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Abstract—The noises at the power lines limit the charge pump
to provide large instantaneous current to PCM cells, which results
in the number of bits can be written concurrently, i.e. the size
of write unit, is restricted in PCM. When implementing PCM as
the main memory, the inequality of cache line’s size and write
unit’s size may result in many consecutive executed write units,
which greatly decreases the system performance. Existing PCM
write schemes, however, consider the worst power and time cases
of written data, and ignore the actual current consumption. It is
assumed that all data bits are changed and the electric current
of each data unit is under fully utilized. The write performance
is blocked due to pessimistic estimates, i.e. the current is often
excessively supplied but is not used effectively, which leads to
huge energy consumption. As a result, the write parallelism is
limited and therefore restricts the overall system performance.
To address this problem, this paper proposes a novel PCM write
scheme named Tetris Write to explore more write parallelism
and reduce the critical number of write units in PCM chip.
The key idea behind Tetris Write is to monitor the number
of ‘1’ and ‘0’ changed in each data unit, and schedule the
order of data units’ write-1 and write-0 execution considering
not only the time and power asymmetries, but also the number
asymmetry between RET and SET operations, to allow a larger
number of concurrent bit-writes and make the best use of power
supply. Tetris Write tries to schedule the dominating long term
write-1s first and attempts to steal interspaces remained by
write-1s to put the extraessential short write-0s. 4-core PARSEC
benchmarks’ results show that Tetris Write can get 65% read
latency reduction, 40% write latency reduction, 46% running
time reduction and 2X IPC improvement compared with the
baseline on average. In addition, Tetris Write earns 26%, 15%
and 10% more read latency reduction, 15%, 7% and 5% more
write latency reduction, and outperforms 22%, 12% and 7%
more running time reduction, compared with the state-of-the-
art Flip-N-Write, 2-Stage-Write and Three-Stage-Write schemes,
whose IPC improvements are 1.4X, 1.6X and 1.8X, respectively.

Index Terms—PCM, write performance, asymmetries

I. INTRODUCTION

Phase Change Memory (PCM) shows some outstanding

features compared with DRAM, such as nonvolatile, no need

to do refresh operations and smaller feature size while DRAM

reaches its bottleneck in scalability without losing stability

[1][2][3][4]. However, PCM shows some disadvantages in

write performance and endurance [5][6][7]. Writing data into

a PCM cell requires massive power but the noises at the power
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lines may limit the charge pump to provide large instantaneous

current, which results in the number of bits can be written

concurrently, i.e. the size of write unit, is restricted to a

predefined constant [8][9]. Typical sizes of write unit are 8

(X8) and 16 (X16) bits per chip. Worse still, when use PCM

in a mobile system, the amount of current that the system can

provide may decrease and the number of cells that can be

written concurrently must be reduced down to 4 and 2 bits

to lessen the current consumption [8][10]. Due to the limited

sizes of write unit, the write operation must be finished in

write division mode and may need many sequentially executed

write units. When implementing PCM as the main memory, the

inequality of cache line’s size and write unit’s size may result

in huge performance degradation [10]. For example, four 16

bits-width PCM chips consist of a memory bank and the write

unit size is 16 bits, i.e. 2B per chip. In this circumstance, only

8B data can be written to a memory bank in parallel. A cache

line is customarily 64B size, and it consumes (648 = 8) write

units to finish writing last level cache line down to PCM main

memory [9][10][11][12][13][14][15][16][17][18]. In some lat-

est enterprise processors and servers, the size of last level

cache line is increased, e.g. 128B in IBM POWER7 [11][19]

and 256B IBM zEnterprise [11][20]. With the increasing size

of last level cache line, more write units are consumed and

may cause significant system performance degradation.

Existing state-of-the-art PCM write schemes make a lot

of efforts to solve the poor write performance problem. By

exploring sample data compression, the maximum number of

bits to be written is reduced and the size of write unit is

doubled (Flip-N-Write [14] ). By separating write-0 and write-

1, write parallelism can be improved considering the power

and time asymmetries (2-Stage-Write [11] and Three-Stage-

Write [21]). However, they still consider the worst power and

time cases when writing data, and ignore the actual current

consumption of each data unit. It is assumed that all data

bits are changed and the electric current of each data unit is

under fully utilized. According to our experimental results,

however, we observe that (1) the number of bits that are

actually changed and consume power is not that much (9.6 bits

per 64 bits data, only about 15%) and (2) the number of SET

and RESET operations is unbalanced, and most workloads

are SET-dominant. The write performance is blocked due

to pessimistic estimates, i.e. the current is often excessively
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supplied but is not used effectively. Low power utilization

leads to huge power consumption, and limits the improvements

in write parallelism and overall system performance.

In this paper, we propose a novel PCM write scheme named

Tetris Write to improve the write parallelism and reduce the

critical number of write units in PCM chip level. The key

idea behind Tetris Write is to monitor the number of ‘1’ and

‘0’ changed in each data unit, and schedule the order of data

units’ write-1 and write-0 execution considering not only the

time and power asymmetries, but also the number asymmetry

between RET and SET operations, to allow a larger number of

concurrent bit-writes and make the best use of power supply

budget. Tetris Write tries to schedule the dominating long

term write-1s first and attempts to steal interspaces remained

by write-1s to put the extraessential short write-0s. Tetris

Write divides the write into three stages: read, analysis and

individually write.

• In read stage, Tetris Write reads out the original data

first and flips the data if more than half of bits have

to be changed like Flip-N-Write. Thus, no more than

half of total bits need to be written. Moreover, the actual

number of SET and RESET operations per data unit is

also calculated.

• In analysis stage, Tetris Write calculates the power needs

of write-1 and write-0 considering the power asymmetry

based on the results of read process. Then Tetris Write

schedules the order of data units’ write-1 and write-0

executions considering the number and time asymmetries.

• In individually write stage, the write-0 and write-1 ex-

ecute individually and simultaneously under the careful

control of FSMs.

The remainder of this paper is structured as follows. Section

II describes the background and summaries related work. Sec-

tion III presents the motivations and key ideas of Tetris Write.

Section IV introduces the architecture and implementation of

Tetris Write scheme. Section V presents and analyzes the

experimental results. Finally, section VI offers conclusions.

II. BACKGROUND AND RELATED WORK

Phase Change Memory is a type of Non-Volatile Memory

(NVM) and consist of chalcogenide glass material, such as

Ge2Sb2Te5 (GST). GST shows the unique behavior in re-

sistance level under amorphous state and crystalline state. In

general, the resistance level of amorphous state and crystalline

state differs ten or more order of magnitudes, which can

be used for storing digital information ‘1’ and ‘0’. A PCM

cell can store one or more than one bit, called single-level-

cell (SLC) and multiple-level-cell (MLC), respectively. Typical

PCM cell structure and the write and read processes are

illustrated in Figure 1. A PCM cell is simply composed of

top and bottom electrodes, heater and GST material. PCM

shows both time and power asymmetries of writing ‘1’ (SET)

and ‘0’ (RESET) [11][22]. In general, making the GST to

the amorphous phase (RESET) is typically achieved in less

time but needs higher current, whereas switching GST to

the crystalline state (SET) consumes longer time but requires
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Fig. 1: PCM cell structure and the operations process.

lower current. In other words, RESET is fast but consumes

more current while SET is slow and needs lower instantaneous

current. According to existing literature, Tset is about 8 times

longer than Treset while current consumption Cset is about

half of Creset [8][9]. Moreover, by applying low voltages,

the information in a PCM cell is read by judging the current

level, whose value is decided by the resistance level of the

GST material. In this study, we focus on SLC PCM for its

better write performance. In addition, the noises at the power

lines may limit the charge pump in chip to provide large

instantaneous current, which results in the number of bits can

be written in parallel, i.e. the size of write unit, is restricted in

PCM chip. Typical sizes of write unit are 8 and 16 bits per chip

[10]. Differently, the current need of a read operation is much

lower than a SET or RESET operation and it is feasible to read

out the values among hundreds of PCM cells concurrently.

The main memory is usually organized as a hierarchical

architecture [13], as shown in Figure 2. The main memory

consists of many memory ranks, which are composed by

several memory banks. In order to match the data bus width,

many PCM chips are used and compose a memory bank. The

inequality of cache line’s size and write unit’s size may result

in many consecutive executed write units to finish a cache line

write service, which greatly decreases the system performance.

Four 16 bits-width PCM chips compose a memory bank and

the write unit size is 16 bits, i.e. 2B. In this circumstance,

only 8B data can be written in parallel to a memory bank.

The cache line is typical 64B size and it needs 8 write units

to finish the write service in PCM main memory.

Conservative conventional write scheme considers the worst

current requirements (RESET) and time requirements (SET)

of PCM write, and it often consumes many consecutive write

units to finish a cache line write service, regardless of the

actual data content. Assuming the size of write unit is M bytes

and the size of cache line is N bytes, the time consumption

for writing a cache line data is concluded in Equation 1.

TConventional =
N

M
× Tset (1)

Flip-N-Write (FNW) [14] flips the data when the hamming

distance between original and new data is more than half of
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data width. Thus, two data units can be written in one write

unit under the power constraints. Flip-N-Write doubles the

size of write unit and reduces the time consumption of write

service. Compared with the conventional write scheme, Flip-

N-Write introduces an extra read operation and the average

service time is concluded in Equation 2.

TFlip−N−Write = Tread +
1

2
× N

M
× Tset (2)

2-Stage-Write [11] tries to improve the write performance

by exploiting the power and time asymmetries of RESET

and SET. 2-Stage-Write divides write into two consecutive

processes: stage-0 and stage-1. In stage-0, RESETs in all data

units are executed first. Since Treset is much shorter than

Tset, stage-0 finishes within a short time. In stage-1, SETs

in two data units can be executed together for the current

consumption of SET Cset is half of RESET Creset. By flipping

the write data if more than half of SETs in a write operation,

the execution speed of stage-1 is doubled again. Assuming

the time ratio of SET and RESET is K and the power ratio is

1/L, we can conclude the time consumption in Equation 3.

T2StageWrite = (
1

K
+

1

2L
)× N

M
× Tset (3)

Three-Stage-Write or 3-Stage-Write [21] tries to combine

Flip-N-Write and 2-Stage-Write in effective ways. Compared

with 2-Stage-Write, Three-Stage-Write adopts an extra process

before stage-0 and stage-1. Three-Stage-Write first reads the

original data and determines whether flips the data or not

similar to Flip-N-Write. Three-Stage-Write can double the

execution speed of stage-0 and stage-1. Compared with the 2-

Stage-Write, the overall waiting time of stage-1 is same while

the waiting time of stage-0 in cut by half. Three-Stage-Write

also need one read operation before writing and the average

service time is shown in Equation 4.

T3StageWrite = Tread + (
1

2K
+

1

2L
)× N

M
× Tset (4)

III. MOTIVATION AND TETRIS WRITE

A. Observation and Motivation

The experimental result of the number of RESET and SET

operations per data unit, i.e. 64 bits, is shown in Figure 3.

The experimental settings and workload characteristics are

described in Table II and III. It is worth noticing that this

number is counted after the data inversion processing adopted
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Fig. 3: The Number of RESET and SET per Data Unit

by Flip-N-Write and Three-Stage-Write, i.e. the data are

inverted if more than half of bits need to be executed RESET

and SET operations. We draw two critical observations that:

• Observation 1: The number of total bit-write operations,

including RESET and SET, is not that huge in one data

unit on average. Based on our experimental result, only a

small part of the bits are need to be changed and consume

power. On average, the number of bit operations is 9.6

per 64 bits write (about 15%), including 2.9 RESET and

6.7 SET operations.

• Observation 2: RESET/SET operations are heteroge-

neous among workloads and inside one workload. On

the one hand, the number of write-1 (SET) and write-

0 (RESET) varies much in different workloads. For

example, there are only 2 bit-writes in blackscholes while

vips consumes 19 bit-writes on average. On the other

hand, most workloads are SET-dominant while few are

fifty-fifty SET/RESET, such as vips and ferret.

State-of-the-art schemes, however, consider the worst power

and time cases when writing down data, and ignore the

circumstances we observed. They all assume that all data bits

are changed and the electric current is fully utilized, and may

led to significant wastage of power budget, i.e. the power

supply. On the one hand, regardless of conventional write

scheme and Flip-N-Write, they both regard RESET and SET

in the same way and consider the write in the worst power

consumption case. However, based on our Observation 1,

there are few bit operations. Although Flip-N-Write performs

two data units concurrently, it still suffers from low utilization

of power budget ((9.6×2)÷64 ≈ 30%) and huge consumption

of power budget supply. On the other hand, even though 2-

Stage-Write and Three-Stage-Write leverage the asymmetries

and improve the write parallelism, they still consider the write

in the worst power consumption case and unconcern the actual

current utilization in stage-0 and stage-1. However, based on

our Observation 2, most workloads are SET-dominant with

few RESET operations, and the stage-0 may earn extremely

low power budget utilization. The current is often excessively

supplied without being used effectively. Low power budget

utilization limits improvements in write parallelism and overall

system performance.

B. Tetris Write

Unlike conventional, Flip-N-Write, 2-Stage-Write and

Three-Stage-Write, Tetris Write tries to take into account the

actual current consumptions of every data units when writing

‘0’ and ‘1’, respectively, and schedules the order of data

units’ execution considering not only the time and power

asymmetries, but also the number asymmetry between RET

and SET operations, to make full use of the power budget.

Tetris Write divides the write into three stages: read, analysis

and individually write.
1) Read: The working flow of the read process is shown

in Algorithm 1. Tetris Write leverages the read-before-write

scheme to reduce the data amount. Tetris Write first reads

out the original data and its flip tag {D’, F’}, and flips the

161161161
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Fig. 4: Chip-level timing diagram for different schemes

data if the hamming distance between original data {D’, F’}
and new data {D, 0} is more than half of the write unit size.

Furthermore, Tetris Write monitors and records the number of

write-1 bits and write-0 bits after data inversion.

Algorithm 1 The read process of Tetris Write

Require:
/*A is the write address; N is the write unit size in bits*/
/*F’ is the flip tag of original data; F is the flip tag of new data*/
/*D is the data unit to be written; D’ is the original data*/

Ensure:
1: F ′ = Read the flip bit(A)
2: D′ = Read the data bits(A)
3: if Hamming dist({D, 0}, {D′, F ′}) > N/2 then
4: D =∼ D,F = 1;
5: else
6: D = D,F = 0;
7: end if
8: N1 = Count the number of 1(D)
9: N0 = Count the number of 0(D)

2) Analysis: Tetris Write separates the write-0 and write-

1 of each data units and considers the execution sequence

of them respectively. In analysis stage, Tetris Write receives

the number of write-1 and write-0, and calculates the current

need of write-1 and write-0 each data unit considering the

power asymmetry of PCM. In general, based on Observation
2 and time asymmetry, Tetris Write tries to schedule the

dominant and long-term write-1 stage of every write units.

After that, Tetris Write attempts to schedule all data units’

write-0s together with the execution of write-1s under the

power constraints. Thus, the long write-1 stage can hide the

fast write-0 and the number of write units can be reduced.

In other words, Tetris first determines the write-1 scheduling

scheme considering the current need of all data units when

writing ‘1’, then tries to put all write-0 in the interspace

remained by write-1s and get the least number of write units
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Fig. 5: Fine-gained Power Management of Tetris Write

like the classical Tetris game.

The pseudocode of analysis process is shown in Algorithm

2. Tetris Write is a greedy algorithm and the key idea is to find

the first-fit write unit for each data unit. To provide fine-gained

current management, one write unit is divided in K sub-write-

units considering the time asymmetry of SET and RESET as

shown in Figure 5. NW is the number of existing write units.

In general, the power management of write-1s is write unit

level and is sub-write-unit level for write-0s. Another thing

to note is that write unit together with sub-write-unit should

follow the power constraints.

Tetris Write first calculate the current consumption of write-

1 and write-0 of every data units considering the power

asymmetry. Then, Tetris Write sorts all write-1 data units in

the decreasing order according to the current need of write-

1s (IN1[i]). Assuming each sub write unit has currently used

energy WUp[j] and the maximum power budget is PBmax.

The initial values of WUp[j] are ‘0’. First, Tetris tries to

put write-1 of dataunit[x] that consumes most power into

writeunit[1]. If IN1[x] + WUp[1] < PBmax, marking that

data unit should be executed in write unit ‘1’ and update the

power consumption values of WUp[1] (WUp[1] = WUp[1] +
IN1[x]). Second, Tetris tries to put the most power-cost

dataunit[y] into existing write unit, i.e. writeunit[1] now,

if IN1[y] +WUp[1] > PBmax, then we need another write

unit, i.e. writeunit[2] now and mark the data unit with

tag writeunit[2]. Universally, for each dataunit, in turn

examines whether existing writeunit[1 → j] can handle the

data unit, if not, employ another write unit to handle the

data unit. After all write-1 data units have been scheduled,

Tetris arranges all write-0 data units similar to write-1 data

units. Differently, the initial values of WUp[j] are not zero but

the remaining values after write-1 processing. If all existing

writeunits can’t meet the demand of write-0, Tetris Write

uses an additional subwriteunit to finish the write-0.

In analysis stage, all data unit’s execution sequence of

write-1 and write-0 is determined and saved in two individual

queues, write-1 and write-0 queue, respectively. And all write-

1 and write-0 are labeled with the write unit they belong to.

162162162



3) Individually Write: In individually write stage, two

Finite State Machines, FSM0 and FSM1, generate the data

units select signals and write signals and send them to the

write driver, according to the schedule results of write-1 and

write-0 of all data units, which are stored in write-1 and

write-0 queues. The FSMs are driven by the memory clock

and leverages internal counters to achieve precise control of

execution of write-1 and write-0. Write driver receives the

Algorithm 2 Tetris Write Algorithm

Require:
The time asymmetry is K; The power asymmetry is L;
The number of data unit, NW ; The max power budget, PBmax;
The number of write-1 data unit, NUM1[NW ];
The number of write-0 data unit, NUM0[NW ];
Current each sub-write-unit’s power use, WUp[NW ×K];

Ensure:
The number of write units for all write-1s, result;
Additional sub-write-units for write-0s, sub− result;

1: /*Get write-1&write-0 current need considering asymmetry*/
2: for each i ∈ [1, NW ] do
3: IN1[i] ← NUM1[i];
4: IN0[i] ← NUM0[i]× L;
5: end for
6: result ← 1; subresult ← 0;
7: for each i ∈ [1, NW ] do
8: Sort each IN1[i] in the decreasing order;
9: Sort each IN0[i] in the decreasing order;

10: end for
11: /*Traverse all write-1 data units*/
12: for i ← (1 → NW ) do
13: /*Find whether existing write units can satisfy it*/
14: for j ← (1 → result) do
15: /*The time asymmetry is K*/
16: if (IN1[i] +WUp[j ×K]) > PBmax then
17: /*If existing write units can’t meet, need another one*/
18: if j = (result− 1) then
19: result ← result+ 1;
20: else
21: Send data unit i to write-1 queue with tag j;
22: /*One write-1 occupies K sub-write-unit*/
23: for k ← (1 → j ×K) do
24: WUp[k] ← (WUp[k] + IN1[i]);
25: end for

break;
26: end if
27: end if
28: end for
29: end for
30: /*Traverse all write-0 data units*/
31: for i ← (1 → NW ) do
32: /*Find whether existing sub-write-units can satisfy it*/
33: for j ← (1 → result×K) do
34: /*If existing can’t meet, need subwriteunit for write-0*/
35: if (IN0[i] +WUp[j]) > PBmax then
36: if j = (result− 1) then
37: subresult ← subresult+ 1;
38: else
39: WUp[j] ← (WUp[j] + IN0[i]);
40: Send data unit i to write-0 queue with tag j;

break;
41: end if
42: end if
43: end for
44: end for

write data and write signals (SET/RESET) from FSMs, and

generates the PROG enable and SET/RESET enable to the

corresponding PCM cells.

The write service time of Tetris Write can be expressed by

Equation 5. The performance is decided by three parameters,

i.e. result, subresult and K. K is the time ratio of SET

and RESET while result and subresult are respectively the

number of write units for write-1s and write-0s. The values of

result and subresult are calculated in Algorithm 2.

TTetrisWrite = (result+
subresult

K
)× Tset (5)

Figure 4 is a simple sample to emphasize the significantly

differences between Tetris Write and the state-of-the-art PCM

write schemes, e.g. Flip-N-Write, 2-Stage-Write and Three-

Stage-Write. Assuming cache line size is 64B, four chips under

X16 write division mode form a memory bank and original

size of write unit is 8B per bank, 2B per chip. The power

budget is set to 128 per bank and 32 per chip under the

assumption that the power ratio between RESET and SET is

2. In other words, 32 SET and 16 RESET operations can be

operated concurrently per chip, i.e. 128 SET and 64 RESET

per bank. Under the conventional scheme, each write unit com-

pletes after a service time required writing a one, regardless

of the actual values written. The conventional scheme requires

eight write units serially, i.e. 8Tset in total. Considering that is

quite a long time, we don’t show it in Figure 4. Flip-N-Write

first read original data and compares it against new data, and

then effectively reduces the number of bits to be written by

half of the data unit size, and thus it allows writing two write

units concurrently under the power constraints. Flip-N-Write

completes the write of a cache line at T4. In 2-Stage-Write,

all zeros are written to PCM cells at a fast speed. During

the following write-1 stage, the lower current requirement of

writing ‘1’ enables more ones to be written concurrently under

the same power constraints. Therefore, the number of serial

writes in the write-1 is reduced, which leads to the completion

time to be T3. But things become different when it comes

to Three-Stage-Write. The 0-bits and 1-bits actually changed

both reduce by half. Because of the data amount reduction of

stage-0 and stage-1, the stage-0 of three-stage-write takes less

time, completion time is thus changed to T2.

Like Flip-N-Write and Three-Stage-Write, Tetris Write

needs to read data first, then we have the analysis stage to

determine the scheduling scheme of write-1 and write-0 of

all data units. Since Tetris Write attempts to schedule all data

units’ write-0 together with the execution of write-1 under

the power constraints, the long write-1 stage can hide the fast

write-0 stage and the number of write units can be further

reduced. In the specific circumstance given in Figure 4, write-

1s of dataunit[1 − 4] and dataunit[8] can be written in

parallel under the power constraints (8 + 7 + 7 + 6 + 3 =
31 < 32). Moreover, when write-1s of dataunit[5 − 7]
is under service, write-0s of dataunit[8] and dataunit[4]
((6 + 6 + 5) + 2 × (5 + 2) = 31 < 32), dataunit[5 − 7]
((6+6+5)+2× (3+2+2) = 31 < 32) and dataunit[2−3]
((6 + 6 + 5) + 2 × (1 + 1) = 21 < 32) can be served in a
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TABLE I: Differences of Various Write Schemes

Scheme Key Idea Reduce Latency Reduce Energy

Flip-N-Write Reducing the bits to be written by encoding the data with extra flip-bit YES YES

2-Stage-Write
Asymmetries of PCM, divide PCM write into two stages considering
the power and time asymmetries

YES NO

Three-Stage-Write
Asymmetries of PCM, similar to 2-Stage-Write, add read operation
before write to speed up stage-0

YES YES

Tetris Write
Rescheduling the execution of write-1 and write-0 considering the
actual current consumption

YES YES
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Fig. 6: Data Path

row considering the power and time asymmetries. Tetris Write

completes the service most quickly, i.e. T1.

Table I shows the comparisons between Tetris Write and

existing state-of-the-art PCM write schemes. Flip-N-Write’s

key idea is reducing the bits to be written by flipping the data

or not, it can reduce write latency and energy consumption. 2-

Stage-Write divides PCM write into two stages considering

the power and time asymmetries. It can also reduce write

latency, however, it cannot reduce energy consumption for

it doesn’t reduce the overall data amount. Three-Stage-Write

makes use of the same principle as 2-Stage-Write, but it adds

extra data operation before write stages like Flip-N-Write and

therefore speeds up write-0 stage. It can reduce both write

latency and energy consumption. Compared with the state-

of-the-art PCM write schemes mentioned above, Tetris Write

schedules the execution of write-1 and write-0 based on the

actual current consumptions. By introducing the read-before-

write scheme similar to Flip-N-Write, the data amount is

reduced and our scheme can also reduce write latency and

energy consumptions.

IV. IMPLEMENTATION

Our implementation of Tetris Write is based on an industrial

prototype from Samsung [8][9]. By introducing a buffer for

read requests, the original design support high-speed syn-

chronous read operation and 128 bits data can be read out

under the synchronous read operation mode. However, the size

of write unit is limited to no more than 16 bits for one chip.

What’s more, the original design does not notice the power and

time asymmetries, it considers the finish time of one data unit

to be Tset. Moreover, in order to avoid imbalanced current

demand caused by uneven cache line data distribution, we

adopt the global charge pump (GCP) technology provided in

Ref. [16]. GCP uses a global bridge chip and dedicated wires

among PCM chips. Thus, a PCM chip can “steal” current from

other PCM chips and the size of write unit per bank is stable

[16], i.e. 64B in our study.

A. Datapath

Figure 6 shows the comparison of Tetris Write’s datapath

and conventional datapath. Cell blocks refer to the PCM array,

a PCM chip customarily consists of multiple cell blocks.

GYDEC refers to global column decoder which selects a

column in the PCM array. S/A refers to sense amplifier,

DMUX refers to multiplexer and DOUT refers to data out

buffer, respectively. Our design adds extra write logic named

Tetris Write Logic in order to implement the processes of read

and analysis. Furthermore, in order to provide data inversion

support, the data width is extended, as the underlined part

in Figure 6(b). 0/1 counters are also added to monitor the

number of 0/1 that need to be written. Reg0 and Reg1 are two

48 bits long arrays used to store the label of data units and

the number of 0/1, respectively. There are 8 data units and the

number of bits changed is less than half of chip’s data width,

i.e. 8 bits. So we need 6 bits to store one data unit’s label

and it’s actual number of 0 or 1 in Reg0 or Reg1. The read

data may pass through cell blocks, GYDEC, S/A and DOUT

buffer successively while the write data pass through write

buffer, Tetris Write Logic, S/A write driver, GYDEC and cell

blocks in turn. It is worth noting that the additional logic layer

doesn’t add any extra overhead on the read operation, which

is on the critical path of the system performance [23][24].

B. Tetris Write Logic

Tetris Write Logic is indicated by the dashed box in Figure

7. Reg0 and Reg1 store numbers of 0/1 for each data unit and
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X136 buffer(128 bits data + 8 flip bits of D0-D7)
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Fig. 7: Write Control Logic
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the serial number of each data unit as mentioned in datapath

part. CLK refers to memory bus clock. MUX is a multiplexer,

according to fixed offset to select the appropriate data unit.

When performing a write on PCM, Tetris-Write logic receives

the data from the write buffer, the number of 0/1 for each data

unit stored in Reg0 and Reg1, then sends them to the analyzer.

The analyzer determines the write-1 and write-0 execution

order of every data unit and sends them to the two individual

queues, i.e. write-1 queue and write-0 queue. Figure 8 shows

the detailed design of FSMs, the jobs of FSM0 and FSM1

are generating the data units select signals and write signals,

and sending them to the write driver. For example, FSM1 first

gets the serial number of data units that to be executed and

sends the data units select signals to MUX. After Tset, FSM1

checks and retrieves the next write-1 data units and repeats

the whole process. Similarly, FSM0 periodic retrieves the data

units under write-0 in write-0 queue every Treset. It is worth

noting that FSM0 and FSM1 are independent of each other

and the executions are simultaneous.

C. Write driver

In order to support the proposed write scheme, we redesign

the write driver as shown in Figure 9. Write driver receives

the write signals produced by the FSMs to determine the

SET/RESET signals. Because Tetris write only writes the

bits need to changed, a XOR gate is used for different bits

judgment. Meanwhile, an extra ”PROG enable” signal is also

needed similar to Flip-N-Write. The PROG enable signals are

produced by the XOR gate mentioned above, when a bit of

old data comes from read buffer differ from the new data

comes from DX, the corresponding bit of PROG enable signals

XOR

Read buffer

PROG enable logic

17 17

AND

17

PROG enable RESET/SET enable

Write signal
Zero/One

X17 DMUX

SET/RESET enable logic

17 bits DX

Write-0s Write-1s

Write Driver

Fig. 9: Write Driver

is set to one. In conventional PCM write driver, only the

SET/RESET enable signals are needed, but in our design, data

are written only when SET/RESET enable signal and PROG

enable signal are both active. For example, assume that the

PROG enable signal of a certain bit is ‘0’, which means this

bit doesn’t need to be changed. And it’s SET/RESET signal is

‘SET’. When these two signals come to write driver together,

it won’t perform SET operation to that bit.

D. Overhead

In this discussion, we analyze the sources of extra overheads

and their impact in terms of performance in detail. We focus

on the overheads due to read process and analysis process.

On the one hand, similar to Flip-N-Write and Three-Stage-

Write, Tetris Write flips the data unit if more than half of bits

need to do RESET and SET operations. This data inversion

reduces the data amount but introduces an independent read

operation before writing. The overhead can be considered as

Tread, which is 50ns in our study.

On the other hand, the Tetris Write algorithm in the analysis

process may deliver extra overhead including a small number

of sort operations (only 8 write-1 and write-0 in this study)

and rearrangement of these write-1 and write-0 units, and we

name this overhead as analysis overhead. In order to accurately

measure the time of analysis overhead, we try to implement the

Tetris Write algorithm in FPGA using Verilog HDL. We use

Vivado HLS tools and implement the Tetris Write algorithm

in Xilinx Vitex-7 FPGA (xc7vx330tffg1157). Vivado HLS is

a high-level synthesis tools provided by Xilinx and enables

C, C++ and System C programs to be directly targeted into

Xilinx devices without the need to manually create RTL [25].

Based on the experimental results of Vivado HLS, the Tetris

Write algorithm consumes 41 cycles under the worst case

running at 400 MHz clock, the same clock frequency as

memory bus clock. However, our assumptions of clock is

based on the existing literature [14] and the measurement of

analysis overhead is primitive and pessimistic. We can shorten

the analysis time by migrating the work to an ASIC with

individual clocks with higher frequency.

Tetris Write improves write parallelism by adding individual

Tetris Write logic, and added circuits may introduce extra area

and power overhead. In general, write is not on the critical

path of performance. Tetris Write extends the write datapath,

however, the critical read datapath stays the same. In addi-

tion, the added write control logic is much less complicated

compared with existing cost-sensitive components in PCM,

such as the charge pumps, program-and-verification circuits

for write control etc. [11]. Tetris Write also changes the write

driver slightly and writes different bits, which can be easily

implemented with XOR gate and a counter. Compared with

the original write driver, “SET/RESET” signals for one bit are

AND-gated with the “PROG enable” signal. Considering XOR

and AND logic gates is relatively simple, the area overhead

hence is minimal. The extra power consumption is less than

4 mW according to the results of VIVADO tools. The output

node of the pump is about 5V in write mode, draws about
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25 mA current in division-write mode. Thus write consumes

5 × 25 = 125 mW power in the baseline prototype [9]. The

power overhead is acceptable ( 4
125 ≈ 3.2%).

V. EVALUATION

A. Experimental Setting

We use the event-driven GEM5 simulator to simulate a

multi-core computer system running with multi-threaded PAR-

SEC 2.0 benchmark suite [26] and evaluate our proposed PCM

write scheme. We add individual NVM module design based

on NVmain [27] on the GEM5 simulator [28]. The multi-

threaded PARSEC2.0 benchmarks we used were present and

profiled in Ref. [29]. To test the effectiveness of Tetris Write

design, we use 8 multi-threaded workloads from PARSEC

2.0 benchmark suite. All these workloads are taken from

various real-world applications majoring in Financial Analysis,

Computer Vision, Engineering, Enterprise Storage etc.. The

memory Read Per Kilo Instructions (RPKI), memory Write

Per Kilo Instructions (WPKI) are also summarized in Table III.

The system baseline configuration is shown in Table II. The

parameters of main memory are taken from PCM hardware

prototype published by Samsung [9]. We use ALPHA-like

processors with 4 O3 (out-of-order) cores, whose frequency

is 2GHz. Moreover, there is 3-level cache architecture and

the size of last level DRAM cache is 32MB. The memory

controller is the same with previous work [16]. It takes 50ns,

53ns, 430ns to read a PCM cell, RESET a cell and SET a

cell, respectively. Moreover, we assume the ratio of current

RESET to SET is 2 and the original write unit size is 8B per

memory bank. The cache line size is 64B, and the number of

write unit under baseline is 8.

We try to discuss the impact of PCM systems adopt-

ing Tetris Write based on some critical measure of system

performance, such as read latency, write latency, IPC and

applications’ running time. In our study, we adopt the DCW

scheme [30] as the baseline and try to compare Tetris Write

with the state-of-the-art PCM write schemes, such as Flip-N-

Write [14], 2-Stage-Write [11] and Three-Stage-Write [21].

B. Experimental results

1) The Number of Write Units: Since sequentially exe-

cuted write units are the primary cause of poor write perfor-

TABLE II: Parameters of Simulation

Parameter Value

CPU
4-Core CMP, 2GHz, ALPHA-architecture
processor with O3 (out-of-order) cores.

Cache Organization 64-byte line size

L1 Cache
32KB I-cache, 32KB D-cache, 2 cycles ac-
cess latency

L2 Cache 8-way, 2MB, 20 cycles access latency

L3 Cache 16-way, 32MB, 50 cycles access latency

Memory Controller FRFCFS scheduling, 32-entry R/W queues

Memory Organization
4GB SLC PCM, 64 bits data width, single-
rank, 8 banks

PCM Organization 4-X16 PCM chips, 8B write unit size

Memory Timing READ 50ns, RESET 53ns, SET430 ns

Memory Energy Ratio of RESET and SET current is 2

��������	�
�

�	������
����
��

�
���
�
��


��
����


�����	�� ����
�

�

�

�

�

��
�������

�	���
"
���

��
���

���

��
���

���


�

��

�

"
��

�

��	

���
��


�


��


Fig. 10: The Average Number of Write Units

mance, the number of write units is a very critical indicator

for performance evaluation. Figure 10 shows the number of

sequential write units of Tetris Write on average compared

with theoretical values of state-of-the-art schemes. We get

several observations from the results. First, in all benchmarks,

Tetris Write gets better number of write units compared with

the state-of-the-art write schemes. The write operations can

be finished with fewer sequentially executed write units and

the overall system performance can be greatly improved. On

average, Tetris Write needs 1.06 to 1.46 write units to finish the

cache line write service. In comparison, Flip-N-Write doubles

the size of write unit with data inversion and it usually takes

4 write units. 2-Stage-Write needs 3 write units, 1 for stage-

0 and 2 for stage-1. Three-Stage-Write doubles the speed

of stage-0, we can consider it uses 2.5 write units to finish

the cache line service. Second, the number of write units of

Tetris Write varies much among different workloads. Tetris

Write shows significant improvement over the state-of-the-

art schemes when there are few RESET and SET operations,

such as blackscholes, canneal and ferret. However, when there

includes many RESET and SET operations in workloads, such

as dedup and vips, Tetris Write doesn’t reduce the number of

write units distinctly.

2) Read Latency: Figure 11 presents the average read

latency of memory requests Tetris Write and the state-of-the-

art write schemes compared with the baseline. Tetris Write

achieves 65% read latency reduction compared with the DCW

on average while Flip-N-Write, 2-Stage-Write and Three-

Stage-Write shows only 39%, 50% and 56%, respectively.

In addition, Tetris Write outperforms mentioned PCM write

schemes in all workloads. Three of eight workloads (blacksc-

holes, ferret and freqmine) show more than 10% read latency

improvement over the Three-Stage-Write, whose performance

is on the top of the existing PCM write schemes. Moreover,

dedup and vips also shows better read latency reduction over

Flip-N-Write, 2-Stage-Write and Three-Stage-Write, even one

data unit may include many RESET and SET operations. As

Tetris Write reduces the write service time and read requests

benefit from the waiting time reduction, the overall read

latency can be shortened. Read is on the critical path of the

main memory systems, therefore, Tetris Write can successfully

improve the performance of the main memory system.
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TABLE III: Multi-threaded Workloads Used in Our Study

Program Application Domain Data Usage of Sharing Data Usage of Exchange RPKI WPKI

blackscholes Financial Analysis low low 0.04 0.02

bodytrack Computer Vision high medium 0.72 0.24

canneal Engineering high high 2.76 0.19

dedup Enterprise Storage high high 0.82 0.49

ferret Similarity Search high high 1.67 0.95

freqmine Data Mining high medium 0.62 0.25

swaptions Financial Analysis low low 0.04 0.02

vips Media Processing low medium 2.56 1.56

��������	�
�

�	������
����
��

�
���
�
��


��
����


�����	�� ����
���

���

���

���

���

���

�

	
	�

�
��

�


�
��


�
��
��



��

�

���
��	�
��+,�-
+���

�.+,�-
+���

�/
���+���


Fig. 11: Read Latency
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Fig. 12: Write Latency
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Fig. 13: IPC Improvement
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Fig. 14: Running Time

3) Write Latency: The experimental results of write latency

are shown in Figure 12. Compared with the baseline, Tetris

Write reduces more than 40% write latency. Moreover, Tetris

Write outperforms 15%, 7% and 5% more write latency reduc-

tion compared with Flip-N-Write, 2-Stage-Write and Three-

Stage-Write, respectively. It’s worth noting that in blacksc-

holes and swaptions, the improvement in write latency of

Tetris Write is not that obvious, yet we get write performance

degradation. There are two reasons for this phenomenon. On

the one hand, the memory controller we adopted has individual

write and read queues. The variable FRFCFS scheme sched-

ules the read request first and services the write requests only

when the write queue is full. However, both blackscholes and

swaptions are read-dominant workloads, the number of write

operations is far behind read operations. So the waiting time

for a write request is quite long, which results in long service

time of a write. On the other hand, the implementation of

Tetris Write incurs extra overhead in analysis process. Besides

blackscholes and swaptions, other workloads show much better

write latency reduction compared with Flip-N-Write, 2-Stage-

Write and Three-Stage-Write, respectively.

4) IPC: As Tetris Write can reduce the service time of a

cache line write, IPC may benefit from the system performance

improvement. We use IPC improvement as defined in Equation

6 to measure the IPC of all compared schemes. Figure 13

shows the IPC improvement for all workloads.

IPCImprovement =
IPC

IPCbaseline
(6)

Tetris Write shows maximum IPC improvement than other

state-of-the-art schemes under all workloads, compared with

the baseline. On average, Tetris Write gets 2X IPC improve-

ment compared with the baseline while Flip-N-Write, 2-Stage-

Write and Three-Stage-Write earn 1.4X, 1.6X and 1.8X IPC

improvements, respectively. This can be explained by the low

read latency of Tetris Write, which means more instructions

can be executed in the same period of time.
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5) Running Time: The running time of applications is

shown in Figure 14. And we try to compare Tetris Write

with the state-of-the-art PCM write schemes. Tetris Write

reduces the write service time of a cache line downtown PCM

main memory, which can reduce the read latency and is di-

rectly mapped into applications’ running time. Under 8 multi-

threaded benchmarks in this study, Tetris Write outperforms all

compared write schemes. Tetris Write earns more than 46%

running time reduction compared with baseline on average.

Meanwhile, Tetris Write outperforms 22%, 12% and 7% more

running time reduction, compared with Flip-N-Write, 2-Stage-

Write and Three-Stage-Write, respectively.

VI. CONCLUSION

This paper proposes a novel PCM write scheme named

Tetris Write to improve the write parallelism and reduce the

write service time of PCM. Tetris Write explores both the time

and power asymmetries of writing ‘1’ and ‘0’ in PCM and tries

to solve the power underutilized problem of existing PCM

write schemes. The key idea behind Tetris Write is to monitor

the number of ‘1’ and ‘0’ changed in each data unit, and

schedule the order of data units’ write-1 and write-0 execution

considering both the time and power asymmetries, to make

the best use of power budget. Tetris Write tries to schedule

the dominating long term write-1s first and attempts to steal

interspaces remained by write-1s to put the extraessential short

write-0s. 4-core PARSEC benchmarks’ results show that Tetris

Write can get 65% read latency reduction, 40% write latency

reduction and 46% running time reduction compared with

the baseline on average. In addition, Tetris Write can earn

26%, 15% and 10% more read latency reduction, 15%, 7%

and 5% more write latency reduction, and outperform 22%,

12% and 7% more running time reduction, compared with the

state-of-the-art Flip-N-Write, 2-Stage-Write and Three-Stage-

Write schemes, respectively. Moreover, Tetris Write gets 2X

IPC improvement compared with the baseline while Flip-N-

Write, 2-Stage-Write and Three-Stage-Write earn 1.4X, 1.6X

and 1.8X IPC improvements, respectively.
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