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Abstract—As a fundamental cloud service for modern Web
applications, the cloud object storage system stores and re-
trieves millions or even billions of read-heavy data objects.
Serving for a massive amount of requests each day makes the
response latency be a vital component of user experiences. Due
to the lack of suitable understanding on the response latency
distribution, current practice is to use overprovision resources
to meet Service Level Agreement (SLA). Hence we build a
performance model for the cloud object storage system to pre-
dict the percentiles of requests meeting SLA (response latency
requirement), in the context of complicated disk operations
and event-driven programming model. Furthermore, we find
that the waiting time for being accept()-ed at storage servers
may introduce significant delay. And we quantify the impacts
on system response latency, due to requests waiting for being
accept()-ed. In a variety of scenarios, our model reduces the
prediction errors by up to 73% compared to baseline models,
and the prediction error of our model is 4.44% on average.

Keywords-performance modeling; cloud storage; response
latency;

I. INTRODUCTION

The cloud object storage system, like Amazon S3 [1],

OpenStack Swift [2], plays an important role in modern web-

based applications and generally stores and retrieves millions

or even billions of diverse data objects (also called blobs),

including photos, audios, videos, documents, etc.

We build a queueing-theory based performance model for

the cloud object storage system, which uses event-driven

concurrency architecture (e.g. one process handles multiple

transactions in time-division multiplexing manner with an

event loop using epoll/poll/select function). The event-driven

architecture has been widely adopted by cloud object storage

systems (detailed in Section II). Different from existing

analytic-based models [3]–[6] that predict the average per-

formance metrics (e.g. throughput, mean response latency),

our model predicts the percentile of requests meeting SLA

(requirement of response latency), e.g. 95% of the requests

could be responded in at most 100 ms. The response latency

percentile is superior to the average metrics in the context

of the cloud object storage system for the following reasons.

First, the response latency is a key performance metric for

cloud object storage systems due to having a great impact

* Corresponding author: Dan Feng (dfeng@hust.edu.cn).

on user experiences, which are closely related to revenues.

Second, even 1% of traffic corresponds to a significant

volume of user requests for cloud object storage systems [7].

Considered the large volume of data objects and the long

tail distribution of data accessing [8], [9], the cost-efficiency

is one of the main concerns for cloud object storage systems.

And a validated performance model of the cloud object

storage system, which is the basis of capacity planning, plays

an important role in achieving the cost-efficiency. Capacity
Planning determines the number of resources needed for

the system with workload anticipation and service level

agreement (SLA). Besides the initial deployment, cloud

providers also need to perform capacity planning when-

ever cluster expansion occurs. The ever-growing number

of blobs in the cloud object storage system [10] magnifies

the necessity of cluster expansion. In addition to capacity

planning, a simple yet accurate performance model of the

cloud object storage system is also important for performing

the “what-if” analysis (the process of changing the inputs

to see how those changes will affect the outcomes) for the

following applications. 1). Overload Control, which enables

the systems to turn away excess requests during transient

overloads; 2). Bottleneck Identification, which locates the

performance bottleneck from thousands or hundreds of de-

vices; 3). Elastic Storage, which dynamically powers on and

powers off storage nodes in reaction to workloads for energy

savings or operating cost savings. And the system should

meet the performance requirements at the same time.

Modeling of multi-tiered Web applications [3]–[6] and

storage systems [11]–[13] is well studied. However, extend-

ing these models to the scenarios of the cloud object storage

system is nontrivial due to the following reasons. 1). Diverse
Disk Operations. At the backend server of the cloud object

storage system, serving a request involves several kinds of

operations, including index lookup, metadata read, and data

read. The index is used to locating the data object on the

storage device, e.g. inodes of the local file system. And the

metadata is the attributes of the data object, e.g. checksum,

createtime, user-defined attributes, etc. These indexes and

metadata are stored in the same storage device along with the

corresponding data objects. However, cost sensitive cloud

providers prefer not providing “enough” memory for caching

the indexes and metadata at backend servers [8] (detailed in
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Section II). Hence, the operations, like index lookup and

metadata read, should be modeled, due to having a possi-

bility of accessing disks. Moreover, these diverse operations

have different performance characteristics. Models targeting

other usage scenarios fail to deal with this complexity. 2).

Data Chunking. The event-driven architecture uses the First

Come First Serve (FCFS) queue to schedule operations.

Hence, in order to prevent the system from being blocked

by the operations that last a long time (e.g. the large data

read), the cloud object storage system reads and transmits

the data chunk by chunk in the context of event-driven

architecture, instead of reading and transmitting all of the

data at once. After having started the transmission of a data

chunk, the system would then perform the next operation,

which belongs to a different request, in the FCFS queue.

As a result, the cloud object storage system processes the

different requests in an interleaving manner (detailed in

Section III-B). Models targeting other systems fail to address

this particular scenario of the cloud object storage system.

3). Waiting Time for Being Accept()-ed. The model has to

quantify the waiting time of requests for being accept()-ed at

the backend servers. Accept() is a socket API function. The

server uses accept() function to initialize the connection for

a request. And the request has to wait in the connection pool

before being accept()-ed by the server. The waiting time has

a significant impact on response latency of the cloud object

storage system. Tim Brecht et al. [14] first study this issue

by comparing the throughput and average response latency

of different accept schemes. However, to the best of our

knowledge, there is no quantitative analytics on the waiting

time for being accept()-ed.

The focus of this paper is the design of an analytic-

based model that can capture the impact of the factors

mentioned above. It is worth to mention that our model

requires some benchmarking based parameters (detailed in

Section IV). However, the benchmarking in our model is

independent to workloads, which makes our model differ

from simulation-based models. Workloads is always a key

factor for benchmarking in the simulation-based models,

which makes the simulation-based models vulnerable to the

changes of workloads.

We evaluate our model with an OpenStack Swift testbed

by replaying a real-world trace (accessing trace of media

objects from Wikipedia [15]). In a variety of scenarios, the

prediction error of our model is 4.44% on average.

In summary, our contributions include:

1). The Abstraction of Union Operation: We build

a queueing-theory based performance model for the cloud

object storage system. The model packs complicated oper-

ations in request processing into queueing-theory friendly

operations (the union operation). This abstraction compre-

hensively leverages caching, multiple data chunks, different

types of disk operations, and queue discipline of event-

driven architecture, which fully meets the needs of the

overall model.

2). Modeling the Waiting Time for Being Accept()-ed:

We explore and exploit the fact that the requests waiting for

being accept()-ed at the backend servers may introduce a

significant impact on response latency of the cloud object

storage system. Furthermore, we also provide the quanti-

tative analytics by revealing the relationship between the

waiting time for being accept()-ed and the status of request

processing queues.

3). Prototype Implementation and Evaluation: We

implement all components of our model based on OpenStack

Swift and evaluate the accuracy of our model using real-

world trace in various scenarios. And our implementation

is open-source and available from https://github.com/ysu-

hust/cosmodel.

II. BACKGROUND

The cloud object storage system is a two-tiered web ap-

plication, as shown in Fig. 3. The servers in the frontend tier

are responsible for routing requests to their corresponding

storage devices, and the servers in the backend tier are

responsible for managing storage devices and storing data

objects. And each storage device has dedicated process(es)

for handling its corresponding requests at the backend server.

The process of a storage device perform the following

operations in sequence for handling a request, 1). locating

the data object on the storage device (index lookup); 2). get

the metadata (metadata read), 3). read the data by a chunk

(data read). For the systems exploiting local file system for

managing data objects at backend servers, e.g. OpenStack

Swift, the specific operations for the process of a storage

device are 1). open the file (index lookup), 2). read the

extended attributes of the file (metadata read), 3). read the

file by a chunk (data read).

In the context of saving the TCO (Total Cost of Owner-

ship), the cloud providers prefer the cheap storage device

of large capacity (e.g. HDD) rather than the expensive

storage device of high performance (e.g. SSD) because

the cloud object storage system needs capacity more than

performance. For example, in the OpenStack Swift cluster

of Wikipedia [16], the total consumed storage capacity is

about 670TB and the maximum aggregated throughput of

the backend tier last year is only about 1.2 GB/s. And the

response latency of HDD disk is in milliseconds, which is

sufficient for cloud object storage systems. So, production

systems [8], [10], [17] commonly store data in cheap HDD

disks, instead of much more expensive SSD disks (a 2TB

low-end SSD drive costs about $500, 10 times the 2TB

HDD drive). Furthermore, in order to reduce the TCO, cost

sensitive cloud providers also prefer not providing “enough”

memory for caching the Index and Metadata (I&M) at the

backend servers [8]. And the majority of data objects are of

small size [8], [10], [18], [19] in production environments.

Suppose that the average size of data objects is about
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50KB [10], [18], and the average size of I&M of data objects

is about 1KB altogether [18]. There are about 20GB I&M for

each 1TB data in this scenario. And it is not cost-effective

to cache all these I&M in memory. As a result, while

processing a request at the backend tier, all of the operations

with diverse performance characteristics, e.g. index lookup,

metadata read, and data read, may access HDD disks due to

the long tail distribution of data accessing [8], [9]. These

specificities of the cloud object storage system introduce

new challenges for modeling. The methods of reducing the

size of the indexes have been proposed [8], [10] so that the

majority of the index can be cached in memory. However,

systems without such optimization, e.g. OpenStack Swift,

are still widely deployed in production environments [17],

[18], [20] due to being reliable and mature. And the system

with such optimization is only a special case (index lookup

rarely accesses the disks) of the system addressed by our

model.

The thread-per-connection and the event-driven architec-

tures are the main strategies for handling concurrency for

cloud object storage systems. And this paper concentrates

on modeling behaviors of event-driven architecture because

the event-driven architecture is widely adopted in many

famous cloud object storage systems (like OpenStack Swift,

Ceph) and production environments [20], [21]. Moreover,

the event-driven architecture is superior to the thread-per-

connection architecture in both throughput and tail response

latency [22].

III. CLOUD OBJECT STORAGE SYSTEM MODELING

In this section, we present the queueing-theory based

model for the cloud object storage system along with the

assumptions for the model.

A. Assumptions for Modeling

We build the model under the following assumptions.

1). Poisson arrival. The model assumes Poisson arrival

of requests for all the cases studied. For scale-out work-

loads, Poisson process is considered a good model, which

approximates the real arrival process with reasonably small

errors [23]. 2). Read heavy workloads. The model does

not consider WRITE and DELETE requests. The workloads

for cloud object storage systems are read dominant [8],

[10], [17], and the data objects are written once, read

often, never modified and rarely deleted. For example, read

traffic is > 99% in Wikipedia OpenStack Swift cluster [17],

> 95% in LinkedIn Ambry [10], and > 98% in Facebook

Haystack [8], etc. 3). Sufficient resources of computa-
tion and network. Resources of network and computation

are commonly sufficient in cloud object storage systems.

Take the OpenStack Swift cluster of Wikipedia [17] as an

example. In the recent one year, the maximum aggregate

arriving rate of requests is under 2000 requests per second,

and for any single backend server, the throughput is only

Figure 1. Queue of a storage device (single process per storage device)

about 20 MB/s for most of the time and about 50 MB/s for

the maximum. At the same time, a 2.4GHz CPU core could

perform 25 Million instructions per second and the 1Gbps

Ethernet provides about 100 MB/s network bandwidth. 4).

Steady state. Cloud object storage systems commonly work

in the steady state due to the stable workloads. For example,

it takes about 10 hours for the request arriving rate to

increase from 700 requests per second to 1500 requests per

second in the OpenStack Swift cluster of Wikipedia [17].

5). Normal status. The model does not consider the impact

of timeouts, retries, and the software limits (e.g. system

connection pool size, maximum concurrency level, etc).

Because there would be a lot of SLA violations when such

software mechanisms and limitations dominate the system

performance. Instead of accurate performance metrics, it is

enough to know that the system does not perform well in

such situations.

B. Performance Modeling at Backend Tier

When a request arrives at the backend tier, the request en-

ters one of the request processing queues of the correspond-

ing storage device. Each storage device has one or multiple

queues determined by the number of processes dedicated to

the storage device. We first build the performance model

for the scenario of one queue and then extend the model to

the scenario of multiple queues. Suppose that the number of

queues for one storage device is Nbe.

When Nbe = 1: Serving for a request involves performing

the following operations in sequence at backend servers,

request parsing, index lookup, metadata read, and data read.

As a result, the request processing queue turns into an

operation queue filled by diverse operations. The left side

queue in Fig. 1 is the operation queue, and we observe that

the process performs the operations of different requests in

an interleaving manner. It is because the process reads and

transmits data chunks one by one, and performs network

I/O asynchronously. After having started sending a data

chunk to the frontend tier, the process switches to deal with

other requests instead of waiting for the data transmission to

complete to send another data chunk. In order to represent

the series of different kinds of operations appearing in the

system, we pack the diverse operations of request parsing,

index lookup, metadata read, and data read, into one union

operation. And each union operation may contain operations
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of different requests. As a result, the original operation

queue is transformed into the queue of union operations,

which is shown as the right side queue in Fig. 1. With the

assumption of Poisson arrival (detailed in Section III-A), we

model the queue of union operations as an M/G/1 queue (a

queueing system of Poisson arrivals, generally distributed

service times, and a single server). To solve this model,

we have to find the service time distribution of the union

operation.

For a storage device, let r, rdata denote the arrival rate of

its requests and data read operations. rdata is determined by

r along with the chunk size and the size of data objects. And

these metrics are easy to be measured or calculated. With the

caching mechanism, index lookup, metadata read, and data

read can be served either from memory or disk. And the

mindex,mmeta,mdata denote the cache miss ratios of these

operations respectively. The indexd(t),metad(t), datad(t)
denote the probability density functions (pdf.) of laten-

cies while these operations are served from disk. And

we get the indexd(t),metad(t), datad(t) via benchmark-

ing (detailed in Section IV). The latency of memory is

negligible, and we therefore approximate it with 0. Let

parsebe(t), index(t),meta(t), data(t) represent the pdf. of

latencies for request parsing, index lookup, metadata read,

and data read respectively. Then we can write

index(t) = indexd(t)mindex + δ(t)(1−mindex),

meta(t) = metad(t)mmeta + δ(t)(1−mmeta),

data(t) = datad(t)mdata + δ(t)(1−mdata),

where, δ(t) is the DiracDelta function.

Consider a data read not following its corresponding

metadata read operation as the extra data read. It is safe

to assume that the arrivals of the extra data chunk reads of

different requests are independent, because they are issued

by different processes from the frontend tier [23]. In other

words, we could assume that the arrival of extra data

read follows Possion arrival. So, we could use the Poisson

distribution to model the amount of extra data reads in one

union operation. And the average number of extra data reads

in one union operation is p = rdata−r
r . In summary, the pdf.

and mean value of the service times for the union operation

are

Bbe(t) =
∞∑

j=0

[
pje−p

j!
(parsebe ∗ index∗meta∗dataj+1)(t)],

B̄be =
∞∑

j=0

[
pje−p

j!
( ¯parsebe+ ¯index+ ¯meta+(j+1) ¯data)],

Where, ¯parsebe, ¯index, ¯meta, ¯data are the average latencies

of request parsing, index lookup, metadata read and data read

respectively.

Figure 2. Queues of a storage device (Nbe processes per storage device)

Finally, we get the Laplace Transform of the waiting time

pdf. for the M/G/1 queue of union operations based on

Pollaczek-Khinchin formula [24].

L[Wbe](s) =
(1− B̄ber)s

rL[Bbe](s) + s− r

The process uses metadata to form the response headers

and starts responding a request after it gets the metadata

and the first data chunk. So the pdf. of response latencies at

backend tier are

Sbe(t) = (Wbe ∗ parsebe ∗ index ∗meta ∗ data)(t). (1)

When Nbe ∈ {2, 3, 4, 5...}: Fig. 2 displays the queueing

status for a storage device with multiple processes at the

backend server. When a request enters the system, one of

the Nbe processes accepts the request. Then the request turns

into a bunch of operations and enters the operation queue of

the corresponding process. Operations that cannot be served

from memory enter the operation queue at the disk. The

process will be blocked until the operation, which enters the

disk, completes. There is no ready-to-use solution to predict

the distribution of response latencies for such a queueing

network, as discussed in Section VI. And the solution for

Nbe = 1 cannot be directly applied here. To solve this

problem, we continue relying on the elegant abstraction

of union operation. And the key idea is to transform the

queueing network of Nbe > 1 to the queueing network of

Nbe = 1. To conduct such transformation, we treat the disk

response latency as “disk service time” for each process.

And then we only have to deal with one process similar to

Nbe = 1. The overall distribution of response latencies is the

same as the latency distribution of the one process scenario

because the processes are identical to each other.

There are at most Nbe operations in the disk queueing

system, and we hence use the M/G/1/K queue (M/G/1 queue

with K buffer) to model the disk queue, where K = Nbe.

However no closed-form solution exists for the sojourn

time (terminology in queueing theory, equals to response

latency) distribution of M/G/1/K queue. Considered that
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Figure 3. The request queues at the frontend servers

a lot of approximating approaches for solving M/G/1/K

queue are developed based on M/M/1/K queue [25], we use

M/M/1/K queue as the approximation for simplicity. The

accuracy of the approximation is acceptable according to our

evaluation shown in Section V-B. Moreover, J.M.Smith [25]

provides an analysis and evaluations on approximating

M/G/1/K queue using M/M/1/K queue. Other approximating

approaches would be also applicable for the model, on the

condition that the sojourn time pdf. of the approximation

has a closed-form Laplace Transform, which is needed in

the following calculations. We do not distinguish different

operations here because the different type operations mix

together in the disk queue. Suppose that the raw average

service time of disk is b, and the operation arriving rate at

disk is rdisk = mindexr+mmetar+mdatardata. The service

rate of disk is v = 1/b, utilization is u = rdiskb. According

to the M/M/1/K formula [24], The Laplace transform of the

the pdf., and the mean value of disk response latencies (or

the “disk service time” from the standpoint of one process)

are

L[SdiskN ](s) =
vP0

1− PK

(1− ( rdiskv+s )
K)

v − rdisk + s
,

¯SdiskN =
N̄

r(1− PK)
,

where, Pi = (1−u)ui

1−uK+1 , i = 0, ...,K is the probability of

system buffer state, N̄ = u(1−(K+1)uK+KuK+1)
(1−u)(1−uK+1)

.

Then we can calculate the distribution of response laten-

cies for a storage device at the backend tier as same as when

Nbe = 1, with the following Equations.

indexd(t) = metad(t) = datad(t) = SdiskN (t)
¯index = ¯meta = ¯data = ¯SdiskN

r = r/Nbe

C. Performance Modeling at Frontend Tier

The response latency for a request at the frontend tier

contains three main components: queueing latency in the

process at the frontend tier, waiting time for being accept()-

ed at the backend tier, and response latency of the storage

device at the backend tier.

Queueing latency at the frontend tier: In the frontend

tier of homogeneous servers, the processes in the frontend

tier is identical to each other. So, the distribution of over-

all queueing latencies is the same as that of any single

(a) before accept() (b) after accept()
Figure 4. Waiting time for being accept()-ed

process. And the frontend tier of heterogeneous servers

can be divided into several sets of homogeneous servers,

and the distribution of queueing latencies can be calculated

separately. Fig. 3 shows the queues of different processes in

the frontend tier. Suppose that there are Nfe frontend tier

processes, and the requests arriving rate is r. So, arriving

rate for one process Pi at the frontend tier is ri =
r

Nfe
, and

parsefe(t) is the distribution of request parsing time for

processes in the frontend tier. We could also use the M/G/1

queue to model the queue of one process in the frontend

tier [23]. Then, the Laplace transform of queueing latency

pdf. is

L[Sq](s) =
(1− ¯parseferi)sL[parsefe](s)

riL[parsefe](s) + s− ri
.

Waiting time for being accept()-ed: Sending a request

from the frontend tier to the backend tier involves two steps

in sequence, building a TCP connection and sending an

HTTP request. However, the connecting requests from the

frontend tier have to wait in the connection pool before

being accept()-ed by a process for the storage device at the

backend server. Since the accept() operation is scheduled as

identical as normal operations for processing requests, the

accept() operation also has to wait in the request processing

queue. Fig. 4a shows the situation before the connecting

requests of “f” and “g” being accept()-ed. They have to stay

in the connection pool until the process finished processing

the HTTP requests of “a”, “b”, and “c”. Fig. 4b shows the

situation after the connecting requests of “f” and “g” are

accept()-ed. After being accept()-ed, the frontend servers

will send the HTTP requests of “f” and “g” to the back-

end server according to their queueing statuses. Given an

accept() operation, its life begins at the last time when the

point requests in the connection pool are accept()-ed. And

its life ends at the time point when the requests are accept()-

ed. The arrival of an accept() operation refers to the accept()

operation being appended to the tail of requests processing

queue and starting to wait for being performed. Assuming

that the arrival of accept() operations follow the Poisson

process. According to the PASTA theorem [26], the lifetime

pdf. of accept() operations A(t) is the same as the waiting

time pdf. of the request processing queue at the backend

server. The connecting requests may arrive at any time point
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during the lifetime of an accept() operation. Suppose that the

waiting time pdf. of connecting requests for being accept()-

ed is Wa(t). Then Wa(t) =
∫
x≥t

(A(x)x−t
x )dx. In our

model, we use an approximation of Wa(t), which assumes

that the waiting time equal to the accept() lifetime for all

of the connecting requests that arrive during the life of the

accept() operation. So the pdf. of waiting time for being

accept()-ed is

Wa(t) = A(t) = Wbe(t).

Our approximation overestimates the waiting time for the

connecting requests, which arrive after the life of the accept()

having already started. This overestimation increases as the

length of requests processing queue increasing. We evaluate

the accuracy of the model of waiting time for being accept()-

ed along with its approximation in Section V-C.

In summary, at the frontend tier, the response latency pdf.

of a storage device can be computed by combining (using

convolution) all 3 latency components: queueing latency at

the frontend tier (Sq), waiting time for being accept()-ed at

the backend tier (Wa), and response latency at the backend

tier (Sbe). And the Sbe is from Section III-B.

Sfe(t) = (Sq ∗Wa ∗ Sbe)(t) (2)

D. System Modeling

Suppose the set of the storage devices is D. Given a

storage device Dj , Dj ∈ D, the cumulative distribution

function (cdf.) of corresponding response latencies at the

frontend tier is Sj(t). The requests arriving rate for Dj is

rj . Since we have already known the distribution of response

latencies for each storage device, we could calculate the cdf.

of response latencies for the overall system (S(t)) with the

following formula.

S(t) =

∑
Dj∈D[rjSj(t)]∑

Dj∈D rj
(3)

IV. ESTIMATING THE MODEL PARAMETERS

In order to predict the distribution of response latencies,

our model requires several parameters as inputs. The various

parameters of our model fall into two categories: device

performance properties and system online metrics. In this

section, we describe the methods of estimating these various

parameters required by our model.

A. Device Performance Properties

The distribution of disk service times. We assume

random accessing of data objects for a storage device

because the requests come from millions of users and the

data objects are randomly distributed among storage devices

based on hashing. Hence, we benchmark the disk with the

following steps. First, we fill the disk with data objects;

Second, we sequentially access (perform the operations of

index lookup, metadata read, and data read) a number of

10 20 30 40 50 60 70 80

Service Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0
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rc
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e

gamma_index_lookup
recorded_index_lookup
gamma_meta_read
recorded_meta_read
gamma_data_read
recorded_data_read

Figure 5. The results of fitting the disk service times

randomly selected data objects, and record the latency for

each operation. We also limit the max amount of outstanding

operation to 1 to avoid operations queueing. Finally, we use

the distribution fitting to get the distribution of disk service

times for different operations. Suppose the f(t) is the pdf. of

the distribution, which is used to fit the recorded latencies.

The Laplace Transform of f(t) (L[f(t)]) or an analytical

approximation of the L[f(t)] should exist, and the mean

value of the distribution should exist as well, because our

model needs them for performing the calculations as shown

in Section III. Moreover, the mixture of distributions could

be used for fitting the recorded latencies, as long as the

mixture satisfies the above requirements. For our testbed,

we test 4 distributions for fitting, including the Exponential,

Degenerate, Normal, and Gamma distribution. The Gamma

distribution demonstrates the best result among them. And

Fig. 5 shows the fitting results with Gamma distribution. The

Gamma distribution is defined by two parameters k (shape

parameter) and l (rate parameter), the Laplace Transform

of its pdf. is L[B](s) = lk(s + l)−k, and the mean value

is b = k
l . Suppose the bi, bm, bd are the average disk

service times of index lookup, metadata read, and data read

respectively, we assume that the proportion of bi, bm, bd
remains in the context of fluctuating disk service times.

The distribution of request parsing latencies. In order

to obtain the raw latency of request parsing, we benchmark

the cloud object storage system following two principles:

avoiding accessing disks and avoiding requests queueing.

To satisfy the two restrictions, we generate a close loop

workload, with which all requests read the same data object

during benchmarking. So, the data object could be served

from memory due to being cached. We also limit the

max amount of outstanding requests to 1 to avoid requests

queueing. We record the following metrics for each request:

Dfp (duration between a frontend tier process receive a

request and start responding) and Dbp (duration between a

backend tier process receive a request and start responding).

The network latency of sending data from backend tier to

frontend tier is Dnet =
Data Size

Network Bandwidth . For one request,

its parsing latency at the backend tier is Dbp, and its parsing

latency at frontend tier is Dfp −Dbp −Dnet. Similarly, we

use the distribution fitting to get the distribution of request

parsing latencies. In our testbed, the request parsing latency

is almost constant (Degenerate distribution).
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B. System Online Metrics

Generally, the arriving rate of requests are available from

the monitoring software of storage systems. And it is also

easy to obtain the arriving rate of data read operations by

counting data chunks. In terms of cache miss ratios, we

use latency threshold to distinguish cache hit and miss.

Thanks to the huge speed gap between memory and disk,

the approach of latency threshold could provide an accurate

estimation of cache miss ratio. And in our testbed, we use

0.015ms as the latency threshold. Linux only provides the

summary value for disk service time. And in order to obtain

the average service times of different type operations, we

exploit the proportion of service times from Section IV-A.

Suppose that r is the request arriving rate, and rd is

the arriving rates for data read operations. Suppose the

overall service time is b, and bi, bm, bd are the service

times for index lookup, metadata read, and data read re-

spectively. mi,mm,md are the corresponding cache miss

ratios. pi, pm, pd are the corresponding proportions. So we

can obtain bi, bm, bd by solving the following equations.

bi/pi = bm/pm = bd/pd

mibir +mmbmr +mdbdrd = (mir +mmr +mdrd)b

V. EVALUATION

In this section, we present our experimental setup and

evaluate our model with following goals.

1). Evaluate the accuracy of our model for diverse SLAs,

workloads, and system configurations.

2). Evaluate the contributions of the core components (the

abstraction of union operation, the model of waiting time for

being accept()-ed) to the overall accuracy of our model.

A. Experimental Setup

Our testbed is a 7-nodes OpenStack Swift cluster, in-

cluding 3 frontend servers and 4 backend servers, and we

use 1Gbps Ethernet to connect the frontend and backend

servers. There is a 1TB HDD disk attached to each backend

server. Data objects are mapped to 1,024 partitions based

on hashing, and each partition has 3 replicas. OpenStack

Swift evenly distributes all replicas among the 4 disks (the

replicas of the same partition are placed on different disks).

There are 7 extra nodes serving as workload generators. The

workload generators and frontend servers are connected via

40Gbps Infiniband. Such configuration prevents workload

generators from being the bottleneck of the whole system.

Each node has four 2.4GHz Intel E5620 quad-core CPUs,

24GB of memory, and runs Centos 7. Except that we limit

the memory of the backend servers to 5GB. And we perform

such limitation to imitate the production environments of

the cloud object storage system, in which backend servers

do not have sufficient memory space for serving as a cache

(e.g. in the OpenStack Swift cluster of Wikipedia, the RAM-

to-disk ratios of the backend server range from about 1:300

to 1:800 [16]).

We generate the workload based on a 50 hours trace

of media objects accessing from Wikipedia. This trace

is extracted from the trace provided along with wik-

ibench [15] (the URL of media request contains “up-

load.wikimedia.org”). However, the trace does not provide

any information on object size. We determine the size of

each media object by directly requesting the object from

Wikipedia. And about 45% of the objects no longer exist

in Wikipedia, and so the requests for these objects are

overlooked in our workload. The average size of remaining

objects is about 32KB. The average size of requests is about

10KB.

We use the SwiftStack Benchmark Suite (ssbench) [27] as

our workload generator. Ssbench contains multiple workers

(as OpenStack Swift clients, performing requests) and one

master (generating requests and distributing them among the

workers). Load balancing is a built-in feature of ssbench,

which sends each request to a random frontend server, so

we do not use dedicated load balancers in our system.

We modify ssbench to support replaying trace and issuing

requests in an open loop manner. We measure the requests

latency at the frontend server instead of the ssbench worker.

Because, in practice, the latency introduced by clients is out

of the control from the perspective of a cloud object storage

system (the client could be any laptop behind Internet),

and our model focuses on predicting the response latency

of the cloud object storage system. We control the rate of

generating requests at the ssbench master.

B. The Accuracy of the Model

We conduct a set of experiments to evaluate the accuracy

of our model on predicting the response latency percentiles

of cloud object storage systems. We perform the evaluation

in two scenarios, S1 and S16. At the backend tier, we use

the configuration of 1 process per storage device for the

scenario S1 and the configuration of 16 processes per storage

device for the scenario S16. For each scenario, we carry

out the experiments with 3 different SLAs (response latency

requirements of 10ms, 50ms, and 100ms). We conduct sep-

arate experiments to validate the model for different SLAs

in the same scenario. In each experiment, the system counts

the number of requests that meet or violate the SLA for each

storage device at both frontend and backend tiers for each

minute. We calculate and predict the percentile of requests

meeting SLA using the average value of 5 minutes of the

same arriving rate of requests. As discussed in Section III-A,

we only analyze the prediction results when there is no

timeout and retry. We do not perform a direct comparison

with existing models due to the following reasons. 1). Ex-

isting models [3]–[6], [11] predict the average performance

metrics rather than response latency percentiles; 2). Existing
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Figure 6. Prediction results of different SLAs for scenario S1 (single process per storage device). The x-axis shows the execution time.
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Figure 7. Prediction results of different SLAs for scenario S16 (16 processes per storage device). The x-axis shows the execution time.

models [28], [29] rely on simulation-based technique for

prediction; 3). Existing models [11]–[13] focus on modeling

different factors (e.g. data striping) in the system instead of

the factors addressed by our model.

We generate the workloads by changing the request

arriving rate of the trace described in Section V-A. In

order to control the arriving rate of requests, we change

the timestamp field of each request in the trace. With our

modification, the workload contains 3 phases: warmup phase
lasts 3 hours with a fixed arriving rate, transition phase
lasts 1 hour with a fixed arriving rate, and benchmarking
phase with a varying arriving rate and each arriving rate

lasts 5 minutes. The arrival of requests follows Poisson

process. We generate such synthetic workloads so that we

could experiment with a broader range of arriving rates,

which is not limited by the actual arriving rates of the trace.

The workloads are different for scenario S1 and S16 due

to different system configurations. During warmup phase,

the arriving rate is 300 requests per second for scenario S1
and 500 for scenario S16. The arriving rate is 10 requests

per second for both S1 and S16 during the transition phase.

During the benchmarking phase, the arriving rate starts at

10 requests per second and ends at 350 for S1 (600 for S16),

with the increase of 5.

Fig. 6 and Fig. 7 show the observed percentiles of requests

meeting SLAs (10ms, 50ms, 100ms), and the predicted

percentiles of our model for the scenario S1 and scenario

S16 respectively. And Fig. 6 and Fig. 7 also display the

prediction errors of our model (the difference between

predicted and observed percentiles) at the bottom of each

graph. In Fig. 6 and Fig. 7, the x-axis depicts the execution

time of the corresponding experiment, and the execution

time actually corresponds the arriving rate during the bench-

marking phase. The number of points is different in the

graphs of Fig. 6, so are the graphs in Fig. 7. The reason is

that timeouts do not occur at the exactly identical time point

in different experiments (randomness exists in the replica

choosing scheme of OpenStack Swift). For all figures in

Section V, we use identical scales of y-axis for prediction

errors to enable comparability.

For the scenario S1 (Fig. 6), we observe that the prediction

accuracy of our model decreases as the workload increases.

And the reasons are 1). the greater overestimation of Waiting

Time for being Accept()-ed (WTA) at higher loads due to the

longer request processing queue (detailed in Section III-C),

2). the greater overestimation of waiting time in Request

Processing Queue (RPQ) at higher workload. It takes longer

for the system to reach the steady state at higher workload

due to the exponentially increased expected length of RPQ.

And our model overestimates the length of RPQ for a

growing workload due to assuming a steady state system.

So, there is a greater overestimation of the length of RPQ at

higher loads. And the length of RPQ is positively correlated

with the waiting time in RPQ.

For the scenario S16 (Fig. 7), we observe that the predic-

tion errors are relatively larger than the prediction errors in

the scenario S1. The reason for lower accuracy is that there

exist systematic errors as we use M/M/1/K to approximate

M/G/1/K for calculating the distribution of disk response

latencies, when Nbe > 1 (discussed in Section III-B).

Moreover, while our model almost always underestimates

the percentiles of requests meeting SLA for the scenario S1,

it always overestimates the percentiles for the scenario S16.

It is because our model assumes that the requests of a storage

device are uniformly distributed among its corresponding

processes. And load imbalance occurs in practice, because
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Table I
THE SUMMARY OF PREDICTION ERRORS FOR OUR MODEL

Scenario SLA Best Case Worst Case Mean

S1
10ms 1.01% 3.82% 2.91%
50ms 0.86% 15.04% 3.47%
100ms 0.02% 11.70% 1.26%

S16
10ms 4.29% 16.61% 12.57%
50ms 1.48% 5.85% 4.48%
100ms 0.08% 7.94% 1.96%

each process may batch accept() requests or be blocked by

long processing requests. The load imbalance leads to the

increased response latencies and the decreased percentiles

of requests meeting SLA.

Table I summarizes the prediction errors (absolute value)

of our model for the different scenarios and SLAs. For all

cases, the average prediction error of our model is 4.44%

and the worst case error is 16.61%.

C. The Contribution of Core Components

We reveal the contributions of the core components to

the overall accuracy of our model by comparing our model

with two baseline models: ODOPR model and noWTA

model. First, the ODOPR model considers cache hit for

all index lookup, metadata read, and extra data read. The

ODOPR model imitates the existing models assuming no

more than One Disk Operation Per Request (ODOPR) at

storage servers. Second, the noWTA model considers that

there is no Waiting Time for being Accept()-ed (noWTA).

The noWTA model imitates the existing models not taking

the WTA into consideration.

The contribution of the abstraction of union operation:

Our model relies on the abstraction of union operation for

modeling diverse disk operations (index lookup, metadata

read, data read) and data chunking of event-driven archi-

tecture. Compared to the ODOPR model, which does not

consider these factors, our model reduce the average predic-

tion errors by 36% to 73% (relative percentage), Fig. 6 and

Fig. 7 show the prediction results of the ODOPR model and

our model.

The contribution of modeling waiting time for being
accept()-ed: Compared to the noWTA model, which does

not consider the WTA, our model reduces the average

prediction errors by 9% to 61% (relative percentage) for

different scenarios and SLAs, except the 10ms SLA in the

scenario S1. As a matter of fact, our model increases the

average prediction errors by 0.46% for the 10ms SLA in the

scenario S1. This is because the overestimation of the WTA

introduces more errors than overlooking the WTA. The 10ms

SLA is an extreme case, and less than 25% of requests return

within 10ms even under the lightest workload. It is worth

to mention that the WTA itself decreases in the scenario

S16 compared to the scenario S1. Because there are 16

processes accept()-ing connecting requests in the scenario

S16, 16 times the scenario S1. Fig. 6 and Fig. 7 show the

prediction results of the noWTA model and our model.

Table II
THE MEAN PREDICTION ERRORS OF DIFFERENT MODELS

Scenario SLA Our ODOPR noWTA
Model Model Model

SW1
10ms 2.91% 6.54% 2.45%
50ms 3.47% 9.41% 5.18%
100ms 1.26% 4.80% 3.26%

SW16
10ms 12.57% 30.74% 13.87%
50ms 4.48% 12.10% 5.69%
100ms 1.96% 3.11% 2.28%

Table II compares the mean prediction errors (absolute

value) of different models for different scenarios and SLAs.

VI. RELATED WORK

Queueing Network: General queue networks fail on mod-

eling the cloud object storage systems due to assuming that

successive response times of the queues in a path through

the network are independent. However, disk operations block

the request processing queue at the backend tier. As a

matter of fact, the cloud object storage system could be

modeled by Layered Queueing Network (LQN). In LQN, the

service time of upper layer queue is given by the response

time of a lower layer queue. However, there is no LQN

solver that calculates the distribution of response latencies

for the LQN using FCFS queueing discipline. The state-of-

the-art LQN solver DiffLQN [30] focus on calculating the

mean values, and Line [31] calculates the distribution of

response latencies for LQN using PS discipline. Some LQN

solvers support estimating response latency distribution with

simulation, which is high time consumption.

Multi-tiered Web Application Performance Modeling:

The early models, e.g. Yaksha [3], generally assume that

the applications are computation intensive, which makes

them fail to catch the performance characteristics of I/O

intensive cloud object storage systems. Different from our

model that predicts response latency percentiles, the recent

models generally predict the average performance metrics

(e.g. throughput, average response latency) for a particular

scenario. For example, Urgaonkar et al. [4] use closed

queueing networks to model session-based web applications,

Calheiros et al. [5] rely on queueing networks for modeling

applications running in virtualized environments, and Han

et al. [6] build a performance model for latency-critical

applications in the context of sharing resources with offline

batch jobs. Nguyen et al. [32] use the mean value and

variance of latencies to predict tail latency in the high load

region. However, we use important metrics, say workload

and cache miss ratio, to predict the distribution of response

latencies. Watson et al. [28] build a simulation-based model

for predicting the distribution of response latencies, and we

focus on building an analytic-based model.

Storage System Performance Modeling: The focuses of

modeling different types of storage systems are different.

Wu et al. [11] propose a general guideline of constructing

LQN for modeling the interaction of different components in

the distributed file system (e.g. HDFS). For parallel storage
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systems (e.g. Lustre, PVFS) and RAID (redundant array of

independent disks), performance models [12], [13] generally

exploit fork-join queue for modeling data striping, where an

IO request is split into several sub-requests of different stor-

age devices. Spotify also builds a performance model [29] to

predict the distribution of response latencies for their “cloud

object storage system”, which only works as a cache tier

of Amazon S3. However, their model is simulation-based

model due to relying on workload-dependent benchmarking

for prediction.

VII. CONCLUSION

In this paper, we present an analytical performance model

that predicts the percentile of requests meeting SLA for

the cloud object storage system using event-driven archi-

tecture. Our model addresses the complexity of diverse

disk operations being scheduled in an interleaving manner

at storage servers. Our model also quantifies the impact

of the waiting time for being accept()-ed on the response

latency of the system. We validate our model by replaying

a real-world trace against an OpenStack Swift cluster. Our

experiments demonstrated that our model faithfully captures

the performance of the cloud object storage system. More-

over, our model is available as open-source software from

https://github.com/ysu-hust/cosmodel.
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