the network of modern data center and exploits
programmable network devices.

The data center network generally uses a hierarchical
topology [20]–[22] as shown in Fig. 1. End-hosts are com-
monly organized in racks (each rack contains about 20 to
40 end-hosts). End-hosts in a rack connect to a Top of
Rack (ToR) switch. A ToR switch connects to multiple
aggregation switches for higher robustness and performance.
The directly interconnected ToR and aggregation switches
fall into the same pod, as do the end-hosts that connect to
the ToR switches in the pod. An aggregation switch further
connects to multiple core switches. Redundant aggregation
and core switches create multiple network paths between
two end-hosts that are not in the same rack. Moreover, due
to the wide adoption of SDN in data center networks, there
is also a centralized SDN controller. The controller connects
to all switches via low-speed links.

Programmable switches and network accelerators meet
different demands of in-network replica selection. On one
hand, a programmable switch provides both the fast packets
forwarding and the customizable pipelines of packet process-
ing at data plane. With a customized pipeline, a switch can
recognize application-specific packet formats, match custom
fields, and perform actions like adaptive routing and header
modifications. However, in order to keep the high speed of
packet forwarding, the programmable switch only supports

144



simple operations, e.g. reading from memory, writing to
memory, etc. On the other hand, a network accelerator is
able to handle complicated computations with a multicore
(or manycore) processor and several gigabytes of memory.
However, network accelerators fail to work as switches due
to lower routing performance and fewer ports.

We have the following considerations for designing the
NetRS framework. (i) NetRS should keep things in net-
work as much as possible. Clients and servers of key-
value store should be able to take advantage of NetRS
without complicated interactions with NetRS components.
(ii) NetRS should work in a distributed manner without co-
ordinating network devices at per-request level. The frequent
coordination is unrealistic due to introducing significant
overheads. (iii) NetRS should minimize its impacts on other
applications and limit its bandwidth overheads since multiple
applications share the data center network.

NetRS is a hardware/software co-design framework that
enables in-network replica selection for key-value stores. In
brief, NetRS relies on programming switches to adaptively
route packets of key-value stores and leaves application-
layer computations (e.g. replicas ranking) to network accel-
erators. NetRS does not exclusively use either programmable
switches or network accelerators for following reasons.
(i) Compared with network accelerators, programmable
switches could forward packets based on field matching
more efficiently. (ii) Although the computing power of pro-
grammable switches may grow over time, application-layer
computations on switches could block the packet forwarding
of other applications.

Fig. 1 shows the NetRS architecture. NetRS consists of
two kinds of components: the NetRS controller and the
NetRS operator. The NetRS operator is a collection of
hardware and software. The hardware part consists of a
programmable switch and network accelerator(s) attached
to the switch. The software part includes NetRS rules, the
NetRS monitor, and the NetRS selector. While all switches
have NetRS rules, the NetRS monitor only resides on the
ToR switch, and the NetRS selector runs on the network
accelerator. When a packet arrives, the switch determines the
next hop for the packet according to NetRS rules (detailed
in Section IV-B). In the case that a switch forwards the
packet (or the packet’s clone) to the network accelerator,
the NetRS selector would (i) choose a replica server for the
packet if the packet is a request of key-value store or (ii)
use the packet to update local information if the packet is a
response of key-value store (detailed in Section IV-C). The
NetRS monitor collects traffic statistics and sends them to
the NetRS controller (detailed in Section IV-D). According
to the traffic statistics and pre-given constraints, the NetRS
controller periodically generates a Replica Selection Plan
(RSP), which is the placement of RSNodes (detailed in
Section III). In order to deploy an RSP, the NetRS controller
has to update NetRS rules for each NetRS operator. As
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Figure 1. An overview of the NetRS architecture.

the newly introduced RSNodes have to build the view of
the system status from scratch, the deployment of a new
RSP may lead to a temporary latency increase. The time
it takes for the system to stabilize again depends on many
factors, including the rate of convergence of the replication
selection algorithm, the number of new RSNodes, and the
service rate of servers. Thanks to the stable workload of
user-facing applications [23], the NetRS controller does not
need to update RSP frequently.

III. NETRS CONTROLLER

In this section, we present the NetRS controller, which
determines the NetRS operator working as Replica Selection
Node (RSNode) for a request. We first state the problem of
RSNodes placement (Section III-A), and then describe the
algorithm solving the problem (Section III-B). The NetRS
controller also ensures the high availability of NetRS with
an exception handling mechanism (Section III-C).

A. RSNodes Placement Problem

In NetRS, we divide requests into different traffic groups.
The Replica Selection Plan (RSP) specifies the NetRS op-
erator that works as the RSNode for requests of each traffic
group. The granularity of dividing requests is a key aspect of
the RSP, and the typical candidates of the granularity are: (i)
request-level group (one request as a group), (ii) host-level
group (requests from the same host as a group), (iii) rack-
level group (requests from the same rack as a group). Finer-
grained traffic groups provide more flexibility in making the

145



RSP. However, finer-grained traffic groups (i) require more
efforts to find the optimal RSP due to larger solution space,
and (ii) introduce more overheads when carrying out RSP
in data center network because of network devices dealing
with more cases. In fact, for the request-level group, per-
request level coordinations are unavoidable because every
request introduces a new group to the RSP. Hence, NetRS
does not consider the scenario of using request-level group.

In this paper, we focus on the scenario of dividing
requests based on host-level groups, rack-level groups or any
intervening-level groups (requests from several end-hosts in
the same rack as a group). The NetRS controller determines
the RSP according to statistics of each traffic group.

In order to determine the RSP, we have to solve the opti-
mization problem of assigning each traffic group’s RSNode
to a NetRS operator. We set the following optimization goals
to cope with the two factors (detailed in Section I) that have
a significant impact on the effectiveness of replica selection
algorithms, like C3 [10].
• Goal 1: Maximizing the recency of local information

for an RSNode.
• Goal 2: Minimizing the occurrence of “herd behavior”.
The NetRS controller achieves Goal 1 and Goal 2 by

minimizing the number of RSNodes. First, the average
traffic flowing through one RSNode will increase with fewer
RSNodes. As RSNodes use requests and responses to update
local information, an RSNode could obtain the more recent
information on average. Second, as the occurrence of “herd
behavior” has a positive correlation with the number of
RSNodes, we could avoid “herd behavior” as much as
possible by minimizing the number of RSNodes.

There are also constraints as follows:
• Constraint 1: There should be only one RSNode for

each request.
• Constraint 2: The utilization of each network acceler-

ator should be limited.
• Constraint 3: The total amount of extra hops to

RSNodes that requests take should be limited.
Constraint 1 exists because replica selection algorithms

typically rely on metrics correlated with decisions of replica
selection (e.g. the number of a server’s pending requests).
Hence performing replica selection multiple times for one
request could make the RSNode, whose decision is not the
final one, uses incorrect input values to select replicas for
following requests. Furthermore, selecting replica for each
request at multiple NetRS operators introduces unnecessary
latency overheads. It is because the request has to wait
for replica selection multiple times while the final RSNode
overwrites all previous decisions. We use Constraint 2 to
adapt the load of each network accelerator to its capacity.
High utilization of a network accelerator will make requests
wait a long time for replica selection. Constraint 3 enables
the trade-off between the flexibility of making RSP and the

network overheads of taking extra hops. If the RSNode for
requests of a traffic group is located in a NetRS operator,
which is out of default network paths of these requests, the
requests should take extra hops to reach the RSNode. Extra
hops introduce latency overheads and occupy extra resources
of the shared data center network.

B. Replica Selection Plan

We formalize the problem of RSNodes placement as an
Integer Linear Programming (ILP) problem. The NetRS
controller can determine RSP by solving the ILP problem
with an optimizer (e.g. Gurobi [24], CPLEX [25]).

Suppose P is a binary matrix that shows the RSP. If we
perform replica selection for requests of the traffic group
gi at the NetRS operator oj , Pij will be set to 1, and 0
otherwise. D is a binary vector that shows the distribution
of RSNodes among all NetRS operators. If a NetRS operator
oj works as an RSNode for requests of any traffic group,
then Dj will be set to 1, otherwise 0.

Suppose R is a binary matrix that describes the relation-
ship between traffic groups and NetRS operators, for a traffic
group gi and a NetRS operator oj , if oj is in default network
paths that are between the end-host of gi and any end-host
of another pod, Rij will be set to 1, otherwise 0. In the
multi-tier topology of the data center network described in
Section II, suppose end-hosts of the traffic group gi connect
to the ToR switch sgi. We could determine Rij based on
following rules: (i) if oj is in the tier of core switches, then
Rij = 1; (ii) if oj is in the tier of aggregation switches,
Rij = 1 only when oj and sgi are in the same pod, and
Rij = 0 otherwise; (iii) if the oj is in the tier of ToR
switches, then Rij will be set to 0 except that the switch
of oj is sgi, which makes Rij = 1. T is a matrix that
describes the traffic composition of each traffic group. In
the multi-tier network described in Section II, we define
the tier ID of a NetRS operator as the minimum number of
connections between the NetRS operator and any node in the
top tier (the tier of core switches is the top tier). According to
the highest tier that requests flow through with the default
network paths, the requests of a traffic group fall into 3
categories: the Tier-2 traffic (communication between end-
hosts in the same rack), the Tier-1 traffic (communication
between end-hosts in the same pod but in different racks),
and the Tier-0 traffic (communication between end-hosts in
different pods). For a traffic group gi, Tik is its Tier-k traffic.
We can determine R according to the network topology, and
get T from traffic statistics collected by NetRS monitors
(Section IV-D).

Suppose a NetRS operator oj could perform replica
selection without introducing significant delay if the uti-
lization of its network accelerator is under Uj . Then the
maximum traffic Tmax

j , which use the NetRS operator oj
as the RSNode, should be under Ujc

ac
j /tacj , where cacj is

the number of cores in the accelerator and tacj is the mean
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service time of selecting replica. We limit the total amount
of extra hops by a constant E. When calculating the number
of extra hops, we consider the difference of total forwarding
times between going through the RSNode and going directly
to the server. For example, for Tier-2 traffic, if the RSNode
lies in the tier of core switches, then the amount of extra
hops for one request is 4 (a request will be forwarded once
to get to the server with the default network path, and going
to the RSNode makes it be forwarded 5 times, hence the
extra hops of the request is 4 = 5 − 1). We can get Tmax

j

and E from system administrators, who determine the values
based on their demands.

Suppose t(x) is a function that returns the tier ID of a
NetRS operator ox or a traffic group gx (the gx’s tier ID is
same to the tier ID of the NetRS operator, to which end-hosts
of gx directly connects), and h(i, j) = t(i)− t(j).

The description of the ILP problem is as follows.

Minimize :
∑

Dj (1)

Subjects to :

∀i,∀j : Pij ∈ {0, 1}, Dj ∈ {0, 1} (2)
∀i,∀j : Dj − Pij ≥ 0 (3)
∀i,∀j : Rij − Pij ≥ 0 (4)

∀i :
∑

Pij = 1 (5)

∀j :
∑

(Pij

t(i)∑
k=0

[Tik]) ≤ Tmax
j (6)

∑
(Pij

h(i,j)−1∑
k=0

[2(h(i, j) + k)Ti(t(i)−k)]) ≤ E (7)

Among the constraints of the ILP problem, Equation (2)
suggests that P and D contain only binary elements, Equa-
tion (3) guarantees that a NetRS operator is considered as
an RSNode if it selects replica for any traffic group, Equa-
tion (4) reduces the solution space by forbidding a request to
flow from the tier to its lower tier before the request reaching
its RSNode. Such restriction help to avoid extra hops that
form loops between tiers. Finally, Equation (5) , (6) and (7)
correspond to Constraint 1, Constraint 2 and Constraint 3,
respectively. We could get a suboptimal solution to the ILP
problem by terminating the solving process early. Hence, by
limiting the solving time, we can make a trade-off between
the recalculation expense and the optimality of the RSP.
Besides the 3-tier topology shown in Fig. 1, our algorithm
is applicable to n-tier (n ∈ {1, 2, ...}) tree-based topologies
of data center network.

In order to accommodate different RSPs, every pro-
grammable switch must have a network accelerator. In fact,
programmable switches and accelerators are widely adopted
in the data center network for various purposes (e.g. deep
packet inspection [17], [18], firewalls [17], [18], in-network
cache [20], packets sequencing [26], [27]). Due to using a

separate traffic threshold Tmax
j for each network accelerator,

our algorithm of RSNodes placement could adapt to the
scenarios of sharing accelerators with other applications.
NetRS could effectively exploit the underloaded accelerators
by setting higher traffic thresholds for them. In the scenario
of NetRS using dedicated accelerators, we could cut the
network cost of NetRS by connecting one accelerator to mul-
tiple switches. Such configuration is feasible as Constraint
1 suggests that there should be only one RSNode among all
NetRS operators in a network path. In this scenario, Equa-
tion (6) will change to ∀J :

∑
j∈J

∑
(Pij

∑t(i)
k=0 [Tik]) ≤

Tmax
J , where J is a set of switches connected to the same

accelerator.

C. Exception Handling Mechanism
NetRS uses a mechanism of Degraded Replica Selection

(DRS) to handle exceptions. The DRS requires that clients
of the key-value store should provide a target replica for
each request as a backup. If the DRS for a request is
enabled by the NetRS controller, NetRS will route the
request to the backup replica provided by the client. The
NetRS controller enables the DRS for each traffic group
independently by updating NetRS rules of NetRS operators
without interactions with end-hosts. Currently, the DRS is
necessary for the following scenarios. (i) No feasible RSP
exists. If there are some traffic groups that we cannot find
NetRS operators as their RSNodes without violating the
constraints, the ILP problem in Section III-B would have no
feasible solution. In this case, we could enable the DRS for
some traffic groups so that a feasible RSP exists for the rests.
Considering that enabling DRS for a traffic group will lead
to additional RSNodes, the number of traffic groups using
the DRS should be as small as possible. Moreover, the traffic
of a group using DRS should be high to prevent clients from
selecting poorly-performing replica servers, which hurts the
tail latency. Hence, the NetRS controller turns DRS on for
groups with the highest traffic. (ii) A NetRS operator does
not work as expected, e.g the NetRS operator is overloaded
due to load changes. The NetRS controller will enable
the DRS for traffic groups that use the NetRS operator as
RSNode. (iii) The NetRS operator working as an RSNode
fails.

IV. NETRS OPERATOR

This section describes the NetRS operator. We first in-
troduce the packet format of NetRS (Section IV-A). Then,
we show the processing pipeline of a programmable switch
according to NetRS rules (Section IV-B), and the working
procedure of a NetRS selector running on the network
accelerator (Section IV-C). Finally, we present how NetRS
monitors collect traffic statistics (Section IV-D).

A. Packet Format
The packet format plays an important role in propagating

information. Clients, servers, switches and network accel-
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Figure 2. Packet format of NetRS for the request and the response.

erators should agree to the common format. As stateful
network protocols (e.g. TCP) introduce latency overheads,
recent key-value stores [20], [28] generally use stateless net-
work protocols (e.g. UDP). Key-value stores in production
environments also exploit UDP-based network protocols to
cut latency overheads for reading requests [4]. Considering
that the goal of NetRS is to reduce the read latency in
key-value stores, we design the packet format of NetRS
in the context of UDP-based network protocols. Moreover,
network devices could parse packets more efficiently with
UDP protocol due to not maintaining per-flow state. There
are two design requirements for the packet format. (i) It
should be flexible and adapt to diverse replica selection
algorithms. (ii) It should keep protocol overheads low.

NetRS packets are carried in the UDP payload. In order
to reduce bandwidth overheads of NetRS protocol, we use
separate packet formats for request and response to carry
different information. Fig. 2 shows the packet format of
request and response, respectively. The request and response
packet have following common segments:
• RID (RSNode ID): [2 bytes] The ID of a NetRS

operator, which works as the RSNode for a request or
the corresponding request of a response.

• MF (Magic Field): [6 bytes] A label that used by
switches to determine the type of a packet.

• RV (Retaining Value): [2 bytes] A value set by the
RSNode for a request, and the value in a response
will be the same with the value in its corresponding
request. An RSNode could exploit this segment to
collect request-level data. For example, an RSNodes
may set the retaining value of a request using the
timestamp of the request sending, and then the RSNode
will know the response latency of the request when
its corresponding response arrives. The usage of this
segment depends on the needs of the replica selection
algorithm.

• Application Payload: [variable bytes] The content of
a request or a response.

The segment only in the request packet is as follows:
• RGID (Replica Group ID): [3 bytes] The ID of a replica

group. A NetRS selector could obtain the replica can-
didates for a request by querying its local database of
replica groups with the RGID. The size of the database
should be small because key-value stores typically use
consistent hashing to place data. The advantage of using
RGID is to keep the headers of a packet fixed-sized
and irrelevant to the number of replicas. The fixed-sized
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Figure 3. NetRS rules within ingress pipelines of a programmable switch.

headers are more friendly for switches to parse packets.
Segments only in the response packet are as follows:
• SM (Source Marker): [4 bytes] A value indicating the

network location from which a response comes.
• SSL (Server Status Length): [2 bytes] The length of the

piggybacked status of the server in a response.
• SS (Server Status): [variable bytes] The piggybacked

status of the server in a response.

B. NetRS Rules

The NetRS controller updates NetRS rules of each NetRS
operator based on the periodically generated RSP. Each
NetRS operator relies on its NetRS rules to forward a
packet to the right place. The processing pipeline of a
programmable switch includes two stages: ingress process-
ing and egress processing. NetRS rules are a part of the
ingress processing pipeline. Fig. 3 shows the procedure
of ingress processing according to NetRS rules. Packets
fall into 3 categories, including the non-NetRS packet, the
NetRS request, and the NetRS response. The switch uses
the segment of the magic field in a packet to determine
the type of the packet. A non-NetRS packet will directly
enter the regular ingress processing pipeline and go towards
its target server. A switch only applies NetRS rules to the
NetRS packet, including the NetRS request and response.

The NetRS controller assigns a unique ID (a positive
integer) to each NetRS operator and uses this ID to represent
each NetRS operator in the RSP. The NetRS operator stores
its ID locally in the programmable switch. The segment of
RSNode ID in a NetRS packet stores the ID of a NetRS
operator that works as the RSNode. When a NetRS packet
arrives, the programmable switch will firstly match the
packet’s RSNode ID segment. If the RSNode ID is different
to the local ID in the switch, then the switch will forward
the packet to the next hop towards the RSNode. Otherwise,
if the RSNode ID is the same with the local ID, the switch
will perform corresponding operations based on packet type.
If the packet is a NetRS request, it will be forwarded to
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the network accelerator which runs the NetRS selector. The
network accelerator will transform the NetRS request to a
non-NetRS packet, and send the packet back to the switch
(Section IV-C). Otherwise, if the packet is a NetRS response,
the switch will firstly send a clone of the packet to the
network accelerator, and then push the packet to the regular
pipeline of ingress processing with a modified magic field
of Mmon, which also labels it as a non-NetRS packet. The
magic field of Mmon makes the packet recognizable by
NetRS monitors (Section IV-D). By cloning the packet of
NetRS response, we could avoid the latency overhead of
network accelerator processing the packet.

As the RSP and traffic groups are agnostic to end-hosts,
clients of key-value stores are unable to determine the
RSNode ID for a NetRS request. With the network topology
described in Section II, NetRS uses ToR switches to set
the RSNode ID for each NetRS request. Compared with
switches of other types, a ToR switch has extra NetRS rules
for NetRS requests, which could (i) match the source IP
of a packet and get the traffic group ID, and (ii) set the
RSNode ID according to the traffic group ID. For the NetRS
response, the ToR switch has NetRS rules to set the segment
of source marker, which is required by the NetRS monitor
(Section IV-D). A NetRS response does not need to obtain
the RSNode ID from the ToR switch because the server will
copy the RSNode ID from its corresponding request to the
packet of NetRS response.

In order to enable the degraded replica selection for a
traffic group (Section III-C), the NetRS controller just tells
the corresponding NetRS operator to set an illegal RSNode
ID (e.g. -1) to packets of the traffic group. If a NetRS packet
has an illegal RSNode ID, the ToR switch will label it as
a non-NetRS packet by setting f(Mmon) to its magic field,
where f(·) is an invertible function.

C. NetRS Selector

The NetRS selector is responsible for performing replica
selection and maintaining corresponding local information.
Due to residing on network accelerators, the NetRS selector
could use an arbitrary replica selection algorithm without
considering the limitations of programmable switches.

For a NetRS request, the NetRS selector determines the
target replica server for the packet based on local informa-
tion. When a NetRS request arrives from the co-located
switch, the NetRS selector will first extract the Replica
Group ID from the packet. Then the NetRS selector looks
up the local database to determine replica candidates and
selects a replica from the candidates. The NetRS selector
will rebuild the packet with the selected replica server and
the necessary retaining value. Moreover, while rebuilding
the packet, the NetRS selector also specifies the magic field
to f(Mresp), f(Mresp) 6= Mreq,Mresp, where Mreq and
Mresp are constant values that label the NetRS request and
response, respectively. The server will set the magic field

in the NetRS response to f−1(m), where m is the magic
field value of the corresponding request. This mechanism
guarantees that (i) the server marks a response packet as a
NetRS response, only if the packet’s corresponding request
had flowed through a NetRS selector; (ii) the NetRS monitor
could recognize the response of a request using degraded
replica selection. Finally, the NetRS selector will send the
rebuilt packet to the switch.

For a NetRS response, the NetRS selector will update
local information according to the piggybacked information
in the packet and then abandon the packet.

D. NetRS Monitor

The NetRS monitor is in charge of collecting statistics
on traffic composition of each traffic group. We deploy the
NetRS monitor as a bunch of match-action rules in egress
pipelines of the ToR switch.

We should answer two questions for designing the NetRS
monitor. First, when should the data collection happen (the
time point that a packet enters or leaves the network)?
Second, what kind of packets (requests or responses) should
the NetRS monitor concern? In NetRS, we choose to collect
data when a response leaves the network. The reasons are as
follows. (i) A request does not carry the replica selected by
NetRS when it first enters the network. (ii) For a ToR switch,
requests leaving the network may be of any traffic group,
so are responses that first enters the network. Considering
that each traffic group requires separate match-action rules
(counters), collecting such packets will introduce too many
burdens to a switch. In comparison, responses leaving the
network are of traffic groups associated with the rack.

The NetRS monitor filters packets based on the magic
field. NetRS rules ensure that the NetRS monitor can recog-
nize responses of key-value store. When a response enters
the egress pipeline of a ToR switch, the NetRS monitor
first determines the traffic group based on its destination
IP. Then, the monitor updates the corresponding counter
according to the source marker. Each ToR switch has a
unique source marker that depends on its network location.
A source marker contains two components: the pod ID and
the rack ID. A ToR switch could determine whether a packet
is from the same pod and/or the same rack by comparing
the source marker in the packet to the local one. It is worth
mentioning that the source IP of a packet may work as the
source marker if the IP has the pattern indicating the network
location of an end-host.

V. EVALUATION

We conduct simulation-based experiments to extensively
evaluate the NetRS framework. Our evaluation reveals the
impact of different factors on the effectiveness of NetRS
cutting response latency.
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A. Simulation Setup

In our experiments, we use the simulator from C3 [10],
which simulates clients and servers of key-value stores. In
order to evaluate the NetRS framework, we extend the sim-
ulator to simulate network devices. The simulated network
is a 16-ary fat-tree (3-tier) [22] containing 1024 end-hosts.

We set major parameters in our evaluation based on
the experimental parameters in C3 [10]. Specifically, the
service time of a server follows exponential distribution
while the mean value (tkv) is 4ms. Each server could process
Np(Np = 4) requests in parallel. The performance of each
server fluctuates independently with an interval of 50ms.
The fluctuation follows the bimodal distribution [29] with
the range parameter d = 3 (in each fluctuation interval,
the mean service time could be either tkv or tkv/d with
equal possibility). Keys are distributed across Ns(Ns = 100)
servers according to consistent hashing with a replication
factor of 3. There are 200 workload generators in total, and
each workload generator creates reading requests based on
the Poisson process, which could approximate the request
arrival process of Web applications with reasonably small
errors [30]. For a request, the workload generator chooses
an accessing key out of 100 million keys according to the
Zipfian distribution (the Zipf parameter is 0.99). For each
experiment, the key-value store receives 6 million requests.
By default, there are 500 clients sending requests without the
demand skewness (in other words, the number of requests
issued by each client is evenly distributed).

We set the parameters of network devices based on the
measurements of real-world programmable switches and
network accelerators in the paper of IncBricks [20]. Specif-
ically, the RTT (Round-Trip Time) between a switch and
its attached network accelerator is 2.5us. We consider using
low-end network accelerators. Each accelerator has 1 core
and the processing time is 5us. The network latency between
two switches that are directly connected is 30us.

We perform the simulation with the above parameters in
all cases, unless otherwise noted. The clients and servers are
randomly deployed across end-hosts [31], and each host only
has one role [32]. We repeat every experiment 3 times with
different deployments of clients and servers. We compare the
following schemes (in all schemes, RSNodes select replica
using the C3 algorithm [10], which is state-of-the-art).

• CliRS: A commonly used replica selection scheme in
key-value stores [5]–[8]. With CliRS, clients work as
RSNodes and perform replica selection for requests.

• CliRS-R95: For primary requests, CliRS-R95 is the
same as CliRS. However, if a primary request has been
outstanding for more than the 95th-percentile expected
latency, the client will send a redundant request [9].

• NetRS-ToR: Using the NetRS framework for replica
selection with a straightforward RSP, which simply
specifies the NetRS operator co-located with the rack’s
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Figure 4. The comparison of performance with varying number of clients.

ToR switch as the RSNode for requests from the rack.
• NetRS-ILP: Using the NetRS framework for replica

selection with an RSP determined by solving the ILP
problem of RSNodes placement. For a request, the
replica selection happens at the NetRS operator speci-
fied by the RSP. As an example, an RSP from NetRS-
ILP consists of 6 RSNodes on aggregation switches and
1 RSNode on a core switch.

B. Results and Analysis

This section provides experimental results in a variety
of scenarios. We use the open-loop workload, which is in
line with the real-world workloads of Web applications [33].
The aggregate arriving rate of requests (A) corresponds the
90% system utilization ( tkvA

NsNp
), which is low considering

the perfermance fluctuation ( 2
1+d

tkvA
NsNp

= 45%). In our
deployment, U = 50% and E = 20%A, where U is the
maximum utilization of a network accelerator, and E is the
maximum amount of extra hops.

In most cases, using CliRS-R95 will result in a dramatic
increase in response latency. It is because the extra loads of
redundancy will make a small portion of servers overloaded
due to the skewed workloads. Fig. 4 , 5 , 6 and 7 do not
show bars exceeding the respective latency thresholds.

1) Impact of the number of clients: Fig. 4 shows the
response latency comparison of all schemes when the num-
ber of clients ranges from 100 to 700. We observe the
following things. (i) Both NetRS-ILP and NetRS-ToR out-
perform CliRS, and NetRS-ILP shows the best performance.
Compared with CliRS, NetRS-ILP reduces the mean latency
by 32.0%-48.4% and the 99th latency by 34.2%-55.8%.
Compared with NetRS-ToR, NetRS-ILP reduces the mean
latency by 31.3% and the 99th latency by 32.3% on average.
(ii) With CliRS, both the mean and tail latency increase as
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Figure 5. The comparison of performance with varying demand skewness.

the number of clients grows. However, the response latency
roughly remains unchanged with NetRS-ILP and NetRS-
ToR regardless of changes in the number of clients. The
underlying reason is that, with NetRS-ILP and NetRS-ToR,
the number of RSNodes is irrelevant to the number of clients.
Since each client works as an RSNode with CliRS, these
experiments also validate our analysis that more independent
RSNodes could lead to worse replica selection, which leads
to performance penalties.

2) Impact of the demand skewness: Fig. 5 depicts the
influence of demand skewness on response latency with
different schemes of replica selection. In the experiments,
we measure the demand skewness with the percentage of
requests issued by 20% clients. Excluding CliRS-R95, CliRS
and NetRS-ILP still provide the worst and best performance,
respectively. However, as the demand skewness increases,
the latency reduction introduced by the NetRS framework
tends to decrease. For example, in the scenario of no
demand skewness shown in Fig. 4 (500 clients), NetRS-ILP
reduces the mean and 99th latency by 46.4% and 52.8%,
respectively. However, when the demand skewness is 70%,
NetRS-ILP reduces the mean and 99th latency by 39.2%
and 43.1%, respectively. For the demand skewness of 95%,
NetRS-ILP introduces only 32.2% reduction in the mean
latency and 33.8% reduction in the 99th latency. The reasons
for this phenomenon are as follows. On one hand, CliRS
could provide lower response latency with heavier demand
skewness due to high-demand clients dominating the system
performance. With CliRS, the number of RSNodes would
be reduced to the number of high-demand clients thanks to
the skewed demand. On the other hand, since high-demand
clients spread over different network locations, the demand
skewness of clients does not imply the traffic skewness of
switches. Therefore, the NetRS framework could benefit
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Figure 6. The comparison of performance with varying system utilization.

only a little from the demand skewness.
3) Impact of the system utilization: Fig. 6 shows the

impact of the system utilization on response latency for all
schemes of replica selection. We run the experiments with
the system utilization ( tkvA

NsNp
) ranging from 30% to 90%.

Compared with CliRS, NetRS-ILP reduces the mean latency
by 12.4%-46.4% and reduces the 99th latency by 7.4%-
52.8%. Compared with NetRS-ToR, NetRS-ILP reduces
the mean and 99th latency by 12.2%-33.5% and 7.2%-
35.1%, respectively. We have the following observations.
(i) With all schemes, the response latency increases as the
system utilization grows. It is because the higher utilization
suggests the more severe contention of resources and the
longer queueing latency, which none of these schemes could
avoid. (ii) Compared with CliRS and NetRS-ToR, NetRS-
ILP introduces more reduction in response latency in the
region of higher utilization. The underlying reason is that
the severe contention of resources will amplify the impact of
bad replica selection on the response latency. (iii) CliRS-R95
outperforms other schemes in cutting the tail latency when
the utilization is low. With low utilization, the impact of
extra loads due to issuing redundant requests is negligible.

4) Impact of the service time: Fig. 7 depicts the response
latency comparison of all schemes when the server’s mean
service time varies from 0.1ms to 4ms. It is obvious that the
response latency would be shorter if the server could process
requests faster regardless of the replica selection scheme.
These experiments aim to reveal the difference of the NetRS-
based schemes on cutting the response latency with different
service time. Compared with CliRS, NetRS-ILP introduces
fewer reductions in mean latency with a lower service time.
However, there is no such phenomenon in terms of the tail
latency or with NetRS-ToR. The reasons are as follows, (i)
NetRS-ILP introduces the latency overheads of taking extra
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hops, and (ii) NetRS-ILP leads to the longer waiting time in
RSNodes due to higher utilization of RSNodes. Considering
that the mean latency is comparable to the service time, these
latency overheads are significant compared with the mean
latency when the service time is low. Since the tail latency
is typically orders of magnitude greater than the service time,
the latency overheads are negligible for the tail latency.

In summary, (i) the NetRS framework could effectively
cut the response latency in key-value stores compared with
selecting replica by clients; (ii) our ILP-based algorithm of
RSNodes placement makes a significant contribution to the
latency reduction of NetRS; (iii) redundant requests are only
suitable for scenarios of low utilization.

VI. RELATED WORK

Tolerating Performance Variability: The approaches to
dealing with the time-varying performance of servers fall
into two categories: redundant requests and replica selection.
On one hand, redundant requests are used pervasively to
reduce response latency. Google proposes to reissue requests
to reduce latency and use cross-server cancellations to re-
duce redundancy overheads [9]. Vulimiri et al. [13] suggest
that the use of redundant requests is a trade-off between
response latency and system utilization. Shah et al. [34] and
Gardner et al. [35] provide theoretical analyses on using
redundant requests to reduce latency. On the other hand,
replica selection is also an indispensable part of distributed
systems. Mitzenmacher [36] proposes the “power of two
choices” algorithm, which sends a request to the server with
a shorter queue out of two randomly chosen servers. Dy-
namic Snitching [5] is the default replica selection strategy
of Cassandra, which selects replica based on the history of
reading latencies and I/O loads. C3 [10] is the state-of-the-
art algorithm of replica selection, which could effectively

reduce tail latency compared with other algorithms. These
works are orthogonal to NetRS. NetRS focuses on improving
the effectiveness of diverse replica selection algorithms via
performing replica selection in data center network.

Mayflower [37] selects the replica server and the network
path collaboratively using the SDN technique for distributed
filesystems, e.g. HDFS [14]. Mayflower considers the sce-
nario that a request commonly reads several megabytes
or even gigabytes of data. Hence, a client could connect
a centralized server for replica/network path selection for
each request. NetRS addresses the replica selection problem
under the scenario of key-value stores. Due to the small size
request (about 1KB), replica selection should be lightweight
and performed in a distributed manner.

In-Network Computing: In-network computing is widely
used to enhance the performance of key-value stores.
NetKV [38] introduces a network middlebox that enables
adaptive replication. SwitchKV [28] balances loads of back-
end servers by routing hot requests to a high-performance
cache with SDN. NetCache [39] shares the same goal
with SwitchKV, however, NetCache cache hot data within
programmable switches instead of a dedicated cache layer.
IncBricks [20] builds an in-network cache system that works
as a cache layer for key-value stores. Different from NetRS,
which focuses on dealing with the performance fluctuation
of servers, these works leverage in-network computing to
address the problem of workload skewness for key-value
stores.

VII. CONCLUSION

This paper presents NetRS, a framework that enables in-
network replica selection for key-value stores in data centers.
NetRS exploits programmable switches and network acceler-
ators to aggregate tasks of replica selection. Compared with
selecting replica by clients, NetRS significantly reduces the
response latency. NetRS could support various replica se-
lection algorithms with the flexible format of NetRS packet
and the customized processing pipelines of each network
device. We formalize the problem of RSNodes placement
with ILP in the context of modern data center network
with complex topology. Moreover, NetRS could be highly
available through a mechanism that handles exceptions, e.g.
failures of network devices.
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