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Abstract

Similarity search has been widely studied in peer-to-peer
environments. In this paper, we propose the Bounded Local-
ity Sensitive Hashing (Bounded LSH) method for similarity
search in P2P file systems. Compared to the basic Locality
Sensitive Hashing (LSH), Bounded LSH makes improvement
on the space saving and quick query response in the similar-
ity search, especially for high-dimensional data objects that
exhibit non-uniform distribution property. We present sim-
ple and space-efficient Bounded-LSH to map non-uniform
data space into load-balanced hash buckets that contain ap-
proximate number of objects. Load-balanced hash buckets
in Bounded-LSH, in turn, require less number of hash tables
while maintaining a high probability of returning the closest
objects to requests. Our experiments based on synthetic and
real-world datasets showed the feasibility, query and space
efficiency of our proposed method.

1 Introduction
Peer-to-peer (P2P) file systems need to support similar-

ity search over multi-dimensional data and maintain feature-
rich objects, such as audio, images, videos, and other sen-
sor data that exhibit high-dimensional features. Similarity
search [1, 2] aims to find objects that have similar charac-
teristics to the query object. When data objects are repre-
sented as d-dimensional feature vectors, the goal of simi-
larity search for a given query object q is to find K objects
that are closest to q according to distance function in the d-
dimensional space. Search quality is measured by the frac-
tion of the nearest K objects we are able to retrieve. Since
feature-rich data objects are typically represented as high-
dimensional feature vectors, similarity search is usually
implemented as K-Nearest Neighbors (KNN) or Approxi-
mate Nearest Neighbors (ANN) search in high-dimensional
feature-vector space where particular data structures could
be maintained. It has been shown in [3] that the exact near-
est neighbor problem suffers from the “curse of dimension-
ality” , i.e. when the dimensionality exceeds about 10, ex-
isting data structures based on space partitioning are even
slower than the brute-force, linear-scan approach.

In the real life, it is not necessary to insist on the perfect
answer of returning K closest objects. Furthermore, deter-

mining an approximate answer should suffice [4, 5] and can
reduce the search time tremendously. Even in some cases,
an approximate algorithm can return the same result as a
perfect algorithm. The objective of approximate nearest-
neighbor indexing techniques is to find points whose dis-
tance from the query point is at most (1+ε) times the exact
distance of K nearest neighbors.

1.1 LSH Technique

Locality sensitive hashing (LSH) [6] technique is one
of the best-known indexing methods for high-dimensional
similarity search. LSH hashes data objects using multiple
hash functions to ensure that, for each function, the prob-
ability of collision is much higher for objects which are
close to each other than for those which are far apart. Al-
though LSH-based methods have been shown to be success-
ful [6–9], the basic LSH suffers from the following limita-
tions.

• To achieve high search accuracy, the LSH method
needs to use multiple hash tables to produce a good
candidate set. Experimental studies show that the ba-
sic LSH method needs over a hundred [7] and some-
times several hundred hash tables [8] to achieve good
search accuracy for high-dimensional data. Since the
size of each hash table is proportional to the number of
data objects, the basic LSH does not satisfy the space
efficiency requirement.

• Since basic LSH is designed to guarantee the worst-
case behavior, it might not be efficient on real-world
data, which normally exhibits a rather “benign” behav-
ior [2]. For example, some data points having locality
characteristic typically form clusters, rather than be-
ing uniformly distributed in the space. Unfortunately,
the basic LSH algorithm partitions the space uniformly
and thus it does not exploit the clustering property of
the data, which may result in slow query response and
wasted space storing more hash tables.

The above limitations have been partially solved in pre-
vious work [10–12]. Not much work has been done to ad-
dress the clustering and locality property of data, which can
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be commonly observed in P2P file systems, in the similarity
search using the LSH-based methods.

In this paper, we focus on the high-dimensional similar-
ity search in the context of P2P file systems, exploiting data
clustering characteristics. We make the main contributions
as follows:

• We propose Bounded LSH (B-LSH), a simple and ef-
ficient method, to improve the accuracy of quick query
response and space efficiency of high-dimensional
similarity search in P2P file systems, where data of-
ten display the characteristics of locality and clustering
that are rarely touched by previous work. The basic
idea of bounded LSH is to set a maximum bucket size,
derived from theoretical analysis, to guarantee approx-
imate number of data objects in each bucket.

• We present practical algorithms associated with B-
LSH, including Initialization, Free Hashing, Local
Ranking, Ordered Overflowing and Adjacent-Probe
Searching, to map non-uniform data objects into load-
balanced buckets and further carry out efficient similar-
ity search. By probing multiple buckets in a less num-
ber of hash tables, Bounded-LSH method will check
far fewer buckets than previous basic-LSH method,
which improves the query efficiency.

• We evaluated our method by using synthetic and real-
world datasets on bounded LSH prototype in terms of
search quality, accuracy and space efficiency. Exper-
imental results show feasibility and efficiency of our
proposed method. Compared to basic LSH, Bounded-
LSH can successfully decrease the number of ranked
objects by a factor of up to 4.26, and reduce the num-
ber of hash tables by a factor of up to 15.

The rest of the paper is organized as follows. Section 2
introduces the basic LSH algorithm, its key idea and struc-
ture. Section 3 presents our proposed bounded LSH method
and practical operations. We evaluate the bounded LSH
method using synthetic and real-world datasets in Section 4.
Section 5 shows related work and we conclude our paper in
Section 6.

2 LSH for Similarity Search

Locality Sensitive Hashing (LSH) is able to map similar
objects, represented by feature vectors, into the same hash
buckets with high probability. One similarity search query
needs first to hash the query point q into buckets of multiple
hash tables, located by LSH functions, and then union all
objects existing in those chosen buckets and further rank the
candidate objects according to their distances to query point
q. In this section, we briefly describe the hash function and
indexing method of basic LSH.

2.1 Hash Functions

Indyk and Motwani in [6] first introduced the idea of lo-
cality sensitive hashing to devise main memory algorithms

for nearest neighbor search. LSH function families have the
property that objects that are close to each other have higher
probability of colliding than objects that are far apart. Spe-
cially, let S be the domain of objects and D be the distance
measure between two objects.

DEFINITION 1 LSH function family, i.e., H = {h : S →U}
is called (r,cr, p1, p2)-sensitive for distance function D if for
any p,q ∈ S

• If D(p,q) ≤ r then PrH[h(p) = h(q)] ≥ p1,

• If D(p,q) > cr then PrH[h(p) = h(q)] ≤ p2.

To allow the similarity search, we choose c > 1 and
p1 > p2. Thus, the problem of approximate nearest neigh-
bor search can be solved by performing a series of hashing,
searching and ranking within buckets of hash tables.

Different distance functions D, such as the well-known
Jaccard measure, Hamming distance, �1 and �2 [6], can
create different LSH families. LSH families for lp norms,
based on p-stable distribution [13], are proposed in [14]
to allow each hash function ha,b : Rd → Z to map a d-
dimensional vector v onto a set of integers. The hash
function is defined as: ha,b(v) = � a·v+b

W � where a is a d-
dimensional random vector with entries chosen indepen-
dently from a p-stable distribution and b is a real number
chosen uniformly from the range [0,W ].

2.2 Structure Construction

Constructing an LSH-based structure needs to determine
two parameters: M, the capacity of a function family G, and
L, the number of hash tables.

• First, define a function family G = {g : S → UM}
such that, for a d-dimensional vector v, g(v) =
(h1(v), · · · ,hM(v)), where h j ∈H for 1 ≤ j ≤ M. Thus,
g is actually the concatenation of M LSH functions.

• Second, choose L functions g1, · · · ,gL from G inde-
pendently and uniformly at random. We further utilize
each of L functions, gi (1 ≤ i ≤ L), to generate one
associated hash table. Totally, we have L hash tables
and a vector v will be hashed into a bucket (indicated
by gi(v)) in each hash table. Since the total number
of hash buckets may be large, we only maintain non-
empty buckets by using regular hashing [15, 16].

The optimal M and L values actually depend on the near-
est neighbors’ distance r. In practice, we use multiple sets
of hash tables to cover different r values.

2.3 Basic Operations

Basic operations associated with LSH-based struc-
tures [6, 11] mainly include Initialization, Insertion, Simi-
larity Search and Deletion for a vector v and our B-LSH
also supports associated operations.
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• Initialization: One LSH-based structure includes L
hash tables, each of which contains M LSH functions
in the form of ha,b(v) = � a·v+b

W � using randomly chosen
a and b.

• Insertion: A vector v needs to be inserted into L hash
tables. To insert v into the i-th hash table, we first com-
pute the hash value gi(v) and then place vector v into
the bucket to which gi(v) points.

• Similarity Search: For a query point q, we compute
the hash value gi(q) and find the bucket to which gi(q)
points in the ith table. The chosen bucket contains part
of candidate objects. We union all corresponding buck-
ets in L hash tables as a candidate set, in which the ob-
jects need to be further ranked according to their dis-
tances to the query point q. Finally, we select the top
K objects from the ranked set.

• Deletion: The operation for deletion is similar to inser-
tion. We can remove vector v from the bucket to which
gi(v) points.

2.4 Non-uniform Data Distribution

Newly emerging applications, e.g. P2P file systems, of-
ten exhibit their non-uniform data distribution with cluster-
ing property [17, 18]. Some of LSH buckets may contain
too many data objects, which are close to each other ac-
cording to the distance measure and thus, the overloaded
buckets lead to the decrements of search accuracy and ef-
ficiency. One simple and naive solution is to carefully se-
lect an optimal r∗ value that is used to evaluate the relative
distance among data objects to guarantee that LSH buckets
contain approximate number of data objects to obtain load
balance in a hash table. However, performing the operation
on selecting the optimal r∗ value is cumbersome within a
given dataset, even if using sampling method [10]. The sam-
pling process requires knowledge of the nearest neighbor
distance, which is difficult to observe in a data-dependent
way.

3 Bounded LSH

Locality sensitive hashing and its variants are able to sup-
port similarity search in many practical applications where
data are often assumed to be uniformly distributed. In this
section, we focus on the design of simple and efficient al-
gorithm and associated structure, called Bounded LSH (B-
LSH), to facilitate similarity search for data, which are non-
uniform distribution, such as Zipf or Gauss distribution. In
fact, P2P file systems often need to handle similar “hot spot”
data and Bounded-LSH can be used to improve system per-
formance by exploiting access pattern of data locality. Fig-
ure 1 shows two examples of non-uniform distribution to
illustrate the context of similarity search for the clustered
data.

(a) Gauss Distribution. (b) Zipf Distribution.

Figure 1. Two examples of typical non-
uniform distribution.

3.1 Algorithm Overview

The key idea of our Bounded LSH scheme is to map the
objects with non-uniform distribution into hash buckets to
guarantee that the buckets contain approximate number of
objects by bounding the size of each bucket in a hash table.
Locality sensitive hashing [7] and its variants [10, 11] show
that if the query object q near to an object p is not hashed
to the same bucket as p, two buckets containing p and q are
close to each other with a high probability. Our proposed
Bounded LSH exploits this property to overflow extra ob-
jects into neighboring buckets, which can obtain space effi-
ciency and query accuracy without sophisticatedly deriving
the probing sequence [11] or carrying out sampling opera-
tions [10].

Basic LSH generally can not efficiently carry out simi-
larity search for data objects with non-uniform distribution.
Figure 2 shows two case studies where the query point q is
far away from or close to the clustered data to satisfy top-3
similarity search, i.e., K = 3. We can observe that in Fig-
ure 2(a), it is very difficult to distinguish close data objects
from clustered objects to select accurate candidates. Thus,
we have to check many extra objects to guarantee search
accuracy, decreasing query efficiency. A similar situation
takes place where the query point q is close to the clustered
objects, even if we only need to select 3 approximate nearest
neighbors as shown in Figure 2(b). Unfortunately, we have
to probe many extra objects, introducing substantial search
costs.

q
r1

cr1

(a) Point q far away from clus-
tered data.

q

r2
cr2

(b) Point q close to clustered
data.

Figure 2. Possible situations for a query point
q in the 2-dimensional space.
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Hash Tables

(a) Basic LSH structure.

Hash Tables

(b) Bounded LSH structure.

Figure 3. Data storage using basic and
bounded LSH structures.

Figure 3 shows the comparison between basic and
bounded LSH structures containing the same number of
clustered data objects. Basic LSH structure as shown in Fig-
ure 3(a) utilizes 4 hash tables to contain data objects based
on hash computation regardless of their distribution. Thus,
too many “hot spot” objects close to each other are possibly
placed into the same or adjacent buckets that become over-
loaded, leading to very low search efficiency and accuracy
due to the skewed data distribution. It is also observed that
bounded LSH uses fewer hash tables than basic LSH since
the buckets of bounded LSH are load-balanced and can ob-
tain higher search accuracy.

Bounded LSH can map original non-uniformly clustered
data objects to hash buckets, each of which contains approx-
imate number of objects. The size of each bucket is im-
portant to design our bounded LSH. Space-efficient hashing
algorithm in [12] allocates (dn + n logO(1) n) space, which
almost matches the lower bound for hash-based algorithm
recently obtained in [19]. In the Bounded LSH, we de-
fine each bucket size as 	(dn + n logO(1) n)/(L · T )
 for n
d-dimension objects stored in L hash tables, each of which
maintains at most T buckets. In practice, choosing the pa-
rameters L and T that are optimal for a dataset needs first
to determine the bounds on L and T that guarantee the de-
sign correctness and then, within those bounds, to choose
the values L and T that can achieve the best expected trade-
off between query running time and search accuracya.

3.2 Practical Operations

In this subsection, we present practical operations to be
applied in B-LSH, including Initialization, Free Hashing,
Local Ranking, Ordered Overflowing and Adjacent-Probe
Searching. The first four operations assist the construction
of B-LSH, while the last operation returns the similarity
search results from it. Our proposed Bounded LSH can effi-
ciently support similarity search for multi-dimensional data
objects in the non-uniform distribution, meanwhile obtain-
ing space efficiency and search accuracy.

aThe implementation of Bounded LSH is based on basic LSH and uses
simple methods for optimizing parameters [20].

Free Hashing for vector v

Compute gi(v) based on LSH functions
Insert v into the Bucketgi(v)

Figure 4. Free hashing algorithm to facilitate
the insertion of vector v.

3.2.1 Initialization

Bounded LSH needs to construct L hash tables, each of
which contains M LSH functions that are 2-stable Gaussian
distribution for the Euclidean distance. Meanwhile, each
bucket in a hash table can contain at most �B−LSH =
	(dn + n logO(1) n)/(L ·T )
 objects.

Further operations on Bounded-LSH structure depend
on the number of vectors existing in the bucket, i.e.,
Number(Bucketgi(v)), to which gi(v) points. A new arrival
vector v needs to be inserted into L tables in the Bounded-
LSH structure. Given the ith table, we will execute the as-
sociated operations as follows:

• Number(Bucketgi(v)) < �B−LSH : using Free Hashing
to simply place vector v into the gi(v)-th bucket in the
i-th hash table.

• Number(Bucketgi(v)) = �B−LSH : Invoking Local
Ranking to find a virtual center, VCgi(v), of clustered
vectors in that bucket and the maximum distance,
called locality radius, Rgi(v), which is the longest dis-
tance coming from the center and edge point. Thus, we
can obtain the virtual center, locality radius and edge
point.

• Number(Bucketgi(v)) > �B−LSH : Requiring Ordered
Overflowing to compute the distance of new vector v to
the center. If the distance is larger than current locality
radius, the new vector will be rejected. Otherwise, the
new vector will be accepted and the original edge point
is set as the excluded vector. The excluded vector will
be sent to current bucket’s neighbor and be treated as a
new arrival.

3.2.2 Free Hashing

We can carry out Free Hashing on the bounded LSH when
the bucket, which gi(v) points to, contains less than �B−LSH
objects. Consequently, B-LSH can easily place v into the
gi(v)-th bucket in the i-th hash table as shown in Figure 4.

3.2.3 Local Ranking

When the number of objects existing in a bucket is equal to
the threshold �B−LSH , we need to execute the Local Rank-
ing to find the virtual center, VC, whose d-dimensional co-
ordinates are the average values of existing vectors (e.g., u)
and the new arrival (i.e., v). We can further determine the
locality radius between the center VC and one vector uR,
i.e., edge point, which has the longest distance away from
the center in the bucket as shown in Figure 5.
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Local Ranking for d-dimensional vectors

Compute gi(v) based on LSH functions
Insert v into the Bucketgi(v)
for (x = 1,x ≤ d,x ++) do

VCx
gi(v)

= ∑(ux+vx)
Number(Bucketgi (v)

)

end for
Rgi(v) = distance(VCgi(v),uR)

Figure 5. Local ranking algorithm to find the
locality center and radius.

Ordered Overflowing in the bucket

Compute gi(v) based on LSH functions
if distance(VCgi(v),v) < Rgi(v) then

Accept v and send the edge point (uR) to neighboring
buckets of Bucketgi(v)
Execute local ranking in the bucket Bucketgi(v)
else
send v to neighboring bucket

end if

Figure 6. Ordered overflowing algorithm to
obtain load balance among buckets.

3.2.4 Ordered Overflowing

Ordered overflowing can allow buckets in a hash table to
store approximate number of vectors. When the number of
vectors in a bucket is larger than �B−LSH , we need to first
compute the distance between new vector point v and local-
ity center VC, and then determine whether the new vector
point should be excluded according to its distance to the
virtual center, as shown in Figure 6. Specifically, if the dis-
tance is larger than Rgi(v), the bucket Bucketgi(v) rejects v
that is viewed as a new vector to the bucket’s neighborsb.
Otherwise, the current bucket can accept v and exclude the
existing uR that will be considered as a new vector to find
one adjacent bucket accepting it. After accepting a new vec-
tor, the current bucket needs to carry out the local ranking
to determine new locality center, radius and edge point.

3.2.5 Adjacent-Probe Searching

Multi-probe LSH proposed in [11] obtains significant space
efficiency by using derived probing sequences to probe mul-
tiple hash buckets that are likely to contain query results in
a hash table. However, multi-probe LSH needs to first ana-
lyze the bucket distance distribution of K nearest neighbors
and then carefully generate a sequence of perturbation vec-
tors, requiring more computations. Our method, adjacent-
probe searching, is inspired by and further improves upon
Multi-probe LSH by obtaining load balance of buckets, even
for non-uniform distribution data objects, to further enhance
space efficiency and search accuracy.

bThe buckets may randomly choose left (right) adjacent neighbor. If the
neighbor also rejects the vector, further right (left) non-repeated neighbor
can continue to verify the vector until one bucket accepts v.

Optimal One un-matching error

e1

e2

Figure 7. An example shows one possible un-
matching error.

The i-th Hash Table

(2): Free Hashing (Number < 3)(1): Initialization

LSH Hashing

(3): Local Ranking (Number = 3)

Compute locality center and radius

(4): Ordered Overflowing (Number > 3)

Rejected and sent to neighbors

Figure 8. Case study illustrates the construc-
tion operations of bounded LSH and Δ = 3.

Adjacent-probe searching aims to probe more than one
bucket for K approximate nearest neighbors when the
bucket size is smaller than K. The LSH functions uti-
lized are in the form of ha,b(v) = � a·v+b

W �. When the W
value is reasonably large, it is observed [7, 11] that simi-
lar objects can be hashed into the same or adjacent buck-
ets. Specifically, for a query point q requiring its K approx-
imate nearest neighbors, we need to first probe the gi(q)-th
bucket and then check its 	 K

	(dn+n logO(1) n)/(L·T )
 
 − 1 adja-

cent neighboring buckets in the i-th hash table that contains
n d-dimensional objects and each bucket size is �B−LSH .
Thus, we can further union the objects from the probed
buckets and rank their distances to the query point q and
finally return top-K objects, obtaining space efficiency and
fast searching.

3.3 Case Study

We present a simple example to illustrate how our
bounded LSH works and obtains space efficiency and search
accuracy. Figure 8 shows the case study (for one hash ta-
ble) that clearly describes how to construct the bounded
LSH structure, which maintains load balance among mul-
tiple buckets by utilizing the proposed operations.

Figure 9 and 10 respectively show the similarity search
requiring top-3 and top-4 approximate nearest neighbors.
We can answer top-3 search by probing one bucket which
gi(q) points to in the i-th hash table. Given different re-
quests from query points q1 and q2, bounded LSH respec-
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q2
q1

r

cr

Hash Tables Hash Tables

Top-3 similarity search
: Probed buckets

Hash(q1) Hash(q2)

Figure 9. B-LSH for top-3 similarity search.

q2

q1

r

cr

Hash Tables Hash Tables

Top-4 similarity search: Probed buckets 

Figure 10. B-LSH for top-4 similarity search.

tively checks 3 and 4 vectors after the candidate union op-
eration from 3 buckets.

However, for top-4 search, one bucket obviously cannot
satisfy the query requirement. Therefore, we need to ran-
domly choose the (gi(q)− 1)-th or (gi(q) + 1)-th bucket
and probe its vectors. As shown in Figure 10, bounded
LSH needs to verify 8 vectors for the query points. In con-
trast to the basic LSH probe method, bounded LSH can sig-
nificantly reduce the number of probed vectors to improve
query efficiency while maintaining query accuracy. In the
following section, we will further show the significant ad-
vantages of bounded LSH that has been implemented over
basic LSH and further compare their performance in terms
of space efficiency, search accuracy and query latency.

4 Performance Evaluation

In this section, we report the evaluation results by imple-
menting the bounded LSH prototype in the Linux environ-
ment. We examine the performance of basic and bounded
LSH methods in multiple metrics. Experiments were con-
ducted using synthetic and real world datasets.

4.1 Experiment Setup

Our simulations run on 3.2GHz Dual Core processors
with 2GB RAM. We generated the well-connected random
graph as the P2P network topology by using GT-ITM topol-
ogy generatorc.

chttp://www.cc.gatech.edu/projects/gtitm/

Before we look at real-world examples, we first test
our bounded LSH on artificial datasets, which follow
Gaussian distribution generated by GSTD (Generating
Spatio-Temporal Datasets) generator [21]. The data for ex-
periments are horizontally partitioned evenly among peers.
The results will help us to get a clear image as how the
basic and bounded LSH algorithms perform. We further
evaluated the bounded LSH for P2P similarity search by us-
ing a real-world dataset, Covtyped, which is widely used in
information indexing researches. The Covtype consists of
54-dimensional instances of 581012 forest Covertype data,
available from UCI Machine Learning Repository.

For each tested dataset, we randomly pick 100 objects as
the query objects. For each query, a peer initiator is ran-
domly selected. The ideal result is K nearest neighbors of
the query object based on the Euclidean distance of their
feature vectors. To perform meaningful comparisons, we
ran algorithms on random subsets of original data sets with
size increased from 5% to 100%.

4.2 Implementation Details

We have implemented Bounded LSH based on the basic
LSH method. For bounded LSH, we implemented all as-
sociated operations, including Initialization, Free Hashing,
Local Ranking, Ordered Overflowing and Adjacent-Probe
Searching. To save more space, we only store object IDs in
the hash buckets and associated vectors accessed via object
IDs are stored in a separate data structure. We also main-
tained a simple object ID bitmap to explicitly indicate the
chosen objects in different hash buckets and the bitmap can
help to efficiently union objects to facilitate further rank-
ing operations. To evaluate the query accuracy, we need to
know the optimal query results by executing the brute-force
method, which linearly scans through all feature vectors to
find the K nearest objects.

Since the distance variance in a dataset in most cases
does not depend on the specific query point but on the in-
trinsic properties of the dataset [22], we can choose the same
parameter r to test a vast majority of queries. To understand
the scalability of our algorithms, we did run experiments
respectively to derive approximate 10 and 20 nearest neigh-
bors. We varied different parameter values for the basic and
bounded LSH methods. The default values are W = 0.6,
M = 10 for the synthetic dataset and W = 18, M = 12 for
the real-world dataset. Initially, LSH method needs to read
all feature vectors into the main memory. Since an entry
in each hash table consumes about 16 bytes in our imple-
mentation, 2 GB main memory can contain the index data
structure of the LSH-based methods.

4.3 Result Analysis

We select a set of cost metrics to comprehensively eval-
uate the performance. They include Number of Ranked Ob-
jects, Recall, Search Latency and Number of Hash Tables.

dhttp://www.ics.uci.edu/ mlearn/MLRepository.html
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4.3.1 Number of Ranked Objects

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

K=10
K=20

Dataset Size (%)

R
a

ti
o

 o
f 

R
a

n
k

e
d

 O
b

je
c

ts
 

(a) Gaussian distribution.
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(b) Covtype dataset.

Figure 11. Ratio of ranked objects.

Figure 11 shows the experimental results in terms of the
number of ranked objects for similarity search with K = 10
and K = 20. We focus on the ratio of ranked objects of
the basic LSH to bounded LSH. We randomly used the sub-
sets of the whole dataset as the input to evaluate the num-
ber of ranked objects that come from the union operation
on hash buckets, which are indicated by the hash values
of query points. With the increment of data, we observe
that bounded LSH can significantly decrease the number of
ranked objects by factors of up to 3.65 and 4.26 respectively
for Gaussian distribution and real Covtype dataset when car-
rying out K = 20 similarity search as shown in Figure 11(a)
and 11(b).

4.3.2 Recall

1 2 3 4 5 6
60

65

70

75

80

85

90

95

100

K=10
K=20

Probed Percentage (%)

R
e

c
a

ll
 (

%
)

(a) Gaussian distribution.
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(b) Covtype dataset.

Figure 12. Recall.

We examine the Recall of bounded LSH to evaluate its
search quality when increasing the percentage of probed ob-
jects to the whole dataset. Figure 12 shows that the search
quality for K = 10 and K = 20 nearest neighbors is not
sensitive to the parameter K under different percentages of
probed objects to those of the whole dataset. In particular,
the K-aware sensitivity decreases as the increment of the
number of examined objects since those two curves gradu-
ally merge.

4.3.3 Search Latency

Figure 13 shows the search latency when executing K = 20
similarity search. It can be observed that bounded LSH
obtains significant advantage over basic LSH, saving up to
42.6% search time. The main reason is that bounded LSH
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(b) Covtype dataset.

Figure 13. Search latency.

decreases the number of ranked objects from selected hash
buckets and thus improves the search efficiency.

4.3.4 Number of Hash Tables

The results in Figure 14 show that the bounded LSH method
for carrying out the indexing of K = 20 nearest neighbors
is significantly more space efficient than the basic LSH
method. For both the synthetic and real-world datasets, the
bounded LSH method reduces the number of hash tables by
a factor of up to 15 given similar query time.
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Figure 14. Number of required hash tables.

5 Related Work

Similarity search is usually implemented as K near-
est neighbors or approximate nearest neighbors search in
high-dimensional feature-vector space. Recent work in-
cludes distributed nearest neighbor-based condensation of
very large data sets [23], dominating queries [24], stream
time series [25] and simple and discriminative typicality
queries [26]. Due to space limitation, we ignore some algo-
rithms for approximate nearest neighbor search and readers
can refer to the survey in [2].

Locality sensitive hashing (LSH) [6] and its variations
have been proposed as indexing techniques for approximate
similarity search in metric spaces. Although LSH algo-
rithm enjoys a rigorous, theoretical performance guaran-
tee, the basic LSH has its own limitations and some recent
work makes improvements on them. Entropy-based LSH
method [10] is proposed to generate randomly “perturbed”
objects near the query point, further search objects, and fi-
nally return the union of all results as the candidate set.
Multi-Probe LSH [11] intelligently probes multiple buck-
ets that are likely to contain query results in a hash table. It
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has a similar time efficiency as the basic LSH method while
reducing the number of hash tables by an order of magni-
tude. Near-optimal hashing algorithms in [12] can guaran-
tee a space-efficient version using (dn + n logO(1) n) space
and a query time of (dnO(1/c2)).

6 Conclusion

This paper presents the bounded LSH method for simi-
larity search, which takes the data locality into consideration
in P2P file systems. The bounded LSH maps objects dis-
playing non-uniform distribution property into hash buckets
with bounded capacity to obtain load balance and space ef-
ficiency. Our experimental results using real and synthetic
datasets show that the bounded LSH, compared to the basic
LSH, can decrease the number of ranked objects by a fac-
tor of up to 4.26 and reduce the number of hash tables by
a factor of up to 15. Although bounded LSH shows signif-
icant advantages over basic LSH, a comparison of bounded
LSH and other variants of LSH-based methods would also
be helpful especially when we evaluate the implementations
in large-scale P2P file systems. We plan to study these is-
sues in the future work.
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