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Abstract—With the rapid growth of application migration,
the anonymity in data center networks becomes important in
breaking attack chains and guaranteeing user privacy. However,
existing anonymity systems are designed for the Internet envi-
ronment, which suffer from high computational and network
resource consumption and deliver low performance, thus failing
to be directly deployed in data centers. In order to address this
problem, this paper proposes an efficient and easily deployed
anonymity scheme for SDN-based data centers, called MIC.
The main idea behind MIC is to conceal the communication
participants by modifying the source/destination addresses (such
as MAC, IP and port) at switch nodes, so as to achieve anonymity.
Compared with the traditional overlay-based approaches, our in-
network scheme has shorter transmission paths and less inter-
mediate operations, thus achieving higher performance with less
overhead. We also propose a collision avoidance mechanism to
ensure the correctness of routing, and two mechanisms to enhance
the traffic-analysis resistance. Our security analysis demonstrates
that MIC ensures unlinkability and improves traffic-analysis
resistance. Our experiments show that MIC has extremely low
overhead compared with the base-line TCP (or SSL), e.g., less
than 1% overhead in terms of throughput.

I. INTRODUCTION

With the expansion of the scale, data centers are facing a

growing number of security threats from internal components

(such as compromised servers, switches). According to IBM

2015 Cyber Security Intelligence Index [1], 55% of all attacks

and incidents monitored by IBM in 2014 were carried out

by insiders. Moreover, the outside attackers can always hack

into the internal network of their targets for data breach. For

example, in the data breach of Target in 2013, the attackers

gain access to the Target network through stolen HVAC vendor

credentials [2], and then steal 40M credit cards. As we can see,

the internal network is untrustful, and more attentions should

be placed on the security inside data centers.

When travelling through the untrustful network, it is impor-

tant to protect the communication participants’ identities and

traffic patterns to conceal the activities of users. Even if the

messages are encrypted, an adversary can still launch traffic-

analysis attacks by examining the unencrypted information,

like IP addresses, port, traffic rate or size. For example,

an attacker can identify the originator and terminater of a

flow by checking the source and destination addresses, and

then reveal (or guess with a high probability) the ongoing

operations between them by analyzing the traffic patterns.

Further, the attacker can even know which user and application

the communication participants belong to, as well as the scale

or load of the application, through iterated traffic-analysis

attacks. If the attacker aims to crash the target application

or system, he can locate some key nodes of the system (like

the Metadata Servers in distributed file systems) easily, and

then launch active attacks, such as DoS/DDoS and worms. If

he aims for data breach, this can help locate the target servers.

A lot of anonymity systems have been proposed to conceal

user identity and resist traffic-analysis attacks. Such systems

attempt to facilitate anonymous communication by building

mix- or relay-based overlay network, such as Mixminion [3],

Crowds [4], Tor [5], Dissent [6], and etc. However, these

systems are designed for the Internet environment, suffering

from high overhead, and cannot meet the requirements of high

bandwidth and low latency in the data center environment.

For example, the most popular anonymity system Tor uses

layer-encrypted packets and travels through multiple indirect

relays to conceal the endpoint’s IP address. This approach

will result in significant performance loss, since long end-

to-end path length and cryptographic operations will cause

high latency. Meanwhile, the indirectly traveling will incur

redundant network traffic, consuming considerable network

resources and reducing the total capacity of the data center

network.

Most of the applications in data centers are performance

sensitive, which require high bandwidth (e.g. video encod-

ing systems) and low latency (e.g. web search systems) in

transmission. Moreover, the computational and network re-

sources are limited, and the overlay-based approaches are too

expensive and will significantly reduce the capacity of the data

center. Measurements show that Tor achieves 62 times higher

in latency and 80% lower in throughput compared to TCP

(see Figure 8 and Figure 9(a)). Therefore, it is a challenge

to provide an efficient and low overhead anonymity system

which is suitable for the data center environment.

The widely deployed Software Defined Networks (SDN)

[7] in data centers brings new ideas for anonymous communi-

cation. The SDN architecture makes the packets forwarding

more flexible, the controller can install routing rules into

switches in advance and the switches modify the packet header

to hide the real participants of a flow, achieving anonymous

communication.

To meet to requirement of anonymity within data centers,

we present Mimic Channel (MIC), an efficient in-network
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anonymity system designed for data center environment, with

non-overlay architecture to significantly reduce resource con-

sumption in terms of computation and network. The basic idea

behind MIC is to conceal the sender and receiver of a flow

by changing the addresses (such as MAC, IP and port) on

multiple switches (not the host). As a result, a flow can mimic

flows of other participants. A flow in MIC is called an m-flow.

The switch node which changes the packet addresses is called

Mimic Node (MN). The fake addresses changed by an MN are

called m-addresses. An MN can be regarded as a lightweight

mix or relay node in traditional anonymity systems, but is

built on a switch node in the network. MIC achieves in-

network anonymous communication, and hence has much

shorter forwarding paths and fewer intermediate operations

than traditional overlay-based schemes. Therefore, MIC is

more efficient and suitable for data center environments.

However, there are two technical challenges in the MIC

design. First, in order to achieve better anonymity, the m-

addresses should be real addresses in the same network.

Therefore, we need to handle the potential conflicts between

two different m-flows or between an m-flow and a common

flow (non-mimic flow). To avoid this routing collisions, we

propose a Collision Avoidance Mechanism and design an

M-Address Generation Algorithm (MAGA) to map the m-

addresses of different m-flows to disjoint address spaces.

Second, in order to increase the usability and deployability, the

MIC design should not incur any modification on commodity

SDN switches, as well as achieving a certain level of traffic-

analysis resistance. We employ Multiple m-flows mechanism

and Partial multicast mechanism to improve the traffic-analysis

resistance of MIC.

The paper makes the following contributions.

• We reveal the potential security threats in non-anonymous

data centers, and emphasize the importance of anonymous

communication inside data centers.

• We propose an efficient anonymity scheme for SDN-

based data centers, called MIC, which hides the com-

munication participants by changing the packet header

at switch nodes along transmission paths. To address

the challenge of routing collision, we design a Collision

Avoidance Mechanism (Sec IV-B3). We also propose two

mechanisms to enhance the traffic-analysis resistance for

MIC (Sec IV-C).

• We implement and evaluate MIC. Our security analysis

and evaluation demonstrate that MIC can achieve session

unlinkability and improve traffic-analysis resistance at

low overhead, and can be easily deployed in SDN-based

data centers.

The rest of this paper is organized as follow. Section II

presents the background and motivation of this paper. Section

III describes the system model, threat mode, goals and as-

sumptions. Sections IV describes the MIC design. In Section

V , we discuss the security of MIC. Section VI describes

the implementation details and our experimental evaluation

of MIC. Section VII describes the related work. Finally, we

conclude our paper in Section VIII.

II. BACKGROUND AND MOTIVATION

Anonymity in Data Centers. More and more enterprises

deploy their business in public cloud to reduce Total Cost of

Ownership (TCO) and boost service deployment. However, in

many cases, the ongoing business or service, as well as their

scale are a part of commercial confidentiality. This information

reflects the company’s decision-making and business planning.

Once the information is leaked to opponents, the company

will probably lose market opportunities, resulting in significant

losses. Moreover, as many service deployed in cloud are online

service, such as web server, they cannot tolerate any crash.

The data center faces internal security threats. An adversary

can easily collect or observe a large number of traffic infor-

mation at any point of the network. For example, a hacker

can take over a switch by telnet attack, thereby observing

and analyzing the traffic patterns to launch traffic-analysis

attacks. In some server-centric network topologies, such as

BCube [8], a hacker can compromise a server, and analyze

the traffic passing through it. In virtualized cloud data centers,

a malicious user on a guest VM can attack or compromise

the host hypervisor by “guest VM escape” [9], and then can

easily observe the traffic of other VMs on the same host. Much

information in the packet header is useful to the adversaries,

for instance, the ‘ports’ will typically reveal the service type

(the port 80 represents Web server). In addition, there are

many known shortages in existing commercial cloud. For

example, Ristenpart et al. [10] points out that the internal IP

addresses are statically assigned to physical machines, and one

can use the internal IP address to infer the instance type and

availability zone of a target service in EC2 [11]. Therefore,

it is important to protect the identity of host inside the data

center.

Unfortunately, traditional anonymity systems are designed

for the Internet environment, which are not suitable for the data

center environment. First, the applications in data centers have

higher performance requirements than those in the Internet.

All existing anonymity approaches are overlay-based, and

hide the correspondence between input and output messages

through hop-by-hop encryption. Therefore, they suffer from

high performance overhead due to long transmission path

and cryptographic operations. Second, the computational and

networking resources are expensive in data centers. Redun-

dant traffic in overlay architecture and multiple cryptographic

operations will consume a lot of resources. Therefore, it is

a challenge to achieve anonymous communication at low

overhead.

Fortunately, the data center is more controllable than the

Internet, and it naturally faces much less security threats than

the Internet, while tolerating looser threat model. This gives

us a new design space for a lightweight anonymity system.

Software-Defined Networks. The Software-Defined Network

(SDN) architecture separates data plane from control plane,

simplifying the network configuration, opening up the net-

working, and making the networking programmable. SDN
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Fig. 1: The system model of MIC.

dramatically simplifies the routing in data center networks

(DCNs). A lot of researches on SDN-based DCNs, such as

MCTCP [12], Hedera [13] and zUpdate [14], have demon-

strated the feasibility and trend of integrating SDN into the

data center. In this paper, we focus on the anonymity scheme

in SDN-based data centers.

III. PROBLEM DEFINITION

In this paper, we study the anonymity system for data cen-

ters to achieve anonymous communication and enhance traffic-

analysis resistance. More specifically, an anonymity system

should conceal the end-host’s identity and the real traffic

patterns. Taking into account the features of data centers, we

study an anonymity system that can provide a practical level

of anonymity at minimal performance overhead.

A. System Model

The scheme proposed in this paper is designed for SDN-

based data centers, and all the switches in this paper are

SDN-enabled, which can modify the packet header. MIC is

a typical C/S model design, which consists of clients, MNs

(Mimic Nodes) and an MC (Mimic Controller). The clients,

which originate and terminate traffic, are end-hosts in data

centers. The MNs are switches, which will modify the header

of packets.

As shown in Figure 1, Alice is an initiator client which

wants to communicate with Bob (the responder client) anony-

mously. She creates a transport channel between Bob and

communicates with each other using MIC. A mimic channel

consists of one or several end-to-end flows, called m-flows.

Each m-flow travels through several MNs, which are specified

by the MC. The MC, located in the SDN controller, calculates

and manages the routing of each m-flow.

• The clients, including the initiators and the responders,

can be any end-hosts in the network. An initiator es-

tablishes a mimic channel with a responder proactively

before communication starts. Once a mimic channel is

established, the communication pairs can exchange mes-

sages without revealing each other’s identity.

• An MN is a lightweight mix or relay in the traditional

anonymous systems, which can only modify the header

of packets instead of operations like encryption/decryp-

tion, re-order, delay and batch, and etc. The commercial

switches generally have no advance intelligence, and our

design goal is to minimize the overhead. Any switches

in the network are potential MNs.

• The MC is responsible for calculating and managing the

routing of each m-flow. It determines the MNs in each

m-flow, and generates m-addresses for each MN. With

the global view of the network and each m-flow, the MC

is the core of MIC design.

At a high level, MIC has two phases, the channel establish-

ment (see in Section IV-A1) and the data forwarding (see in

Section IV-A2).

B. Threat Model

The goal of adversaries is to break the unlinkability of

communication pairs, seeking to infer which pairs of clients

are communicating. We assume an adversary who can com-

promise a part of switches, the initiator client or the responder

client; and who can observe some fraction of network traffic.

• Compromising the switches: An adversary may compro-

mise one or a plurality of switches (but not all), which

may be MNs or common switches, seeking to observe

and correlate the traffic via the switches.

• Compromising the client: An adversary may compro-

mise the initiator (or the responder), seeking to obtain the

identity of the responder (or the initiator). For example,

a hacker compromises a client in a distributed storage

system, and attempts to obtain information of other nodes

(like the metadata servers or storage servers), to learn

which points in the network to attack next.

• Observing the traffic: An adversary may observe and

analyze the traffic at some points in the network. For

example, the switches in data centers generally have port

mirroring function, which is used for Intrusion Detection

System (IDS). The adversary may use the port mirroring

for traffic observing, or have compromised the existing

IDS.

Like most of the prior practical anonymity schemes, MIC

does not protect against a global adversary who can snoop

on all paths or switches. A global adversary is unlikely in

practice. Specifically, it is not easy to compromise a single

switch, let alone all the switches in data centers. Moreover,

an IDS generally monitors the traffic from only a few ports to

reduce the overhead, and the port mirroring on most switches

are disabled. It is hard to observe the global traffic from all

switches.

C. Goals

The main goal of MIC is to frustrate attackers from link-

ing communication partners, achieving session unlinkability.

MIC also aims to enhance resistance against size- or rate-

based traffic-analysis. Moreover, MIC has the following design

goals:

High performance: Most of the applications in data centers

are performance sensitive, requiring high bandwidth and low

latency. For example, the web services are delay sensitive
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Fig. 2: An example of MIC. The intermediate switch nodes

are not aware of the real ‘src’ 10.0.0.1 and ‘dst’ 10.0.0.8.

applications and the file services are bandwidth hungry ap-

plications.

Deployability: MIC design should require no kernel or

switch modifications, and can deploy in common SDN-based

data centers.

D. Assumptions

We assume the SDN controller, i.e. the MC, is secure,

and all the communications between the SDN controller and

the switches are secure. We believe these assumptions are

reasonable. The SDN controller is the core of the network.

Once the controller is compromised, the entire network will

crash.

IV. DESIGN OF MIC

A. Overview

Similar to most of the previous anonymity systems, MIC has

two phases, the channel establishment and data forwarding.

1) Channel establishment: In channel establishment, one

or a set of bi-directional routing paths will be generated for

each channel. Each m-flow has independent MNs and m-

addresses. Specifically, when establishing a mimic channel,

the initiator creates a request packet to the MC, and then the

MC generates the corresponding routing before returning an

acknowledgement to the initiator. The request packet contains

the encrypted m-flow number, the MN number and the server

address (or nickname). The MC calculates the forwarding path

for each m-flow and chooses the specified number of switches

as the MNs in each path.

After all paths are generated, the MC sends an acknowledge-

ment, which contains a set of entry addresses, to the initiator.

The entry address is the first m-address in an m-flow from the

initiator’s view, which hides the address of the responder.

2) Data Forwarding: After the mimic channel is estab-

lished, the initiator or the responder can send messages

anonymously through the channel. All the MNs will mimic

the header of packets travel through the path to hide the

participants’ identities. After the communication is completed,

the sender will send a notification to the MC to facilitate

channel management at the MC.

We take a simple example to illustrate how an MIC works.

Suppose two clients Alice (with IP address 10.0.0.1) and Bob

(with IP address 10.0.0.8) are connected via three switches

(S1, S2 and S3), as shown in Figure 2. For the purpose of

anonymous communication, Alice dose not send messages to

Bob directly, but sends a request to the MC for constructing

an anonymous path to Alice first. After receiving the request

from Alice, the MC calculates the forwarding path to Bob. The

switches along the path modify the packet header to conceal

the identity of Alice and Bob.

Specifically, suppose the packet header is denoted as a two-

tuple 〈src ip, dst ip〉. The MC notifies Alice that he should

send packets to the destination with address 10.0.0.2, i.e.

the packet P1 is 〈10.0.0.1, 10.0.0.2〉. The switch S1 modifies

the header of P1, and forwards it to the next hop, i.e.

the packet P2 is 〈10.0.0.3, 10.0.0.4〉. Similarly, switches S2

and S3 modify the packet header to 〈10.0.0.5, 10.0.0.6〉 and

〈10.0.0.7, 10.0.0.8〉, respectively. It is worth noting that the

last switch should modify the destination address back to

the correct one, so that the receiver can handle the packets

correctly without protocol stack or kernel modification.

B. Mimic Controller

The MC, located in the SDN controller, is the core of

MIC. All the routings are calculated by the MC, and then

are installed to the corresponding switches. The MC decides

the forwarding path, the MNs and m-addresses for each m-

flow, and has the global view of each channel. Specifically,

the MC manages all the channel states, calculates and manages

the routing, and handles the routing conflicts of each m-flow,

ensuring the correctness of the network.

1) Channel Management: The MC needs to maintain the

status of all mimic channels. When a mimic channel is

constructing or the communication is finished, the initiator

sends a request to the MC. Therefore, the MC can have the

states of all m-flows.

Thus, it can be seen that the MC needs to handle a large

number of establishing and shutdown requests in massive short

communication scenes. In order to reduce the overhead on the

MC, we should reuse the mimic channel among the commu-

nications between the same participants. Therefore, in these

scenarios, the sender does not send shutdown request to the

MC immediately when the communication is finished. Instead,

a dedicated module in the initiator will send notification to the

MC periodically.

2) Routing Calculation: MIC achieves anonymous com-

munication by elaborate-designed routing which changes the

packet header at several switches while finally leading to the

right destination. The MC obtains the global view of the

network and calculates all-pairs equal-cost shortest paths when

initiation. After receiving the request packet from an initiator,

the MC should generate the specified number of routing paths

for m-flows.

First of all, the MC gets the initiator and the responder’s

addresses, the m-flow number F and the MN number N from

the request packet. If the responder is a hidden receiver, the

MC should find the address of the receiver from a hidden

service map.

For each m-flow, the MC randomly selects a pre-calculated

shortest path between the initiator and responder. If the path

length is less than N , a new forwarding path with length larger

than N will be calculated. After determining the routing path,

141414



the MC chooses N switches along the routing path as MNs.

Then the MC determines the m-addresses on each MN. Finally,

all the routings are installed to the corresponding switches. The

MN number indicates the privacy level of a m-flow, and the

more MNs will cause more overhead. We allow users to trade

the privacy for performance.

3) Collision Avoidance: All the m-addresses should be in

the same network name space (or subnet) to enhance the

anonymity of the m-flow. Therefore, routing collision between

two m-flows, or an m-flow and a common flow could happen,

which will lead to errors.

Collision Example

Routing conflicts could happen when two or more flows are

forwarded through the same port at a switch. The following

examples show three routing conflict scenes. To simplify the

description, we assume the two-tuple < src ip, dst ip >

identify a flow on each switch. (1) The packet addresses of two

flows f1, f2, are changed to the same one on the same switch,

as shown in Figure 3(a). (2) The packet addresses of a flow

f1 are changed to the same with another flow f2 on the same

switch, as shown in Figure 3(b). (3) The packet addresses of

two flows f1, f2 are the same before they reach a same switch,

but the switch does not change the addresses of both the two

flows, as shown in Figure 3(c).

The root cause of routing conflicts is that, the m-flow will

use variable addresses during communication. Therefore, an

m-flow may occupy the addresses of a common flow, or two

m-flows may use the same addresses simultaneously.

Collision Avoidance Mechanism

To avoid routing conflicts, we design a collision avoidance

mechanism. The basic idea is to ensure each flow has a unique

match entry on any switch.

First, to avoid collisions between common flows and m-

flows, we use MPLS [15] label to distinguish them. Here we

just use MPLS field for tagging, so that we can distinguish the

flows carrying different three-tuple 〈src ip, dst ip,mpls〉. We

divide the MPLS label into two disjoint categories, one used

to mark the common flows (CF ), and the other used to mark

the m-flows (MF ). Only the MC knows which MPLS labels

are in CF and which are in MF . We will describe how to

divide the MPLS label sets later.

Second, in order to avoid conflicts between different

m-flows, we design an M-Address Generation Algorithm

(MAGA). The main idea behind MAGA is to reasonably

divide the address space into disjoint classes, and put the

m-addresses of each m-flow (or mimic channel) into dif-

ferent address spaces. Therefore, for each m-flow, it can

randomly select an m-address from its address space each

time, avoiding collision with any other m-flows. For simplicity

in description, we suppose each mimic channel contains only

one m-flow. Specifically, for an m-flow, the real address is

〈src ip, dst ip〉, an MN should convert the address into m-

address 〈m src ip,m dst ip〉. In order to reduce the pos-

sibility of m-address collision among different m-flows, we

add MPLS label for tagging. That is, we use the three-tuples

〈m src ip,m dst ip,mpls〉 to uniquely identify an m-flow

on each switch.

We use a hash function f(x, y, z) to map the m-addresses

of each m-flow to different address spaces. The hash function

f(x, y, z) should satisfy that, for any two different three-tuples

〈a, b, c〉 and 〈x, y, z〉, if the hash values are f(a, b, c) = V1,

f(x, y, z) = V2, then the V1 �= V2. In that case, given two

different values Vm, Vn, we can get two disjoint three-tuple

sets A1 and A2, which satisfy that for any (a, b, c) ∈ A1,

(x, y, z) ∈ A2, satisfy f(a, b, c) = Vm and f(x, y, z) = Vn,

but (a, b, c) �= (x, y, z), as demonstrated in Figure 4. There-

fore, if we give each m-flow a unique ID, and let any m-

address (x, y, z) of an m-flow satisfies f(x, y, z) = ID, the

routing collision between different m-flows can be avoided.

The main point is to ensure that each m-flow has a unique

ID. A simple method is to monotonically increase the ID

when a new m-flow arrives, and recover the expired ID

when an m-flow is closed. Performed naively, a global hash

function for all MNs is enough. However, in this scheme, all

m-addresses (on all MNs) are constrained by a single hash

function, which will result in poor security. For example, an

adversary can compromise an MN, and try to find out the

hash function by analyzing the m-addresses on the MN. Once

an adversary knows the hash function, he can associate the

packets within the same m-address space to break anonymity.

To solve the above-mentioned issues and improve

anonymity of MIC, we set an independent hash function

for each MN rather than a uniform hash function for all.

Therefore, the adversary cannot obtain all the hash functions

on all MNs easily, so making it hard to associate with the m-

flows. However, as each MN has an independent hash function,

we can only ensure no conflicts among m-addresses within

the same MN, but not that between different MNs. Figure

3(c) shows an example of m-addresses conflict between two

different MNs (if f2 is an m-flow).

To avoid this kind of conflicts, we use the MPLS label

to ensure that the m-addresses between different MNs never

conflict. Again, we divide the MPLS into multiple disjoint

sets, and map the MPLS sets to each MN. Therefore, the

m-addresses on different MNs have different MPLS labels,

which will avoid m-addresses conflicts among different MNs.

To ensure anonymity, for any given MPLS label, only the MC

knows which MN the label corresponds to. Similarly, we use

a hash function g(x) to classify the MPLS sets, and map the

sets to each MN. Specifically, each MN has a unique S ID.

For an MN M whose S ID is S, if an MPLS label m satisfies

g(m) = S, m is in the set for M .

Thus, the key point in MAGA is to build two hash functions

f(x, y, z) and g(x). For f(x, y, z), our goal is that for a given

function value V , we can get a three-tuple (a, b, c) which

satisfies f(a, b, c) = V . Therefore, function f(x, y, z) must

be reversible on at least one variable. In this case, we can

first determine two variables randomly, and then determine

the rest variable using the inverse function, and finally get the

three-tuple m-address. In order to ensure all the variable of

this function are integers, we use XOR or shift operation to
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Fig. 3: Examples of routing collision.
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Fig. 4: Hash function demonstration.
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build the function. For example, a simple f(x, y, z) can be

constructed as follow.

f(x, y, z) =[(x⊕A0) >> A1]⊕ [(x ⊕A2) << A3]

⊕ [(y ⊕B0) >> B1]⊕ [(y ⊕B2) << B3]

⊕ [(z ⊕ C0) >> C1]

(1)

Then the inverse function for variable z is :

f−1

z (v, x, y) =v ⊕ [(x ⊕A0) >> A1]⊕ [(x⊕A2) << A3]

⊕ [(y ⊕B0) >> B1]⊕ [(y ⊕B2) << B3]

<< C1 ⊕ C0

(2)

A0, A1, A2, A2, B0, B1, B2, B3, C0, C1 are parameters,

which can be different for different MN to build different hash

functions.

To avoid an adversary distinguish the m-flows and common

flows by observing the source/destination IP addresses, the

m src ip and m dst ip should subject to different restric-

tions on different MNs. For example, for a Fat-tree topology as

shown in Figure 5, the source IP of packets forward out to port

3 should be restricted to {1, 2} and {1, 2, 3, 4}, respectively

at switch S1 and S2. Meanwhile, as previously described, the

MPLS label should be restricted to different sets on different

MNs to avoid m-addresses conflicts among different MNs. As

a result, all the three elements in 〈m src ip,m dst ip,mpls〉

cannot be arbitrarily selected. To get a three-tuple which

satisfies all the restrictions quickly, we divide the MPLS to

two parts MPLS1 and MPLS2, of which the MPLS1 is

subject to the restriction of distinguishing different MNs, but

the MPLS2 is not. Therefore, getting a satisfied three-tuple

〈m src ip,m dst ip,mpls〉 is equivalent to getting a four-

tuple 〈m src ip,m dst ip,mpls1,mpls2〉. We construct a

four variables hash function F (α, β, γ, δ) and the inverse

function for variable δ, F−1

δ
(v, α, β, γ) similar to f(x, y, z)

and f−1

z (v, x, y), respectively. Finally, we first randomly select

a qualifying m src ip, m dst ip, mpls1, and then calculate

out the mpls2 using the inverse function F−1

δ
(v, α, β, γ).

For g(x), since there is only one variable, it is difficult to

construct a function which meets the requirement. Hence, we

divide the variable x into multiple independent variables in

bits. For example, a simple solution is to divide the variable

x into high bytes x1 and low bytes x2. Suppose the variable

x has 32bits, x1 is the high 16bits and x2 is the low 16bits.

Therefore, the function g(x) is equivalent to h(x1, x2). We

can construct h(x1, x2) and h−1

x2
(v, x1) similar to f(x, y, z)

and f−1

z (v, x, y), respectively.

For an MN, if its S ID is V , any MPLS label m on it

should satisfy g(m) = V . Given the hash value V , we first

randomly select the high 16bits x1, and then calculate out

the corresponding low 16bits x2 using the inverse function

h−1

x2
(v, x1), finally the m = x1 << 16+x2. It is worth noting

that, in order to enhance security, we can make it harder for

adversary to obtain the hash function by dividing the variable

x in a more random way, or dividing to more sub-variables.

Similarly, for the common flows, we assign a unique func-

tion value C ID to it, and let any m satisfy g(m) = C ID

tag the common flows.

C. Traffic-analysis Resistance

An adversary may observe and correlate the traffic at some

place (switches, links or servers) in the network, seeking to

find out the communication participants or what operations

are processing. To enhance traffic-analysis resistance, we em-

ploy two mechanisms, multiple m-flow and partially multicast

mechanism.

Multiple M-Flows Mechanism. MIC aims to achieve anony-

mous communication with good performance and deploya-

bility which can be deployed and used in the practical data

centers. The commercial SDN switches can only process the
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Fig. 6: Partially multicast demonstration. The MN S1 will

forward out three packets P2, P3 and P4 when receiving P1,

but P2 and P4 will be drop at next hop.

rules defined by southbound interfaces, like OpenFlow, but

has no user-defined interfaces. Therefore, we do not delay,

encrypt/decrypt or batch traffic on MNs, but just modify the

packet header. To defend the size-based traffic analysis, we

choose to mimic the traffic size at the source, which motivates

us to employ multiple m-flows mechanism. Specifically, each

mimic channel may consist of several m-flows, and each m-

flow has independent routing path, MNs and m-addresses. The

initiator divides the user data into slices, and each m-flow

carries different amount of slices. As the traffic is divided into

multiple pieces, an adversary cannot obtain the real size of the

traffic unless he knows the m-flow number and has correlated

all the m-flows.

Partially Multicast Mechanism. An adversary may observe

all the ingress and egress traffic on an MN, and correlates

the m-flow at the MN, or correlates the entire m-flow by

iterated observing along the transmission path. When there

are few m-flows on a specific MN, the adversary can find

mismatched packet pairs in ingress and egress ports, and

they have high probability to be the same packet which has

been header changed by the MN. Meanwhile, since the MN

processes no cryptographic operations on packets, the packets

in the same m-flow look the same at each hop. An adversary

can correlate with them by checking the contents of each

packets. MIC cannot defeat such end-to-end correlation, but

uses partially multicast mechanism to maximally decrease the

success rate of this correlation. More specifically, at an MN,

we will replicate the input packet to multiple packets with

different m-addresses, and send the packets out from different

ports simultaneously. But only one of the output packets will

finally reach the receiver, the others will be dropped in the

next hop, as show in Figure 6. This may be useful at the edge

MNs.

D. Unlinkability

MIC achieves unlinkability by changing the packet header

at multiple switches.

Sender Anonymity. MIC cannot hide the sender address if

an adversary observes traffic between the sender and the first

MN. However, the goal in this paper is not to provide strong

anonymity at any cost, but to break the correlation between the

sender and the receiver. In fact, as any switch in the network

can be an MN, an adversary cannot tell whether the packets

have been address modified by an MN, unless he compromises

the first switch which direct links to the sender.

Receiver Anonymity. Receiver anonymity can be easily real-

ized in MIC. Unlike the previous anonymity systems, MIC

needs no additional rendezvous. The MC, which has the

global view of each mimic channel can achieve the similar

functionality as rendezvous or hidden service in traditional

anonymity approaches. The hidden receiver first sends its con-

tact information to the MC for anonymous service registration.

The MC then adds the receiver to a hidden service map. The

initiator client obtains the service name (or nickname) of the

hidden receiver out of band and constructs a mimic channel

using the service name. As the MC knows about the location

and identify of the receiver, the channel can be constructed as

normal.

V. SECURITY ANALYSIS

MIC is designed to achieve the communication anonymity

in SDN-based data centers. We discuss a variety of attacks

within our threat model and how MIC withstands them.

Compromise switches. An adversary may compromise one

or several switches, which can be the common switches (non-

MNs) or the MNs, along a transmission path. We consider the

following situations. 1) If an adversary compromises a switch

between the sender and the first MN, he can obtain the sender’s

address but not the receiver’s; 2) If an adversary compromises

a switch between the last MN and the receiver, he can obtain

the receiver’s address but not the sender’s; 3) If an adversary

compromises a switch between the first MN and the last MN,

he can obtain the neither sender’s nor the receiver’s address.

Therefore, the adversary cannot obtain both the sender and the

receiver at any single point, and the global adversary is out

of our threat model. As any switch in the network is likely to

be an MN, an adversary cannot tell which is the first (or last)

MN for a specific flow.

Compromise initiator or responder. The adversary com-

promises the initiator (or the responder), seeking to obtain

the identity of the nodes which communicating with it, to

determine the next attack target. If the responder is a hidden

receiver, the initiator does not know the identity of the respon-

der, and the responder has not idea of the initiator. Therefore,

compromising the initiator (or the responder) cannot break the

unlinkability of an m-flow.

Traffic observing attack. The adversary may observe (e.g.

using the mirror ports of switches) the traffic on a switch, and

analyze the traffic to correlate ingress and egress packets to

a same flow. By iterated traffic analysis, the adversary may

eventually correlate the entire m-flow. To observe the global

traffic in data centers is unproductive, since the mirror port is

not enabled on all switches by default. Our partially multicast

mechanism helps to prevent the adversary correlating ingress

and egress packets at a single MN.

Size- or rate-based traffic-analysis. The adversary may count

the packet number (or size) and transmission rate at various

points, seeking to analyze the traffic patterns (size or rate)

of a dedicated initiator (or responder), thereby inferring what

operations or businesses are processing. Our multiple m-flow

mechanism can reduce the effective of this attack significantly.
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Fig. 7: Route setup time comparison among MIC, Tor, TCP

and SSL.

The adversary does not know the flow number within a

channel, and it is hard to correlate the flows to the same

channel even if he knows the number. Even if an adversary

has obtained an m-flow’s traffic patterns, he cannot know the

channel’s traffic patterns as well.

VI. EVALUATION

We build a test platform on Mininet [16]. The hardware

consists of one server running Ubuntu 12.04.5 LTS operating

system, with Intel (R) Xeon (R) E5-2620 @ 2.00GHz CPU,

32GB RAM. We install Mininet 2.2.0, Openvswitch 2.1.0,

and Ryu 3.17 [17] on it. The network consists of 16 hosts

interconnected using a Fat-tree of twenty 4-port switches, as

shown in Figure 5. We evaluate the performance of MIC

compared with Tor, TCP and SSL in terms of route setup

latency, transmission latency and throughput. MIC-TCP and

MIC-SSL in our evaluation are two MIC versions which based

on TCP and SSL, respectively.

MIC implementation. MIC prototype consists of two mod-

ules: the user-end module and the MC module. We implement

the user-end module on Linux platform. MIC employs typical

C/S model, providing socket like programming APIs, and thus

a programmer can use MIC for anonymous communication

easily. We implement the MC on Ryu, a popular SDN con-

troller platform. The communication between the client and the

MC is encrypted using private key. When a client builds up a

mimic channel for the first time, he should exchange a private

key with the MC in advance using asymmetric encryption

algorithms, like RSA [18] or D-H [19].

A. Route Setup Latency

We evaluate the route setup latency of MIC, Tor, TCP

and SSL. For MIC, we measure the “MIC connect” function

time on the initiator. We use the AES function in OpenSSL

for encrypting/decrypting the request packet. For Tor, we

measure the “connect” time on the client. Specifically, we

redirect the traffic to our local Tor testbed by using the

“torsocks” command, and vary the route length by modifying

the “DEFAULT ROUTE LEN” in the Tor source code. We

also evaluate TCP and SSL as the base line.

Figure 7 plots the results of the route setup time varying

the route length. The route length is the number of relay

stages along the path in Tor, and similarly, is the number

of address changing along the path in MIC. As one would

expect, MIC outperforms Tor in route setup time, due to the

more lightweight processing and shorter transmission path.

Fig. 8: Latency comparison among MIC, Tor, TCP and SSL.

The route setup time increases with increased route length in

overlay-based Tor but remains nearly the same in in-network

based MIC. That is because the operations on each MN

are very lightweight, and the actual length of transmission

path will not increase (significantly) with increased route

length. Compare to the base line TCP and SSL, MIC requires

additional time for sending request to the MC, therefore,

resulting a little overhead.

B. Latency and Throughput

We evaluate the latency and throughput among MIC, Tor,

TCP and SSL after the session is established. In the latency

evaluation, we measure the time from when the sender sends

10 bytes data to the receiver until the receiver sends 10 bytes

data back. Figure 8 plots the results of latency. As can be seen

from the results, MIC (including MIC-TCP and MIC-SSL)

outperforms Tor significantly in terms of latency, and MIC-

TCP is comparable with TCP, MIC-SSL is comparable with

SSL. Compared to Tor, MIC has fewer cryptographic opera-

tions and shorter transmission path (the network paths and host

protocol stacks), so that achieving lower latency. Compared to

TCP (or SSL), MIC only incurs more “actions” in flow-table

on MNs, whose overhead is substantially negligible.

In the throughput evaluation, we use Iperf for Tor and TCP

test, and a modified Iperf for MIC and SSL. We first evaluate

the throughput of one flow in different path lengths, and then

evaluate the average throughput of various number of flows

(the path length is set to default 3). Figure 9 (a) and (b) shows

the throughput comparison among MIC, Tor, TCP and SSL.

MIC achieves higher throughput than Tor due to its lightweight

design. It’s not a surprise to see Tor’s average throughput

decreases badly as the path length or flow number increases,

as Tor employs the heavyweight overlay-based design. In Tor,

each anonymous communication will occupy a large number

of redundant network and computational resources than a

common (non-anonymity) communication needs. Therefore,

Tor will saturate the data center network quickly as the flow

number increases, resulting in traffic congestion. However,

MIC does not induce much additional length over the orig-

inal (non-anonymity) path length, thereby can achieve high

performance which comparable with TCP (or SSL).

We also evaluate the overall CPU usage of MIC, Tor, TCP

and SSL when performing the first throughput evaluation, as

shown in Figure 9 (c). The results show that the CPU overhead

on MIC has a narrow increasement than TCP (or SSL) due to

the extra operations on virtual switches. However, Tor suffers
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(a) Throughput of one flow with different path
lengths.

(b) Average throughput of various flows. (c) CPU usage.

Fig. 9: Throughput comparison among MIC, Tor, TCP and SSL. (a) and (b) show the throughput comparison, (c) shows the

CPU usage of evaluation (a).

from extremely high overhead due to the significant redundant

route paths and intermediate operations.

C. Scalability Analysis

As can be seen from Sec IV-B2, the time complexity of

routing calculation of MIC is O(|F |), where the |F | is the

m-flow of a channel. By default, each MIC has one m-

flow, and the m-flow number of a single MIC is generally

less than 10. Thanks to our hash-based Collision Avoidance

Mechanism, there is nearly no extra overhead on routing

calculation compared to TCP (or SSL).

As we adopt the centralized approaches, MIC will naturally

suffer from the single point failure and scalability issues. For-

tunately, lots of efforts have been made on the scalability issues

in SDN, such as distributed controllers [20]. MIC can be easily

deployed on distributed controllers. As long as we ensure each

MIC has a unique ID, our collision avoidance mechanism can

guarantee the correctness of routing. Therefore, we can assign

a unique ID space for each controller to make MIC work

among multiple controllers.

VII. RELATED WORK

To protect the identity of the user or service provider and

defeat traffic-analysis attacks, anonymity systems has been

extensively studied. Prior anonymity systems are primarily

based on Mix-net [21], DC-net [22], verifiable shuffles [23]

[24] or broadcast (multicast). Existing anonymity systems can

be divided into two categories in accordance with the latency:

high-latency anonymity systems and low-latency anonymity

systems.

High-latency anonymity systems. These systems are mainly

designed for applications which requires strong anonymity but

can tolerate significant high latency, such as E-mail, including

Babel [25], Mixmaster [26], Mixminion [3]. This systems

are based on Mix-Nets, in which the messages are typically

delayed for hours for batching to maximize anonymity and

achieve strong traffic-analysis resistance against even a global

adversary.

Low-latency anonymity systems. These systems are mainly

designed for interactive applications like web browsing and

Internet chat. Anonymizer [27] is the simplest low-latency

anonymity system, which has only one proxy. Onion routing

[28] is a real-time variant of Mix-Net in early time. Before

transmitting messages, the sender picks up a list of mixs

(called relays) and constructs a bi-directional circuit with

the receiver via the intermediate relays. The sender layered-

encrypts the messages, and each relay decrypts them then

forwards them to the next hop in the circuit. Each relay

knows only its previous and next hops, but has no idea of

the communication participants. The second-generation Onion

Routing, Tor [5] is volunteer-based, and becomes the most

popular anonymity system deploy in the real word.

In P2P architecture based anonymity systems, each node

can be either the traffic initiator (or recipient) or forwarder.

Crowds [4] hides the traffic originator among a large number

of members. MorphMix [29] makes anyone can easily join

the system instead of building static mix network, and pro-

vides collision detection mechanism to identify compromised

paths to enhance robust. Tarzan [30] uses cover traffic to

obscure traffic patterns to defeat global observers. Aqua [31]

focuses on providing high-bandwidth and strong anonymity

communication for BitTorrent. Herd [32] provides scalable and

traffic-analysis resistant anonymity network for VoIP systems.

Hordes [33], P5 [34] and Herbivore [35] adopt multicast or

broadcast mechanisms to achieve anonymity. Dissent [6] is

built on DC-Net and verifiable shuffle, providing low latency,

high scalability and strong anonymity. Information Slicing

[36] tries to achieve anonymity communication without using

public key through multi-path and secret sharing. LAP [37]

provides low-latency and lightweight anonymity to protect

daily online activities which are impatient to wait. Other works

are focused on providing anonymity for mobile networks

[38] [39], vehicular networks [40] [41], Information-Centric

Networks [42] and P2P-VoD Systems [43]. As far as we are

aware, MIC is the first anonymity scheme designed for data

centers.

VIII. CONCLUSION

We present MIC, an efficient anonymity scheme aimed

for data center environment. Different from the traditional

overlay-based architecture, MIC adopts an in-network design,

which conceals the communication participants’ identifies by

modifying the source/destination addresses (e.g. MAC, IP and

port) at switch nodes. To address the challenge of potential

routing collision in MIC, we propose a routing collision
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avoidance mechanism. We also propose two mechanisms,

the Multiple M-flows mechanism and the Partial Multicast

mechanism, to enhance the traffic-analysis resistance of MIC.

As a result, we can improve anonymity of applications within

data centers at negligible overhead. Experimental results show

that MIC outperforms Tor significantly in performance, and is

comparable with TCP (or SSL).
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