
Improving RAID Performance Using an Endurable

SSD Cache

Chu Li, Dan Feng, Yu Hua, Fang Wang∗

Wuhan National Lab for Optoelectronics

School of Computer, Huazhong University of Science and Technology, Wuhan, China

Email: {lichu, dfeng, csyhua, wangfang}@hust.edu.cn

Abstract—Parity-based RAID storage systems have been
widely deployed in production environments. However, they
suffer from poor random write performance due to the parity
update overhead, i.e., small write problem. With the increasing
density and decreasing price, SSD-based caching offers promising
opportunities for improving RAID storage I/O performance.
However, as a cache device, frequent writes to SSD leads to
being quickly worn out, which causes high costs and reliability
problems. In this paper, we propose an efficient cache man-
agement scheme by Keeping Data and Deltas (KDD) in SSD.
KDD dynamically partitions the cache space into Data Zone
(DAZ) and Delta Zone (DEZ). DAZ stores data that are first
admitted into SSD. On write hits, KDD writes the data to
RAID storage without updating the parity blocks. Meanwhile,
the deltas between old version of data and the currently accessed
data are compactly stored in DEZ. In addition, KDD organizes
the metadata partition on SSD as a circular log to make the
cache persistent with low overhead. We evaluate the performance
of KDD via both simulations and prototype implementations.
Results show that KDD effectively reduces the small write penalty
while significantly improving the lifetime of the SSD-based cache.

I. INTRODUCTION

Redundant Array of Independent Disks (RAID) based stor-

age architecture [1] is one of the most popular choices to pro-

vide reliable and high performance storage. Among different

RAID levels, parity-based solutions like RAID-5 (and RAID-

6) have been widely used in large scale data centers due to

cost-effectiveness. They can tolerate one (and two) disk failure

while providing comparable read performance with RAID-

0. However, the write performance is severely degraded due

to the parity update overhead, especially for workloads with

lots of random small sized requests [2]. For example, each

data update in RAID-5 needs two read and two write disk

I/O operations, which is called the small write problem [2].

Many schemes have been proposed to eliminate the small write

penalty of parity-based RAID systems. One of the ways is

buffering parity/data blocks in Non-volatile RAM (NVRAM).

With caching, small writes can be reduced to full stripe writes.

However, the access time reduction they can provide is limited

due to the poor locality at the disk I/O level [3], [4].

Flash-based Solid State Drives (SSDs) have gained popu-

larity over the past few years. These devices have much lower

latencies but higher prices than magnetic hard disk drives

(HDDs). Therefore, SSDs are often deployed as a cache layer

∗Corresponding author: Fang Wang (wangfang@hust.edu.cn).

in front of HDD-based storage systems to achieve the perfor-

mance of flash with the cost of disk [5]. Although SSD has

some superior features such as high performance, low power,

and non-volatility, it suffers from endurance issue since flash

memory can only sustain a limited number of program/erase

cycles. While the caching layer is more write intensive than its

storage counterparts, typical data-center workloads can wear

out the SSD cache device within months [6], [7].

Write-through and write-around caching policies are largely

used in production environments to reap the benefits of the

back-end RAID storage systems, such as high availability,

and data reliability [8], [9]. However, they only reduce read

latencies and fail to address the small write problem. Lee et

al. [10] propose LeavO to reduce the parity update overhead

while maintaining reliability against the SSD failure. LeavO

delays parity update by storing redundant versions of data in

SSD. However, LeavO wears out the SSD cache more quickly

due to the requirement of storing metadata persistently on

SSD. Moreover, RAID re-synchronization (i.e., reading data to

re-generate parities) is required after SSD failures in LeavO,

leading to a window of vulnerability, in which a disk failure

causes permanent data loss. Consequently, it is critical to

extend the lifetime of the SSD cache.

In this paper, we propose an efficient SSD-based caching

solution to overcome the small write problem of RAID storage

while taking the SSD’s write endurance issue into account. The

key idea of our scheme is Keeping Data and Deltas (KDD)

in SSD. KDD dynamically partitions the cache space into

Data Zone (DAZ) and Delta Zone (DEZ). DAZ stores data

pages which are first admitted into SSD. When a write request

arrives, if the data is found in cache, KDD stores the com-

pressed XORs (delta) of the two versions of data in DEZ, and

writes the data to RAID without updating the parity. The stale

parity blocks will be updated in the background. Moreover,

in order to minimize the overhead of cache metadata updates,

KDD integrates the metadata of cached data and deltas, and

maintains a fixed metadata partition on SSD which is managed

as a circular persistent log.

We evaluate KDD using both a cache simulator and kernel-

level implementations under synthetic and various real-world

workloads. Trace-driven simulation results show that KDD sig-

nificantly reduces cache write traffics compared to the write-

through policy and LeavO, improving the SSD lifetime by

up to 5.1×. Our evaluations with prototype implementations

show that KDD can effectively boost the I/O performance of

the parity-based disk array.

The rest of this paper is organized as follows. In Section

II, we present the background and motivation of this work.

In Section III, we describe the detailed system design of

our proposed KDD. Extensive performance evaluations are

presented in Section IV. We discuss the related work in Section

V and conclude this paper in Section VI.

II. BACKGROUND AND MOTIVATION

A. Flash Memory based SSD

Current commercial SSDs use NAND flash memory as

storage medium with numerous advantages, such as high speed

random access, low power consumption, and shock resistance

[3]. The flash memory can be classified into Single-Level-Cell

(SLC), Multi-Level-Cell (MLC), and Triple-Level-Cell (TLC)

flash. SLC flash stores one bit per cell, whereas MLC/TLC

flash store two/three bits per cell. With the rapid increase

of capacity and decrease of cost, SSD has been widely used

in real-world storage systems. SSDs are constructed from an

array of flash packages that are connected to a flash controller.

Each package has one or more dies, which in turn have

multiple planes; Each plane has many blocks, which are further

divided into many pages. The flash controller improves SSD

performance by exploiting multi-level parallelism in SSD.

Flash memory shows superior features as presented above,

however, it suffers from write endurance problem. In flash

memory, read and program (write) operations are performed

in the unit of page with size ranging from 2KB to 16KB. Erase

is performed in the unit of block which typically contains 64

to 128 pages. Flash memory does not support in-place update.

Blocks can be only written after being erased and only a finite

number of erasures are sustained before wearing out. Typically,

SLC flash supports 100K erasures per block, while the MLC

flash supports as low as 5,000 to 10,000 erasures per block.

Furthermore, the write endurance is getting worse along with

the flash density increasing and feature size scaling [11].

B. Problems in Previous Schemes

SSDs have been largely adopted as write-through or write-

around caches above disk-based RAID storage systems in

production environments. These caching policies simplify the

consistency model since all writes are stored in RAID before

being acknowledged to applications. Thus, they help to deliver

a recovery point objective (RPO) of zero (i.e., no data loss)

under SSD failures [9], retaining the high availability and

reliability of RAID. However, they cannot reduce the small

write penalty since each write still causes parity update.

Based on write-through policy, LeavO [10] postpones parity

update by storing both old and new data in SSD cache.

However, the redundant versions of cached data in LeavO

not only consume more cache space, but also need to be

persistently stored in SSD. The former can decrease buffer

hit ratios while the latter requires extra metadata I/Os to SSD.

As a result, LeavO produces more SSD write traffics than the

write-through policy. Both write-through and LeavO do not

take the SSD write endurance into account, making the cache

far less effective as discussed next.

The SSD caching layer is more write intensive than the

primary storage because both writes in the workloads and

reads that miss the cache can cause SSD write operations

[12], [13]. Due to the limited endurance of flash, a typical

data center workload can wear out an MLC SSD cache within

months [7]. Replacing a worn-out SSD cache frequently not

only increases costs but also hurts the reliability and avail-

ability of the storage system. Taking the RAID-5 storage with

a LeavO-cache for example, once the SSD cache wears out,

a single disk failure before the RAID is re-synchronized can

cause data loss, and user requests will be adversely affected

by the re-synchronization of RAID storage. This motivates us

to propose an efficient cache scheme to extend the lifetime of

the SSD while improving the storage I/O performance.

C. Content Locality

Previous studies indicate that strong content locality exists

in real world applications [14], which means data in the system

share similarity with each other. For example, research liter-

atures have reported that in many data intensive applications,

only 5% to 20% of bits inside a data block are changed on a

write operation [14], [15]. More recently, file system workload

analysis implies that many updates are less than 10% different

from the previous contents of the block [16].

Based on these observations, KDD exploits the content

locality of workloads to reduce the write traffics to SSD cache.

Instead of maintaining redundant versions of data in cache

as LeavO, KDD packs multiple deltas with respect to the

old cached pages and stores them compactly in SSD cache.

In this way, KDD is much more cache space-efficient than

LeavO. More importantly, it has the potential to reduce cache

write traffic than both write-through policy and the LeavO

by deploying efficient cache management schemes. Although

recent studies have proposed techniques to extend SSD’s

lifetime via delta compression [17], [18], they are designed

in the Flash Translation Layer (FTL) inside SSD devices. We

focus on using commodity SSD based cache in front of RAID

storage, and face unique challenges presented by caching.

III. SYSTEM DESIGN OF KDD

KDD is designed to reduce the writes to SSD cache while

overcoming the small write problem of parity-based RAID

storage. In this section, we first introduce an overview of the

KDD and then describe the KDD design in detail. Finally, we

discuss the recovery process from various failures in KDD.

A. Overview of KDD

Figure 1 shows the overview of our proposed KDD. A

single SSD is used as a cache device for the disk-based RAID

primary storage, which employs a parity-based configuration,

such as RAID-5/6. SSD cache space is logically divided into

Data Zone (DAZ) and Delta Zone (DEZ). When data of user

requests are first admitted into SSD due to read/write misses,

they are stored in DAZ. When write requests find cached data

DEZ

SSD cache

NVRAM

Write Miss

DAZ

HDD RAID-5 Storage

Parity update

D1D0 D2 D3 P

W
rite

w
ith

p
arity

u
p
d

a
te

Write Hit

W
rite

w
ith

o
u

t

p
arity

u
p
d

a
te

m
eta

data

Figure 1: Overview of KDD

in DAZ, the deltas which are the compressed XORs of the

current version of data and the old version are compactly

written to DEZ pages. On a read hit request, KDD returns

the data by combining the old version of data in DAZ and the

latest associated delta. To make the cache persistent, mapping

information for the cache is stored on a fixed partition in the

beginning of the SSD.

Two interfaces are added between the SSD cache and

RAID storage to reduce the parity update overhead, the

write-without-parity-update operation and the parity-update

operation [10]. On a write miss request, the data will be cached

in DAZ and written to RAID storage with conventional parity

update operations (i.e. read-modify-write or reconstruct-write).

On a write hit request, KDD only updates the data in RAID

storage without re-computing the new parity, thus reducing the

overhead of parity update. The stale parity blocks in RAID will

be updated in the background.

KDD aims to achieve reliability, availability, and cost-

efficiency using the following goals as guidelines: (1) offer

tolerance to power failures, disk failures, and SSD failures with

a recovery point objective (RPO) of 0, (2) reduce the writes

to SSD as many as possible, and (3) minimize the system

overhead introduced due to KDD itself. Details of the data

structures and algorithms to implement KDD towards these

design goals are given in the following subsections.

B. Cache Space Management

KDD adopts the N-way set-associative method to organize

the SSD cache. The cache space is divided into many cache

sets, each containing a fixed number of pages. Basically, there

are two ways to partition the cache space for DAZ and DEZ.

One possibility is to use fixed partitions by maintaining the two

zones in separate cache sets. However, it is hard to determine

the appropriate size of these zones. On the one hand, DEZ

should have enough pages to maintain the deltas efficiently.

On the other hand, the size of DEZ should be small to cache

more unique pages in DAZ for higher cache hit ratios. We

deploy an alternative approach in KDD, where the pages of

the two zones are dynamically allocated and mixed in each

cache set, thus adapting to different workload environments.

In particular, DAZ pages are located in cache sets via hash

functions, while DEZ pages are evenly distributed across the

cache sets. To exploit the spatial locality of workloads, DAZ

pages in the same parity stripe are mapped to the same cache

C
ac

h
e

S
et

s

0

1

...

N delta0 delta1 deltaM...

old/clean page (DAZ) metadata pagedelta page (DEZ)

Metadata

headtail

Mapping Entry CountMetadata page ID
lba_daz lba_raid lba_dez, off, lenstate

lba_daz lba_raid lba_dez, off, lenstate
...

Figure 2: On-disk format of SSD cache

set, and thus they can be reclaimed together during cache

cleaning which will be presented later.

The state of each page in the cache sets can be represented

by free, clean, old, and delta. Among these pages, clean

and old pages are contained in DAZ, while delta pages are

contained in DEZ. Initially, all pages in an empty SSD cache

are in free state. When allocating a cache page for DAZ, KDD

finds a free page in the corresponding cache set, and the data

will be cached in the DAZ page with its state converted from

free to clean. When a write request hits on a clean page in

DAZ, the page state will be changed to old and the delta

is stored in a small staging buffer which is managed in a

FIFO manner. When the buffer is full, multiple deltas are

compacted into one page and committed to a DEZ page with

its state altered to delta. DEZ pages are not updated in-place

but allocated on demand, similar to the log-structured writes in

LFS [19] and DCD [20]. The difference is that DEZ pages are

not required to be consecutive in SSD cache. When allocating

a page for DEZ, KDD always chooses a free page from the

cache set which has the least number of DEZ pages. When

the SSD cache is full, clean pages are evicted while old and

delta pages are only reclaimed in a cleaning thread triggered

by several system events (see Section III-D).

To make the SSD cache persistent, the cache metadata,

including the mapping information for cached data and deltas,

also need to be persistently stored on SSD. However, issuing

metadata updates upon each cache insertion/eviction can cause

a large number of cache writes [21]. To address this problem,

KDD organizes the metadada partition on SSD as a circular

persistent log. Two counters are maintained to indicate the

head and the tail of the log space. New mapping entries are

first accumulated in a metadata buffer. When there are enough

entries in the buffer to fill a page, they are written to the tail

of the log, and the tail counter is incremented. KDD reclaims

metadata pages from the head of the log to ensure that the log

usage is under a certain threshold. On recovery from power

failure or restart, KDD can rebuild the mapping information

by scanning the log. To avoid data loss against power failures,

the staging buffer, the metadata buffer, and the two counters

(head/tail) are all stored in the NVRAM (e.g., battery-backed

RAM) which is commonly used in storage arrays. The SSD

cache organization is shown in Figure 2.

C. Data Structures

KDD maintains an in-memory primary map and NVRAM

buffers for efficient cache management. The primary map

maintains all cache page states and allows translating the

storage block addresses of I/O requests to the block addresses

of the cached data (and deltas) on flash. It is implemented

as a simple array indexed by the logical block addresses

(LBAs) of all pages in each cache set. NVRAM buffers are

used to accumulate newly updates and commit to flash in

the unit of page. Newly generated deltas are first stored in

the staging buffer and the old deltas will be invalidated. The

metadata buffer is a mapping table maintaining the latest

mapping entries for DAZ pages. Several important fields of

mapping entries in the primary map and the metadata buffer

are described as follows:

• state indicates the cache page state, i.e. free, clean, old,

and delta.

• lba daz represents the offset of the cached data page on

SSD.

• lba raid represents the offset of the corresponding data

page in the RAID storage.

• lba dez,off,len indicates the location of the associated

delta in a DEZ page on SSD. When the deltas are still

buffered in the NVRAM, the values of these variables are

assigned -1.

• valid count indicates the number of valid deltas in the

DEZ page. The value will be decremented when a delta

in the page is invalidated, and the DEZ page cannot be

freed until the valid count reaches zero.

As shown in Figure 3, mapping entries in the primary map

have different required fields for different kinds of pages. For

example, the tuple (lba dez, off, len) is only maintained for

old pages, while valid count is only maintained for delta

pages. Once a new clean page is allocated, the corresponding

mapping entry in the primary map is updated and also inserted

to the metadata buffer. On a write hit request, only the primary

map is updated and the changed mapping entries are not in-

serted to metadata buffer until the deltas residing in the staging

buffer are committed to DEZ. When a DAZ page is reclaimed

due to cache eviction or cache cleaning, a mapping entry with

its state field marked as free is also stored in the metadata

buffer to reflect this change. Allocation and deallocation of

DEZ pages are not recorded in the metadata buffer because

the mapping information is embedded in mapping entries of

old pages. It should be noted that write coalescing can be

used for the NVRAM buffers. For example, an entry in the

metadata buffer can be overwritten by a new entry having the

same lba daz value, and only the newest version of delta for

one DAZ page is maintained in the staging buffer.

The mapping table in the metadata buffer is always com-

mitted to a new metadata page on flash pointed by the tail

counter. The persistent log can run out of space, thus requiring

garbage collection. KDD uses an oldest first policy, i.e. the

metadata page pointed by the head counter is chosen as the

candidate page for cleaning. Valid mapping entries in the

candidate page are reinserted to the metadata buffer, and those

entries will be finally committed to the tail of the log. As

an optimization, KDD maintains a list in memory for each

lba_daz

delta staging

buffer

metadata

buffer

NVRAM Buffer
lba_raid lba_dez, off, lenstate

1 100 -clean

2 128 4, 0,128old

0 - -free

...-- -free

-100 -clean

-128 4, 0,128old

-624 4,128,512old

6- -delta

valid

count
lba_raid lba_dez, off, lenstate

In-memory Primary Map

lba_daz1

......
lba_daz2

lba_daz3

delta

delta

delta

Figure 3: Key data structures in KDD

metadata page, and all mapping entries in the primary map are

linked to the corresponding list at runtime. Thus, KDD only

needs to scan the in-memory list to copy the valid mapping

entries instead of reading the metadata page on flash for

garbage collection. Garbage collection will cause extra write

traffics, and the overhead depends on the total size of the

metadata partition and the characteristic of the workloads [19].

Generally, configuring the persistent log with more metadata

pages can reduce the cleaning cost at the expense of crash

recovery performance. Fortunately, the metadata I/Os are a

very small fraction of cache write traffics even with a small

metadata partition size, as shown in Section IV-A3.

The primary map can easily fit into memory on modern

storage servers. Assuming a 4KB page size for both SSD and

RAID, for every mapping entry, KDD stores 4 bytes for each

LBA (supporting capacity of 16TB), 1 bytes for the state, and

3 bytes for the (off, len) tuple, plus 12 additional bytes for

pointers (encoded as integers) which are used for maintaining

LRU lists and metadata page lists (not shown in Figure 3).

Thus, the ratio of the primary map’s memory overhead to

SSD size is about 0.59% (= 24/4096), or 6MB per GB.

D. Flushing Policy

KDD postpones the parity updates by keeping old pages and

associated deltas in SSD, resulting in many stale parity blocks

on RAID storage. New parity blocks are generated and flushed

to RAID storage in a background cleaning thread, which is

triggered by several system events. For example, when the

total size of the old/delta pages exceeds a certain threshold,

or the system has been idle for a certain period, the cleaning

thread will be woken up for parity updating and cache page

reclaiming.

When updating one parity block, KDD finds all cached

data pages and associated deltas of the parity stripe, and

recalculates the new parity using either read-modify-write or

reconstruct-write mode. Reconstruct-write is only used when

all data blocks within the stripe are residing in SSD, in which

case KDD computes the new parity block by performing XOR

operations on all the data blocks and decompressed deltas of

the parity stripe. Otherwise, KDD uses read-modify-write for

parity updating by reading the stale parity from RAID and

XORing it with all decompressed deltas of this parity stripe. In

this way, KDD reduces the I/Os to RAID storage by exploiting

the spatial locality of workloads.

There are two schemes for reclaiming the old/delta pages

after updating the parity blocks. The first one is to combine the

old page with associated deltas to generate the latest version

of data, and then write them to DAZ pages marked as clean.

In this way, another write hit on this page can benefit from the

parity delay scheme. However, the benefit may be marginal at

the expense of more cache writes, because the victim pages

are commonly cold. Therefore, we choose the second scheme

for the sake of simplicity, which simply reclaims the old pages

and invalidates the deltas during cache cleaning.

E. Failure Handling

KDD provides high reliability and availability by tolerating

both power failures and device failures.

1) Power Failures: In case of a power failure, the head and

tail counters of the metadata persistent log are reconstructed

from NVRAM. The primary map is rebuilt by reading all

metadata pages and “replay” the mapping entries from the

head to the tail. Then the mapping entries in the NVRAM

metadata buffer are copied back to the primary map. Finally,

mapping entries corresponding to the deltas residing in the

NVRAM staging buffer are also updated.

2) Device Failures: Disk failures can occur in either the

SSD or HDDs. While KDD delays the parity update for

RAID storage, a number of stripes in RAID have stale parity

blocks. However, on an SSD failure, RAID storage can be re-

synchronized through reconstruct-write because data blocks

are always dispatched to RAID. If a HDD fails, KDD first

updates all parity blocks using the parity update interface and

then triggers the rebuilding process at the RAID layer.

IV. EVALUATION

In this section, we conduct extensive simulations and pro-

totype evaluations to assess the effectiveness of the proposed

KDD. We first show the hit ratios and SSD write traffics of

different algorithms in Section IV-A using trace-driven simu-

lations. Then we compare the average response time of KDD

with existing approaches through prototype implementations

in Section IV-B.

A. Simulation Experiment

1) Cache Simulator: We developed an SSD cache simulator

to evaluate the effectiveness of our proposed KDD with

respect to the SSD write traffic, and the hit ratios compared

to previous approaches, including the write-through (WT),

write-around (WA), and the LeavO. Write-back caching is

not evaluated because it cannot prevent data loss under SSD

failures. Each algorithm is implemented as a separate module

in the simulator. The simulator first converts raw traces into a

uniform format and then processes trace requests one by one

according to the timestamp of each request. After each test,

detailed statistics such as hit ratios and cache write traffics are

reported. NVRAM buffers are also included in the simulator

and managed as described in Section III. The simulator can

be configured with many parameters, such as cache size, page

size, cache associativity, NVRAM buffer size, etc. In our tests,

the page size of the cache and the two NVRAM buffers are

all set to 4KB. For fair comparisons, the NVRAM buffer is

employed in all of the algorithms.

TABLE I: Characteristics of I/O workload traces

Workload
Unique Pages(x1,000) Requests(x1,000)

Read Ratio
Total Read Write Read Write

Fin1 993 331 966 1,339 5,628 0.19

Fin2 405 271 212 3,562 917 0.80

Hm0 609 488 428 2,880 5,992 0.33

Web0 1,913 1,884 182 4,575 3,186 0.59

50 200 350 500 650 800
0
1
2
3
4

50 100 200 300 400 500
0
1
2
3
4

50 200 350 500 650 800
0
1
2
3

200 400 600 800 1000 1200
0
4
8

12
16
20

2.9 2.8 2.5 2.4 2.2 2.0
1.5 1.5 1.5 1.5 1.5 1.41.3 1.3 1.3 1.3 1.3 1.21.1 1.2 1.2 1.2 1.2 1.2

2.9 2.7 2.6
1.9

1.3 1.0
1.4 1.4 1.3 1.1 0.9 0.81.2 1.2 1.1 1.0 0.9 0.81.1 1.1 1.0 0.9 0.8 0.7

2.1
2.6 2.4 2.7

2.1 1.8

0.9 1.2 1.3 1.5 1.4 1.4
0.7 1.0 1.1 1.3 1.3 1.3

0.7 0.9 1.1 1.2 1.2 1.2

7.9
10.2 11.8

14.3
16.5

8.0

1.6 1.8 1.8 1.7 1.7 1.51.3 1.3 1.3 1.2 1.2 1.11.1 1.1 1.1 1.1 1.0 1.0

(d) Web0

(c) Hm0

(b) Fin2

 0.39% 0.59% 0.78% 0.98%

(a) Fin1

R
at

io
 o

f M
et

ad
at

a
I/O

s
to

 S
SD

 W
rit

es
 (%

)
Cache Size (x 1000 pages)

Figure 4: Effects of the metadata partition size on metadata I/Os under various workloads

and cache sizes

2) Workloads: We choose several block-level traces ob-

tained from the Storage Performance Council (SPC) [22] and

Microsoft Cambridge Server (MCS) [23]. The two financial

traces (Fin1 and Fin2) are collected from OLTP applications

running at two large financial institutions. The MCS traces

are collected from 36 volumes containing 179 disks on 13

servers for one week in a data center. The access patterns of

these traces are representative of many enterprise data centers.

Among the MCS traces of different servers, we only show the

results of the first volume of Hm and Web (denoted as Hm0

and Web0) due to lack of space. The characteristics of these

workloads are summarized in Table I (with 4KB page size).

Among these traces, Fin1 and Hm0 are write dominant, while

Fin2 and Web0 are read dominant. The content locality of a

workload is application specific [14], [15], [24] and can vary

in different applications and periods. To evaluate KDD, we

assume the delta compression ratio values follow Gaussian

distribution [14], [17] with an average equaling 50%, 25%,

and 12% (denoted by KDD-x%), representing workloads with

low, medium, and high level of content locality, respectively.

3) Simulation Results: To run the evaluations, KDD has

to determine an appropriate configuration for the metadata

partition size. A big metadata partition can adversely affect

both recovery performance and cache hit ratios. However,

if it is too small, significant metadata I/Os will be caused

due to the cleaning cost as mentioned earlier. Consequently,

we first conduct experiments to explore the effects of the

partition size on the number of metadata I/Os. Due to the

50 200 350 500 650 800
0.65

0.70

0.75

0.80

0.85

C
ac

he
 H

it
R

at
io

 WT LeavO KDD-50% KDD-25% KDD-12%

(a) Fin1

50 200 350 500 650 800

0.5
0.6
0.7
0.8
0.9
1.0

C
ac

he
 H

it
R

at
io

Cache Size (x 1000 pages)

(b) Hm0

Figure 5: Cache hit ratios of different approaches under the write-dominant traces

space limitation, we only report the results assuming the

workloads have medium content locality, and similar trends are

observed under other circumstances. Figure 4 shows the ratios

of metadata I/Os to the total cache write traffics under various

workloads and cache sizes. The size of the metadata partition

is configured with 0.39%-0.98% of the SSD size. As shown

in the figure, when 0.59% of the SSD capacity is reserved for

metadata partition, the proportions of metadata I/Os in total

cache write traffics are less than 1.55%, 1.42%, 1.51%, and

1.79% under the four workloads respectively. Therefore, we

choose this configuration in the following experiments.

Figure 5 shows the cache hit ratios of different approaches

for the write-dominant traces. Both LeavO and KDD have

lower cache hit ratios than that of WT because they consume

some cache space for caching new versions of cached data and

delta pages, respectively. While WT only keeps one version

of each cached page, more unique pages can be maintained

in SSD cache, resulting in better hit ratios. However, KDD

stores the small-sized deltas compactly in SSD, therefore,

it convincingly outperforms LeavO for different levels of

content locality. In addition, the stronger content locality the

workloads have, the higher hit ratios KDD can achieve. Note

that we omit to show the hit ratios of WA in the figure because

all writes bypass the cache in write-around caching.

One goal of KDD is to extend SSD lifetime by reducing

cache write traffics. Figure 6 compares the SSD write traffics

for each approach under the write-dominant traces. Among the

caching policies except WA, the write traffics to SSD consist of

read-fill operations on read misses and cache write operations

on all write requests. In addition, cache metadata updates

are required in LeavO and KDD. WA allocates only on read

misses, and shows the least number of cache writes under these

write-dominant traces. KDD incurs much less cache write

traffics than all tested caching policies except WA. Specifically,

compared to WT under the Fin1 workload, the amount of data

written to SSD is decreased by up to 37.6%, 57.6%, and 67.6%

for KDD-50%, KDD-25%, and KDD-12% respectively. Under

the Hm0 workload, KDD reduces the SSD write traffics by up

50 200 350 500 650 800
0

6000

12000

18000

24000

30000

 WA WT LeavO
 KDD-50% KDD-25% KDD-12%

SS
D

 W
rit

e
Tr

af
fic

 (M
B)

(a) Fin1

50 200 350 500 650 800
0

6000

12000

18000

24000

30000

SS
D

 W
rit

e
Tr

af
fic

 (M
B)

Cache Size (x 1000 pages)

(b) Hm0

Figure 6: SSD write traffics under the write-dominant traces

to 45.7%, 67.7%, and 78.6% compared to WT under different

levels of content locality. The reason for this large reduction

lies in KDD’s efficient management of metadata partition and

the space-efficient DEZ which packs multiple updates into one

delta page. The results also reveal that the performance gain of

KDD is proportional to the content locality. LeavO shows the

largest number of SSD writes due to lower hit ratios and extra

metadata updates. Compared to LeavO, KDD reduces the SSD

write traffics by up to 47.2%-72.6% and 50.1%-80.4% under

two traces respectively, thus extending the lifetime of SSD by

up to 5.1×.

Figure 7 shows the hit ratios of WT, LeavO, and our

scheme under the read-dominant workloads. LeavO shows

the smallest hit ratios in most cases due to the inefficiency

of consuming extra cache space. Under the Fin2 workload,

the hit ratios of KDD lie between those of WT and LeavO,

but the performance gap among LeavO, KDD, and LeavO

becomes narrower as the cache size increases. Under the

Web0 workload, KDD even outperforms WT when the cache

size is small. The reason behind this abnormality lies in the

characteristics of Web0 and the different cache replacement

schemes in WT and KDD. On the one hand, after a detailed

analysis of the Web0 workload, we found its temporal locality

of write requests is much higher than that of read requests.

On the other hand, while WT only has clean pages in cache,

the cached pages are evicted strictly in LRU order. However,

KDD maintains old/delta (can be regarded as ‘dirty’) pages,

which are not evicted immediately but in the cleaning thread

triggered by several events. Thus, KDD has the potential to

keep more ‘dirty’ pages in cache than WT. Combining the two

factors, KDD generates more hit rates in such cases.

Figure 8 compares the SSD write traffics when the read-

dominant workloads are used. Compared to WT, KDD can

reduce the write traffics by up to 57.5% and 50.6% for Fin2

and Web0 respectively. Compared to LeavO, the write traffics

are decreased by up to 60.5% and 52.1% for the two work-

loads. The improvement under the read-dominant workloads is

smaller than that under write-dominant workloads especially

50 100 200 300 400 500

0.84

0.88

0.92

C
ac

he
 H

it
R

at
io

 WT LeavO KDD-50% KDD-25% KDD-12%

(a) Fin2

200 400 600 800 1000 1200
0.4

0.5

0.6

0.7

C
ac

he
 H

it
R

at
io

Cache Size (x 1000 pages)

(b) Web0

Figure 7: Cache hit ratios of different approaches under the read-dominant traces

50 100 200 300 400 500
0

1500

3000

4500

6000

SS
D

 W
rit

e
Tr

af
fic

 (M
B)

 WA WT LeavO
 KDD-50% KDD-25% KDD-12%

(a) Fin2

200 400 600 800 1000 1200
0

5000
10000
15000
20000
25000
30000

Cache Size (x 1000 pages)

SS
D

 W
rit

e
Tr

af
fic

 (M
B)

(b) Web0

Figure 8: SSD write traffics under the read-dominant traces

when the cache size is small. Because under read-dominant

traces, a large number of SSD write traffics are caused by

read-fill operations (i.e. cache writes on read misses), which

cannot be reduced in KDD. Another observation is that the

write traffics gap between WA and KDD becomes narrower

under read-dominant workloads. For Fin2 under large cache

sizes (no less than 200 x 1000 pages), KDD-12% even has

less cache writes than WA.

B. Implementation and Measurement

1) Experiment Platform: We have implemented the KDD

prototype by modifying both the Linux Software RAID and

the EnhanceIO [25] modules with 64-bit Linux kernel version

3.13. For delta comression/decompression in KDD, we use

the lzo library [26] due to its superior performance. All our

experiments were conducted on a platform of server-class

hardware with an 8-core Intel Xenon Processor, 16GB RAM,

15 7,200 RPM drives of 1TB each, and a single 120GB SSD.

We use 1GB flash device as the cache. The SSD cache operates

on 4KB pages and uses the LRU replacement algorithm for all

caching policies. The backing store was configured as a 5-disk

Fin1 Fin2 Hm0 Web0
0

5

10

15

20

25

30

35

40

Av
er

ag
e

R
es

po
ns

e
Ti

m
e

(m
s)

 Nossd WA WT LeavO KDD

Figure 9: Average response time of different approaches under various workloads

RAID-5 with a default 64KB chunk size. We disable all the

drive look-ahead and drive volatile cache using hdparm.

We evaluate the performance of KDD using both an open-

loop model and a closed-loop model. In open-loop model,

I/Os are issued according to the request time. Whereas in

closed-loop model, requests are generated back to back with

a limited request queue (i.e. equal to the number of request

threads). For the open-loop evaluations, we use RAIDmeter

[27] to replay each workload for 30 minutes and measure the

average response time. For the closed-loop model, we use FIO

2.2.10 benchmark tool [28] to generate synthetic workloads

with the zipf distribution which is common among many real-

world workloads. A medium level of content locality with the

average delta compression rate equaling 25% is chosen in the

following evaluations. We run each experiment three times and

report average numbers.

2) Results of trace-replay: KDD significantly reduces the

write traffics to SSD cache compared to LeavO, as shown in

the previous trace-driven simulations. However, KDD requires

extra SSD read I/Os and delta compression/decompression on

write/read hit requests. In this first experiment, we evaluate the

performance of KDD in terms of average response time under

various workloads against other approaches. Figure 9 shows

the average response time of each approach under the selected

traces. WA and WT outperform Nossd (RAID without an SSD

cache) only for Fin2 which has a large proportion of read

accesses. As shown in Figure 9, KDD outperforms both WT

and WA under all workloads because small write penalty is

effectively reduced in KDD. Compared to Nossd, KDD reduce

the average response time by 41.7%, 61.2%, 28.0%, and 30.1%

for Fin1, Fin2, Hm0, and Web0, respectively.

KDD shows the similar performance compared to LeavO,

which means KDD effectively hides the overhead of the delta

processing. The reasons can be explained as follows. For

read hit request on an old page, KDD can read the data

and delta concurrently, which is quite efficient due to the

parallelism inside SSD. And it takes only tens of microseconds

to decompress the delta and combine it with the data. For

write hit requests in both KDD and LeavO, the data will

always be dispatched to the RAID storage. This usually takes

milliseconds and KDD has enough time to generate the deltas.

3) Results of FIO Benchmark: We further assess the effec-

tiveness of KDD using the FIO benchmark with Zipfian write

pattern of α=1.0001 (e.g. [29]). The benchmark reads/writes

a total of 4GB data with 4KB block size. The number of

0% 25% 50% 75%
0

20

40

60

80

100

120

Av
er

ag
e

R
es

po
ns

e
Ti

m
e

(m
s)

Read Rate

 Nossd WA WT LeavO KDD

Figure 10: Average response time of different approaches under FIO benchmark

0% 25% 50% 75%
0

1000

2000

3000

4000

SS
D

 W
rit

e
Tr

af
fic

 (M
B)

Read Rate

 WA WT LeavO KDD

Figure 11: SSD write traffics under FIO benchmark

threads is set to 16 to bound the I/O latencies to about 100ms.

The working set size for this workload is 1.6GB, larger than

the SSD cache size. We run the tests with different read

rates to explore the performance of KDD compared to other

approaches under different environments. The read rate ranges

from 0% to 75%. Evaluations with 100% read rate workload

are omitted because in that case both LeavO and KDD will

degrade to WT.

Figure 10 compares the performance of different approaches

in terms of average response time. Again, KDD shows com-

parable performance compared to LeavO, which indicates that

even under workloads with multiple concurrent I/O streams,

the delta processing of KDD will not be a performance

bottleneck. The reason is that both CPU speed and the SSD

random access are much faster than the HDD-based RAID

storage I/Os. As shown in Figure 10, KDD reduces the average

response time by 42.1%-43.3% and 42.8%-32.3% than Nossd

and WT respectively. WT and WA slightly outperform Nossd

only under synthetic workloads with high read rates, because

the small write is much slower than read operations in parity-

based disk array.

Figure 11 shows the SSD write traffics of WA, WT, LeavO,

and KDD under synthetic workloads with different read rates.

We can observe that WA has the least number of cache writes

as validated in our simulation evaluations. As the read rate

increases, WA produces more cache writes getting close to

KDD. Compared to WT and LeavO, KDD effectively reduces

the amount of data written to SSD. Specifically, compared to

WT, KDD reduces the write traffics by 44.0%, 38.6%, 31.0%,

and 19.4%. Compared to LeavO, KDD reduces the write

traffics by 46.4%, 41.3%, 34.0%, and 22.6% for the synthetic

workloads respectively. Again, this indicates our KDD is more

efficient under write-dominant workloads.

In summary, WT and WA fail to accelerate the I/O perfor-

mance of parity-based storage systems unless the workloads

TABLE II: Comparison of different caching policies

WT WA LeavO KDD

I/O Latency High High Low Low

SSD endurance Bad Good Bad Good

are much read intensive. WA has much less cache write

traffics, making it more cost-effective than WT for SSD-

based cache. Compared to WA/WT, KDD can notably reduce

the I/O latencies under all tested representative workloads in

data centers and synthetic workloads. Both LeavO and KDD

can boost the I/O performance by reducing the small write

penalty, however, only KDD takes the SSD’s write endurance

into account. Compared to LeavO, KDD achieves similar I/O

performance but significantly reduces the cache write traffics.

The comparison of different caching policies for SSD-based

RAID cache is summarized in Table II.

V. RELATED WORK

A. Overcoming Small Write Problem

Parity Logging [2] reduces the cost of small write request

by accumulating the parity update images (the XOR result

of the old and new data) in a log disk and updating the out-

of-date parities with large sequential accesses when the log

disk is full. AFRAID [30] only writes the new data without

waiting for the parity to be updated for certain periods. The

stripes which have stale parity blocks are marked un-redundant

in NVRAM, and the pending parity updates are processed in

idle periods. However, AFRAID cannot always tolerate one

disk failure like RAID5.

Many studies use NVRAM for data and/or parity caching

to reduce the write overhead [31]–[33]. Using buffer caching

schemes can not only reduce the write traffics to RAID, but

also help to construct full-stripe writes. However, the NVRAM

buffer size is often quite small for power and cost efficiency,

limiting the effects of reducing small write penalty. Flash

memory is much cheaper than NVRAM and produces the

possibility to address this problem, e.g. the LeavO [10] and

our KDD. However, flash suffers from write endurance issue,

which is also addressed in KDD.

Other schemes eliminate the small write penalty by chang-

ing the standard RAID data organization. For example, Hot-

mirroring [34] and AutoRAID [35] deploy a two-level storage

hierarchy with RAID1 storing active (hot) data and RAID5

storing inactive (cold) data. Thus, they can combine the

performance benefits of mirroring and the storage efficiency of

RAID-5. Dynamic striping [36] reorganizes the parity stripes

via either a LFS based method or Virtual Striping. It redirects

updates to new stripes and always dispatches full-stripe writes

to RAID storage, eliminating the small write penalty.

B. Flash-based SSD Caching

SSDs have been largely adopted as cache devices to boost

the disk-based storage systems. Mercury [8] deploys flash

based cache in the hypervisor’s virtual I/O stack to support

a variety of protocols. It uses write-through caching to avoid

compromising reliability, availability, and data management

features of the shared storage system. Policies based on write-

back caching have been proposed for better performance while

insuring data consistency at the network storage. For example,

Koller et al. [9] propose consistent write-back policies by

trading off data staleness for performance and data consistency.

Qin et al. [37] propose two write-back based policies to

provide reliability guarantees relying on applications which

issue write barriers for data persistency.

Although write-back based policies can offer critical perfor-

mance benefits, they suffer from data loss under cache device

failures. Many studies employ RAID techniques to improve

the reliability of the caching layer. Arteaga et al. [21] propose

a cache-optimized RAID technique for better cache utilization

and cost-efficiency, where clean and dirty pages are stored

in a RAID-0 and a RAID-1 fashion, respectively. Oh et al.

[38] propose SRC (SSD RAID as a Cache) which adopts

RAID technique and log-structured approach in the cache

layer. Unlike these approaches, our KDD provides reliable

flash caching with a single SSD, which is more cost-effective.

C. Enhancing lifetime of SSD Cache

Deduplication and compression techniques have been ap-

plied to SSD cache layer. Flaz [39] deploys transparent com-

pression in SSD cache to increase the effective cache size,

thus increasing the cache’s cost-effectiveness. CacheDedup

[13] integrates deduplication and caching to improve the

endurance and the effective capacity of SSD cache. It also

proposes duplacation-aware cache replacement algorithms D-

LRU and D-ARC to further improve the cache hit ratios

and reduce cache write traffics. Nitro [40] extends SSD

lifetime by combining deduplication and compression and

using large replacement units. Our solution is different from

these approaches in that KDD reduces cache write traffics by

exploiting content locality of the workloads.

Various cache replacement schemes have been proposed to

reduce SSD cache writes. Approaches such as SieveStore [41]

and LARC [42] propose selective cache allocation policies to

only capture the most popular blocks in SSD cache. In this

way, they can significantly reduce the allocation writes and

avoid the problem of cache pollution. Chai et al. [43] propose

Write-Efficient Caching (WEC) to improve the SSD cache’s

write durability. WEC first identifies write-efficient data that

can produce many hits for writing one block. Then it keeps

the write-efficient data in SSD cache long enough via pull-

mode caching. These approaches are complementary to our

KDD in that they can be deployed in KDD to further reduce

the amount of writes to SSD.

All the above approaches and our KDD are proposed

for off-the-shelf SSDs, however, there are also other hard-

ware/software co-designed flash based caching solutions to

improve flash cache endurance. Kgil et al. [44] propose a

two-level disk cache composed of a small DRAM and a

SLC/MLC dual mode flash. The flash-based cache is split into

separate read and write regions to reduce the garbage collec-

tion overhead. A programmable flash memory controller is

employed to improve flash endurance by changing error code

strength or cell density dynamically. OP-FCL [45] balances the

read/write cache and the over-provisioned space for efficient

use of the flash memory cache. Yang et al. [12] present cache

admission/eviction policies and garbage collection policies to

reduce erase count of the flash based cache. DuraCache [7]

prolongs SSD lifetime by transforming data errors in cache

into cache misses and dynamically increasing ECC strength.

An orthogonal family of approaches is those FTL opti-

mizations propsed to enhance the endurance of SSDs at the

device level. Examples include changing program and erase

voltage [46], reducing the number of flash writes by using de-

duplication [24] and delta compression [17], [18], reducing

block erasures through flash page reuse [47], [48], etc. These

FTL designs can also be incorporated into the firmware of

SSD cache devices to extend their lifetime.

VI. CONCLUSION

In this paper, we propose KDD to overcome the small

write problem of parity-based RAID storage systems while

extending the lifetime of the SSD cache device. KDD reduces

cache write traffics by exploiting the strong content locality

existing in many data intensive workloads. Cache space is

dynamically partitioned for the data and delta zones adapting

to different kinds of workloads. In addition, KDD maintains

the cache metadata as a persistent log in SSD to reduce the

metadata I/Os. To assess the effectiveness of KDD, we conduct

extensive trace-driven and benchmark-driven experiments via

both simulator and prototype implementations. Simulation

results show that KDD significantly reduces the SSD traffics

for all workloads. And KDD is more efficient for write-

intensive workloads with strong content locality. Evaluations

with prototype implementations show that KDD effectively

reduces the small write penalty while reducing cache writes.

ACKNOWLEDGMENT

This work was supported by the National Basic Research

973 Program of China under Grant No. 2011CB302301;

863 Project No. 2013AA013203, No. 2015AA015301, No.

2015AA016701; NSFC No. 61173043, No.61303046, No.

61472153; This work was also supported by Key Laboratory

of Information Storage System, Ministry of Education, China.

REFERENCES

[1] D. A. Patterson, G. Gibson, and R. H. Katz, “A case for redundant
arrays of inexpensive disks (raid),” SIGMOD Rec., vol. 17, no. 3, pp.
109–116, Jun. 1988.

[2] D. Stodolsky, G. Gibson, and M. Holland, “Parity logging overcoming
the small write problem in redundant disk arrays,” SIGARCH Comput.

Archit. News, vol. 21, no. 2, pp. 64–75, May 1993.

[3] Q. Yang and J. Ren, “I-cash: Intelligently coupled array of ssd and hdd,”
in High Performance Computer Architecture (HPCA), 2011 IEEE 17th

International Symposium on, pp. 278–289.

[4] Y. Zhou, Z. Chen, and K. Li, “Second-level buffer cache management,”
IEEE Trans. Parallel Distrib. Syst., vol. 15, no. 6, pp. 505–519, Jun.
2004.

[5] M. Saxena, M. M. Swift, and Y. Zhang, “Flashtier: a lightweight,
consistent and durable storage cache,” in Proceedings of the 7th ACM

european conference on Computer Systems, ser. EuroSys ’12, pp.
267–280.

[6] M. Balakrishnan, A. Kadav, V. Prabhakaran, and D. Malkhi,
“Differential raid: Rethinking raid for ssd reliability,” Trans. Storage,
vol. 6, no. 2, pp. 4:1–4:22, Jul. 2010.

[7] R.-S. Liu, C.-L. Yang, C.-H. Li, and G.-Y. Chen, “Duracache: a durable
ssd cache using mlc nand flash,” in Proceedings of the 50th Annual

Design Automation Conference, ser. DAC ’13, pp. 166:1–166:6.

[8] S. Byan, J. Lentini, A. Madan, L. Pabon, M. Condict, J. Kimmel,
S. Kleiman, C. Small, and M. Storer, “Mercury: Host-side flash caching
for the data center,” in Mass Storage Systems and Technologies (MSST),

2012 IEEE 28th Symposium on, pp. 1–12.

[9] R. Koller, L. Marmol, R. Rangaswami, S. Sundararaman, N. Talagala,
and M. Zhao, “Write policies for host-side flash caches,” in Proceedings

of the 11th USENIX conference on File and Storage Technologies, ser.
FAST’13.

[10] E. Lee, Y. Oh, and D. Lee, “Ssd caching to overcome small write
problem of disk-based raid in enterprise environments,” in Proceedings

of the 30th Annual ACM Symposium on Applied Computing, ser. SAC
’15, pp. 2047–2053.

[11] L. M. Grupp, J. D. Davis, and S. Swanson, “The bleak future of nand
flash memory,” in Proceedings of the 10th USENIX Conference on File

and Storage Technologies, ser. FAST’12, pp. 2–2.

[12] J. Yang, N. Plasson, G. Gillis, and N. Talagala, “Hec: improving
endurance of high performance flash-based cache devices,” in
Proceedings of the 6th International Systems and Storage Conference,
ser. SYSTOR ’13, pp. 10:1–10:11.

[13] W. Li, G. Jean-Baptise, J. Riveros, G. Narasimhan, T. Zhang, and
M. Zhao, “Cachededup: In-line deduplication for flash caching,” in
14th USENIX Conference on File and Storage Technologies (FAST 16),
pp. 301–314.

[14] Q. Yang, W. Xiao, and J. Ren, “Trap-array: A disk array architecture
providing timely recovery to any point-in-time,” SIGARCH Comput.

Archit. News, vol. 34, no. 2, pp. 289–301, May 2006.

[15] I. Morrey, C.B. and D. Grunwald, “Peabody: the time travelling disk,”
in Mass Storage Systems and Technologies, 2003. (MSST 2003). Pro-

ceedings. 20th IEEE/11th NASA Goddard Conference on, pp. 241–253.
[16] E. Lee, J.-e. Jang, and H. Bahn, “Dtfs: Exploiting the similarity of

data versions to design a write-efficient file system in phase-change
memory,” in Proceedings of the 29th Annual ACM Symposium on

Applied Computing, ser. SAC ’14, pp. 1535–1540.
[17] G. Wu and X. He, “Delta-ftl: Improving ssd lifetime via exploiting

content locality,” in Proceedings of the 7th ACM European Conference

on Computer Systems, ser. EuroSys ’12, pp. 253–266.

[18] X. Zhang, J. Li, H. Wang, K. Zhao, and T. Zhang, “Reducing
solid-state storage device write stress through opportunistic in-place
delta compression,” in 14th USENIX Conference on File and Storage

Technologies (FAST 16), pp. 111–124.

[19] M. Rosenblum and J. K. Ousterhout, “The design and implementation
of a log-structured file system,” ACM Trans. Comput. Syst., vol. 10,
no. 1, pp. 26–52, Feb. 1992.

[20] Y. Hu and Q. Yang, “Dcddisk caching disk: a new approach for boosting
i/o performance,” in Proceedings of the 23rd Annual International

Symposium on Computer Architecture, ser. ISCA ’96, pp. 169–178.

[21] D. Arteaga and M. Zhao, “Client-side flash caching for cloud systems,”
in Proceedings of International Conference on Systems and Storage,
ser. SYSTOR 2014, pp. 7:1–7:11.

[22] Oltp trace from umass trace repository. http://git.kernel.dk/?p=fio.git.
[23] D. Narayanan, A. Donnelly, and A. Rowstron, “Write off-loading:

Practical power management for enterprise storage,” Trans. Storage,
vol. 4, no. 3, pp. 10:1–10:23, Nov. 2008.

[24] F. Chen, T. Luo, and X. Zhang, “Caftl: A content-aware flash translation
layer enhancing the lifespan of flash memory based solid state drives,”
in Proceedings of the 9th USENIX Conference on File and Stroage

Technologies, ser. FAST’11, pp. 6–6.

[25] “Enhanceio,” https://github.com/stec-inc/EnhanceIO.

[26] M. Oberhumer, “Lzo real-time data compression library,” User man-

ual for LZO version 0.28, URL: http://www. infosys. tuwien. ac.

at/Staff/lux/marco/lzo. html (February 1997), 2005.

[27] L. Tian, D. Feng, H. Jiang, K. Zhou, L. Zeng, J. Chen, Z. Wang,
and Z. Song, “Pro: A popularity-based multi-threaded reconstruction
optimization for raid-structured storage systems,” in Proceedings of the

5th USENIX Conference on File and Storage Technologies, ser. FAST
’07, pp. 32–32.

[28] J. Axboe, “Fio - flexible i/o tester synthetic benchmark,” http://git.kernel.
dk/?p=fio.git.

[29] W. K. Josephson, L. A. Bongo, K. Li, and D. Flynn, “Dfs: A file
system for virtualized flash storage,” Trans. Storage, vol. 6, no. 3, pp.
14:1–14:25, Sep. 2010.

[30] S. Savage and J. Wilkes, “Afraid: A frequently redundant array of
independent disks,” in Proceedings of the 1996 Annual Conference on

USENIX Annual Technical Conference, ser. ATEC ’96, pp. 3–3.
[31] S. Mishra and P. Mohapatra, “Performance study of raid-5 disk arrays

with data and parity cache,” in Parallel Processing, 1996. Vol.3. Soft-

ware., Proceedings of the 1996 International Conference on, vol. 1, pp.
222–229 vol.1.

[32] S. Im and D. Shin, “Flash-aware raid techniques for dependable and
high-performance flash memory ssd,” Computers, IEEE Transactions

on, vol. 60, no. 1, pp. 80–92, 2011.
[33] C.-C. Chung and H.-H. Hsu, “Partial parity cache and data cache

management method to improve the performance of an ssd-based raid,”
Very Large Scale Integration (VLSI) Systems, IEEE Transactions on,
vol. PP, no. 99, pp. 1–1, 2013.

[34] K. Mogi and M. Kitsuregawa, “Hot mirroring: A method of hiding
parity update penalty and degradation during rebuilds for raid5,” in
Proceedings of the 1996 ACM SIGMOD International Conference on

Management of Data, ser. SIGMOD ’96, pp. 183–194.
[35] J. Wilkes, R. Golding, C. Staelin, and T. Sullivan, “The hp autoraid

hierarchical storage system,” ACM Trans. Comput. Syst., vol. 14, no. 1,
pp. 108–136, Feb. 1996.

[36] K. Mogi and M. Kitsuregawa, “Dynamic parity stripe reorganizations for
raid5 disk arrays,” in Proceedings of the Third International Conference

on Parallel and Distributed Information Systems, pp. 17–26.
[37] D. Qin, A. D. Brown, and A. Goel, “Reliable writeback for client-side

flash caches,” in 2014 USENIX Annual Technical Conference (USENIX

ATC 14), pp. 451–462.
[38] Y. Oh, E. Lee, C. Hyun, J. Choi, D. Lee, and S. H. Noh, “Enabling

cost-effective flash based caching with an array of commodity ssds,”
in Proceedings of the 16th Annual Middleware Conference, ser.
Middleware ’15, pp. 63–74.

[39] Y. Klonatos, T. Makatos, M. Marazakis, M. D. Flouris, and A. Bilas,
“Transparent online storage compression at the block-level,” Trans.

Storage, vol. 8, no. 2, pp. 5:1–5:33, May 2012.
[40] C. Li, P. Shilane, F. Douglis, H. Shim, S. Smaldone, and G. Wallace,

“Nitro: A capacity-optimized ssd cache for primary storage,” in
Proceedings of the 2014 USENIX Conference on USENIX Annual

Technical Conference, ser. USENIX ATC’14, pp. 501–512.
[41] T. Pritchett and M. Thottethodi, “Sievestore: A highly-selective,

ensemble-level disk cache for cost-performance,” in Proceedings of the

37th Annual International Symposium on Computer Architecture, ser.
ISCA ’10, pp. 163–174.

[42] S. Huang, Q. Wei, J. Chen, C. Chen, and D. Feng, “Improving flash-
based disk cache with lazy adaptive replacement,” in Mass Storage

Systems and Technologies (MSST), 2013 IEEE 29th Symposium on, pp.
1–10.

[43] Y. Chai, Z. Du, X. Qin, and D. Bader, “Wec: Improving durability
of ssd cache drives by caching write-efficient data,” Computers, IEEE

Transactions on, vol. 64, no. 11, pp. 3304–3316, Nov 2015.
[44] T. Kgil, D. Roberts, and T. Mudge, “Improving nand flash based disk

caches,” in Proceedings of the 35th Annual International Symposium

on Computer Architecture, ser. ISCA ’08, pp. 327–338.
[45] Y. Oh, J. Choi, D. Lee, and S. H. Noh, “Caching less for better

performance: balancing cache size and update cost of flash memory
cache in hybrid storage systems,” in Proceedings of the 10th USENIX

conference on File and Storage Technologies, ser. FAST’12, pp. 25–25.
[46] J. Jeong, S. S. Hahn, S. Lee, and J. Kim, “Lifetime improvement of

nand flash-based storage systems using dynamic program and erase
scaling,” in Proceedings of the 12th USENIX Conference on File and

Storage Technologies, ser. FAST’14, pp. 61–74.
[47] F. Margaglia and A. Brinkmann, “Improving mlc flash performance

and endurance with extended p/e cycles,” in Mass Storage Systems and

Technologies (MSST), 2015 31st Symposium on, pp. 1–12.
[48] F. Margaglia, G. Yadgar, E. Yaakobi, Y. Li, A. Schuster, and

A. Brinkmann, “The devil is in the details: Implementing flash page
reuse with wom codes,” in 14th USENIX Conference on File and

Storage Technologies (FAST 16), pp. 95–109.

