
AWrite-efficient and Consistent Hashing Scheme for
Non-Volatile Memory

Xiaoyi Zhang, Dan Feng✉, Yu Hua, Jianxi Chen and Mandi Fu
Wuhan National Lab for Optoelectronics, Key Lab of Information Storage System (School of Computer Science and
Technology, Huazhong University of Science and Technology), Ministry of Education of China, Wuhan, China

✉Corresponding author: Dan Feng (dfeng@hust.edu.cn)
Email: {zhangxiaoyi, dfeng, csyhua, chenjx, mandi_fu}@hust.edu.cn

ABSTRACT
The development of non-volatile memory technologies (NVMs) has
attracted interest in designing data structures that are efficiently
adapted to NVMs. In this context, several NVM-friendly hashing
schemes have been proposed to reduce extra writes to NVMs, which
have asymmetric properties of reads and writes and limited write
endurance compared with traditional DRAM. However, these works
neither consider the cost of cacheline flush and memory fence nor
provide mechanisms to maintain data consistency in case of unex-
pected system failures. In this paper, we propose a write-efficient
and consistent hashing scheme, called group hashing. The basic
idea behind group hashing is to reduce the consistency cost while
guaranteeing data consistency in case of unexpected system fail-
ures. Our group hashing consists of two major contributions: (1) We
use 8-byte failure-atomic write to guarantee the data consistency,
which eliminates the duplicate copy writes to NVMs, thus reduc-
ing the consistency cost of the hash table structure. (2) In order
to improve CPU cache efficiency, our group hashing leverages a
novel technique, i.e., group sharing, which divides the hash table
into groups and deploys a contiguous memory space in each group
to deal with hash collisions, thus reducing CPU cache misses to
obtain higher performance in terms of request latency. We have im-
plemented group hashing and evaluated the performance by using
three real-world traces. Extensive experimental results demonstrate
that our group hashing achieves low request latency as well as high
CPU cache efficiency, compared with state-of-the-art NVM-based
hashing schemes.

CCS CONCEPTS
• Information systems→Data structures; Storage classmem-
ory; • Software and its engineering→Consistency; Software
performance;

KEYWORDS
Non-Volatile Memory, Hashing Scheme, Data Consistency, Perfor-
mance

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICPP 2018, August 13–16, 2018, Eugene, OR, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6510-9/18/08. . . $15.00
https://doi.org/10.1145/3225058.3225109

ACM Reference Format:
Xiaoyi Zhang, Dan Feng✉, Yu Hua, Jianxi Chen and Mandi Fu. 2018. A
Write-efficient and Consistent Hashing Scheme for Non-Volatile Memory.
In ICPP 2018: 47th International Conference on Parallel Processing, August
13–16, 2018, Eugene, OR, USA. ACM, New York, NY, USA, 10 pages. https:
//doi.org/10.1145/3225058.3225109

1 INTRODUCTION
Over the past few decades, DRAM has been used as the main mem-
ory of computer systems. However, it is becoming insufficient due
to its increasing leakage power dissipation and limited scalability
[31]. To address this problem, several non-volatile memory (NVM)
technologies emerge, such as phase-change memory (PCM) [14], re-
sistive random access memory (ReRAM) [18], spin-transfer torque
magnetic RAM (STT-MRAM) [12] and 3D-XPoint [11]. These new
types of memory combine the non-volatility property of traditional
HDDswith the low access latency and byte-addressability of DRAM.
These desirable characteristics allow NVMs to be directly placed on
the processor’s memory bus along with traditional DRAM [30], or
even replace DRAM in the future [16]. With NVM, applications can
directly manipulate persistent data in main memory by using fast
load/store instructions without the need to access time-consuming
block-based storage devices [30].

The rapid development of NVMs has attracted interest in design-
ing data structures that are efficiently adapted to NVMs. Although
NVMs naturally provide non-volatility property, it is challenging
for data structures in NVM to ensure consistency in case of un-
expected system crashes or power failures [23]. Specifically, if a
system crash occurs during an update to a data structure stored in
NVM, the data structure may be left in a corrupted state due to par-
tially updating. Different from the traditional block-based storage
device, the failure atomicity unit of NVM is generally expected to be
8 bytes [6]. For updates with larger size than the failure atomicity
unit, duplicate copy techniques, such as logging and copy-on-write
(CoW) are usually employed to guarantee consistency [29]. How-
ever, these techniques incur a large amount of extra writes and
require the memory writes to be in a correct order [30]. Unfortu-
nately, modern processors and their caching hierarchies usually
reorder memory write operations for performance reasons. In order
to maintain memory writes to NVM in a certain order, mfence and
clflush instructions are provided by modern CPUs. Mfence is used
to enforce the order between memory writes and clflush is used
to explicitly flush a CPU cacheline to memory devices. However,
these instructions have been proved to be a major reason of perfor-
mance degradation [28, 32], and the overhead of these instructions
is proportional to the amount of NVM writes [33].

https://doi.org/10.1145/3225058.3225109
https://doi.org/10.1145/3225058.3225109
https://doi.org/10.1145/3225058.3225109

Hashing-based data structures are widely used in applications
[1, 7, 8] due to their constant-scale lookup time complexity. Re-
cently, several hashing-based structures for NVM such as PFHT
[5] and path hashing [34] have been proposed. These structures
focus on reducing the extra writes to NVM, which has longer write
latency than read [19] and limited write endurance [15]. However,
these NVM-friendly hashing structures do not consider the cost of
cacheline flush and memory fence when writing to NVM through
memory bus. More importantly, these hashing structures do not
provide mechanisms to maintain data consistency in case of unex-
pected system failures.

To this end, we present a write-efficient and consistent hashing
scheme, called group hashing. The basic idea behind group hashing
is to reduce the consistency cost while guaranteeing data consis-
tency in case of unexpected system failures. In order to reduce the
consistency cost, we use 8-byte failure-atomic write to guarantee
the consistency of the hashing structure, which eliminates duplicate
copy writes to NVM during insert and delete operations.

Furthermore, our group hashing includes a novel solution, i.e.,
group sharing, to deal with hash collisions. Specifically, group hash-
ing decouples storage cells into two levels. The cells in the first
level are addressable by the hash function. The cells in the second
level are non-addressable and used to deal with collisions. Group
hashing divides the cells in both levels into many groups, the cells
in each group are stored in the contiguous memory space. The total
group amount in each level is equal. Each group in the first level
matches a group in the second level with the same group number.
The collision resolution cells in the group of the second level are
shared by the matched group in the first level. When hash collisions
occur in the first level, the conflicting items can be stored in the
empty cells of the matched group in the second level. As the cells in
a group are stored in the contiguous memory address, group hash-
ing can improve the CPU cache efficiency, thus obtaining higher
performance in terms of request latency. The main contributions
of this paper can be summarized as follows:

• We quantify the consistency cost of existing hashing struc-
tures used in NVMs, and present two insightful observations:
(1) duplicate copy techniques (e.g., logging) incur a large
amount of extra writes which significantly deteriorate the
insertion and deletion performance; (2) keeping the memory
space continuity of hashing cells for dealing with collisions
can reduce CPU cache misses and improve the performance
in terms of request latency.

• Based on the observations, we present our group hashing,
(1) uses 8-byte failure-atomic write to guarantee the con-
sistency of the hashing structure, which does not require
any duplicate copies for logging or CoW; (2) leverages group
sharing scheme, which divides the hash table into groups
and deploys a contiguous memory space in each group to
deal with hash collisions, thus reducing CPU cache misses
to improve the performance in terms of request latency.

• We have implemented group hashing and evaluated the per-
formance under three real-world traces. The experimental
results demonstrate that our group hashing achieves low re-
quest latency as well as high CPU cache efficiency, compared
with state-of-the-art NVM-based hashing schemes.

The rest of this paper is organized as follows. Section 2 provides
the background and motivation. Section 3 describes the design of
group hashing. Experimental results are presented in Section 4.
Related work is discussed Section 5 and we conclude the paper in
Section 6.

2 BACKGROUND AND MOTIVATION
2.1 Non-volatile Memory Technologies
As traditional DRAM has the problem of increasing leakage power
dissipation and limited scalability, the emerging non-volatile mem-
ory technologies such as PCM, STT-MRAM, ReRAM and 3D-XPoint,
have attracted more and more attentions in both academia and in-
dustry [19]. NVMs synergize the characteristics of non-volatility
as HDDs, and low access latency and byte-addressability as DRAM.
Such characteristics allowNVMs to complement or substitute DRAM
as the main memory in the future computer systems [30].

Table 1: Characteristics of Different Memory Techniques

Techniques DRAM PCM ReRAM STT-MRAM
Read speed(ns) 10 20∼85 10∼20 5∼15
Write speed(ns) 10 150∼1000 100 10∼30
Scalability(nm) 40 5 11 32
Endurance 1018 108 1010 1012∼1015

Table 1 shows the key attributes and features of different memory
technologies. From the table we observe that, NVMs have longer
write latency than read and limited write endurance. Reducing the
amount of writes to NVMs can alleviate these two limitations at the
same time. To extend the lifetime of NVMs, wear-leveling schemes
are used in NVM-based systems [9]. As most of the wear-leveling
schemes are built on device level, we assume such wear leveling
schemes exist and do not address it in our group hashing. Actually,
our design of eliminating duplicate copy writes to NVMs can be
combined with wear-leveling schemes to further lengthen NVM’s
lifetime.

2.2 Data Consistency for Hashing Schemes in
NVM

When NVM is directly attached to memory bus, the volatility-
persistence boundary has moved to the interface between the
volatile CPU cache and persistent NVM [17]. Data consistency, i.e.,
data correctness after recovering from unexpected failures, must be
ensured at the memory level in NVM-based storage systems [29].
Different from block-based storage devices, the failure atomicity
unit of NVM is generally expected to be 8 bytes [6, 10, 13]. For
updates with larger size, the order of the memory writes must be
executed carefully [30]. Unfortunately, memory write operations
may be reordered by CPU or memory controller for performance
reasons. In order to maintain memory writes to NVM in a certain
order, CPUs provide instructions such as mfence and clflush. How-
ever, these instructions have been proved to be a major reason of
performance degradation [28, 32].

Hashing-based data structures are widely used in main memory
applications [1, 7, 8] due to their constant-scale lookup time com-
plexity. When designing hash-based data structures for NVMs, data

consistency is another key factor apart from efficiently addressing
hash collisions. Figure 1 gives an example of potential inconsisten-
cies when a system failure1 occurs during an insertion to a hashing
table in NVM. According to the pseudo-codes in the figure, the
insertion first inserts the key-value pair to an empty hashing entry,
then increments the count field. The figure shows three possible
inconsistent cases. In the first case, the system failure occurs after
the insertion of the key-value pair and before the increment of the
count field. In the second case, the increment of count reaches NVM
first due to the reordering memory writes, and the system failure
occurs after the increment of count and before the insertion of the
key-value pair. The value of count is incorrect in these two cases.
In the third case, the system failure occurs in the middle of the
insertion of the key-value pair, the value field is partially inserted.
The above three cases lead to inconsistent states after recovering
from the system failure.

Figure 1: An example of potential inconsistencies upon sys-
tem failure.

To avoid the second inconsistent case, current processors pro-
vide instructions such as mfence and clflush to ensure the order of
memory writes. However, these instructions incur significant over-
head, which is proportional to the amount of NVM writes [28, 32].
To avoid the first and the third inconsistent case, duplicate copy
techniques such as logging and copy-on-write (CoW) are required.
However, these techniques incur a large amount of extra writes,
which significantly degrade the performance [29, 32]. Therefore, it
is important to reduce the consistency cost while designing NVM-
based data structures.

2.3 Motivation
In order to quantify the consistency cost, we use the random in-
teger trace [26, 34] to measure the average request latency and
CPU cache miss number in (a) linear probing [24], a traditional
hashing scheme used in DRAM, with and without logging (referred
as Linear-L and Linear), (b) PFHT [5], a cuckoo hashing [22] variant
with larger buckets and at most one displacement during insert op-
erations, with and without logging (referred as PFHT-L and PFHT),
(c) path hashing [34], a recently proposed NVM-friendly hashing
scheme with the technique of path sharing, with and without log-
ging (referred as Path-L and Path). The load factor of the hashing
schemes is set to 0.5. The size of a hash cell in random integer
trace is 16 bytes. The details about the experimental environment
1In this paper, we focus on failures which can be recovered by utilizing data in NVM.
Other types of failures such as hardware errors, which require additional mechanisms
(e.g., error correction codes), are beyond the scope of this paper.

are described in Section 4.1. Note that only insertion and deletion
requests have NVM writes. As shown in Figure 2 (a), for insert and
delete operations, Linear-L, PFHT-L and Path-L are 1.95X slower on
average than their no logging versions. The reason is that logging
mechanism requires duplicate copy writes, which incur a large
amount of extra cacheline flush (i.e., clflush) operations.

Note that clflush instruction flushes a cacheline by explicitly
invalidating it, which will incur a cache miss when reading the
same memory address later. We use the performance counters in
the modern processors, through the PAPI library [20], to count
the L3 cache misses during insert, query and delete operations. As
shown in Figure 2 (b), for insert and delete operations, Linear-L,
PFHT-L and Path-L produce 2.16X more L3 cache misses on average
than their no logging versions, which can explain the performance
drop in Figure 2 (a).

Figure 2: The consistency cost of different hashing schemes.

Besides the extra writes caused by the logging mechanism, CPU
cache efficiency also has a significant impact on request perfor-
mance including query latency. From Figure 2 (a), we observe that,
although linear hashing has poor deletion performance due to the
extra writes caused by the complicated delete process, linear hash-
ing has better insert and query performance than PFHT and path
hashing in both logging and no logging versions. The reason is that
when hash collisions occur in linear hashing, the closest contigu-
ous cells are searched and checked, the collision resolution cells
are in the contiguous memory address. Actually, most key-value
stores, such as memcached and MemC3, are dominated by small
items whose sizes are smaller than a cacheline size [1, 7]. For hash
cells in the contiguous memory address, a single memory access
can prefetch multiple cells belonging to the same cacheline, which
reduces the number of memory access and L3 cache miss to obtain
higher performance. In path hashing, there are two hashing func-
tions, and the cells in each collision addressing path (i.e., path in
the binary tree) are not contiguous in memory space. In this case,
each cell in the path requires one memory access, which increases

the number of memory access and L3 cache miss. PFHT also has
two hashing functions, but the cells in each bucket are contiguous
in memory address, thus PFHT performs better than path hashing
but worse than linear hashing.

In summary, we present two insightful observations: (1) du-
plicate copy techniques (e.g., logging) incur a large amount
of extra writes which significantly deteriorate the insertion
and deletion performance; (2) keeping the memory space
continuity of hashing cells for dealing with collisions can
reduce CPU cache misses and improve the performance in
terms of request latency.

3 THE DESIGN OF GROUP HASHING
In this section, we present group hashing, a consistent and write-
efficient hashing scheme for NVMs.

3.1 Design Goals
Based on the above observations, our design goals are below:

Failure-atomic write to commit insert and delete opera-
tions. Since duplicate copy techniques incur extra NVM writes and
cacheline flush operations which significantly deteriorate the per-
formance, it would be nice to guarantee data consistency without
duplicate copy techniques such as logging. Group hashing uses an
8-byte failure-atomic write after an insert or delete operation to
commit the update.

High CPU cache efficiency. The CPU cache efficiency has a
significant impact on request latency. Group hashing uses group
sharing scheme to deal with hash collisions, which organizes the
collision resolution cells in the contiguous memory address. In this
way, group hashing reduces the number of CPU cache miss and
achieves higher performance in terms of request latency.

Fast and efficient recovery after system failure.Group hash-
ing includes an efficient recovery mechanism. When an unexpected
system crash or power failure occurs, group hashing can recover
to a consistent state in a very short time.

3.2 The Overview of Group Hashing
Our group hashing leverages group sharing scheme to deal with
hash collisions. Specifically, group hashing decouples storage cells
into two levels. As shown in Figure 3, the cells in the first level
are addressable by the hash function, i.e., hash addressable cells.
The cells in the second level are non-addressable and used to deal
with hash collisions, i.e., collision resolution cells. Group hashing
divides the cells in both levels into many groups, the cells in each
group are stored in a contiguous memory space. The total group
amount in each level is equal. Each group in the first level matches
a group in the second level with the same group number. When
hash collisions occur, group hashing searches the empty cells in the
matched group of the second level. The collision resolution cells in
the group of the second level are shared by the matched group in
the first level with the same group number.

In the example of Figure 3, the number of cells in a group, i.e.,
the group size is 4. The total number of hash cells in the hash table
is 22n . A new item (key,value) is hashed in the cell index 5 of the
first level. If the cell in index 5 is occupied, group hashing searches
the empty cells in the group of the second level from index 2n+4 to

2n+7. The collision resolution cells in the group with index from
2n+4 to 2n+7 are shared by the group with index from 4 to 7.

Figure 3: The layout of group hashing.

When hash collisions occur, only the collision resolution cells
in a group are needed to be searched and checked. In this way,
no extra writes are caused during insert and delete operations in
group hashing. As the collision resolution cells inside a group are
contiguous inmemory address, a single memory access can prefetch
the following cells belonging to the same cacheline, which reduces
the number of memory access and L3 cache miss, thus obtaining
higher performance in terms of request latency.

3.3 Failure Atomic Write in Group Hashing
In this section, we present the data consistency guarantee upon
system failure without requiring any kind of duplicate copy tech-
niques as long as the 8-byte failure atomicity assumption is satisfied
[6, 10, 13].

Figure 4: The physical storage structure of group hashing.

Only insert and delete operations have NVM writes, which may
cause data consistency problem. Figure 4 shows the physical storage
structure of group hashing. The Global info. records the global
information of the hash table, such as the number of occupied hash
cells (count), the number of hash cells in a group (group_size), and
the total number of hash cells (table_size). We add an 1-bit bitmap
in each hashing cell to determine whether the cell is occupied or
empty, i.e., ‘bitmap == 1’ means the cell is occupied and ‘bitmap ==
0’ means the cell is empty. The bitmap is also used to commit the
update in an insert or delete operation. When the bitmap is atomic
updated from ‘0’ to ‘1’ (or ‘1’ to ‘0’), it means that the insertion
(deletion) has completed. To better present the failure atomic write
scheme, let us review the example in Figure 1. After the key-value
pair (21,Hash Table) has been written to the target cell following
with a clflush and mfence, bitmap is atomic updated from ‘0’ to ‘1’,

then count is atomic incremented. If a system failure occurs before
the atomic update of bitmap, the key-value pair will be cleared
during the recovery step. If the system failure occurs between the
atomic update of bitmap and count, group hashing will count the
number of occupied cells whose bitmap equals to ‘1’ by scanning
the whole hash table and modify count to the correct value during
the recovery step. In both of these two cases, the data consistency
is not compromised. The details about the recovery mechanism are
described in Section 3.5.

For simplicity, we use persist to represent the persistence of the
data written to NVM in the rest of this work, which is implemented
by executing a clflush following with a mfence.

3.4 Operations
In this section, we introduce the base operations in group hashing,
including insertion, query and deletion.

Insertion: In the insert operation, group hashing first computes
the position k in the first level, as shown in Algorithm 1. If the
cell in position k is empty, group hashing inserts the key-value
pair into this empty cell. Group hashing ensures the persistence
of the key-value pair in NVM with a clflush and mfence. After
that, bitmap is atomic updated from ‘0’ to ‘1’. Then the number
of occupied hash cells count is atomic incremented. If the system
failure occurs before the atomic update of bitmap, the key-value pair
will be cleared during the recovery step. If the system failure occurs
between the atomic update of bitmap and count, group hashing will
count the number of occupied cells whose bitmap equals to ‘1’ by
scanning the whole hash table, and update count field to the correct
value during the recovery step. In this way, the data consistency
can be ensured. If the cell in position k is occupied, group hashing
computes the first cell position j of the matched group in the second
level and checks the cells in this group until finds an empty cell.
Then group hashing inserts the key-value pair into the empty cell
following with a clflush andmfence, and atomic updates bitmap and
count. If there are no empty cells in the matched group, it means
that the capacity of the hash table needs to be expanded.

Query: Since a query operation does not modify any persistent
data, data consistency will not be compromised during query oper-
ations. In the query operation, group hashing first computes the
position k in the first level, and checks whether the item in posi-
tion k is the target item, as shown in Algorithm 2. If the item in
position k is not the target item, group hashing computes the first
cell position j of the matched group in the second level and checks
the cells in this group until finds the target item. If the target item
can not be found in the group, it means that the queried item does
not exist in the hash table.

Deletion: In the delete operation, group hashing first queries
and checks whether the item in the first level is the target item
to be deleted, as shown in Algorithm 3. If the item in position k
is the target item, group hashing deletes the key-value pair and
persists the update. Different from the process in the insertion, the
atomic update on bitmap is before the deletion of the key-value
pair. The reason is that, if the atomic update of bitmap is after the
deletion of the key-value pair, when a system failure occurs after
the deletion of the key-value pair and before the atomic update
of bitmap, the bitmap still equals to ‘1’ but the key-value pair has

Algorithm 1 Insert(group,key,value)
1: k=h(key);
2: /*Check whether the cell in the first level is empty*/
3: if group->tab1[k].bitmap == 0 then
4: Insert(key,value);
5: Persist(key,value);
6: Atomic Update group->tab1[k].bitmap to 1;
7: Persist(group->tab1[k].bitmap);
8: AtomicInc(group->count);
9: Persist(group->count);
10: return TRUE;
11: end if
12: /*Lookup empty cell in the group of the second level*/
13: j=k-k%group->group_size;
14: for i=0; i<group->group_size; i++; do
15: if group->tab2[j+i].bitmap == 0 then
16: Insert(key,value);
17: Persist(key,value);
18: Atomic Update group->tab2[j+i].bitmap to 1;
19: Persist(group->tab2[j+i].bitmap);
20: AtomicInc(group->count);
21: Persist(group->count);
22: return TRUE;
23: end if
24: end for
25: return FALSE;

Algorithm 2 Query(group,key)
1: k=h(key);
2: /*Check whether the item in the first level is the target*/
3: if group->tab1[k].bitmap == 1 && group->tab1[k].key == key

then
4: return group->tab1[k].value;
5: end if
6: /*Lookup the target item in the group of the second level*/
7: j=k-k%group->group_size;
8: for i=0; i<group->group_size; i++; do
9: if group->tab2[j+i].key == key then
10: return group->tab2[j+i].value;
11: end if
12: end for
13: return NULL;

been deleted, which leads to an inconsistent state. Actually, in the
recovery step, group hashing will clear the data in key-value field
of the cells whose bitmap equals to ‘0’. Once the bitmap is atomic
updated to ‘0’, the delete operation has been completed. In this way,
the delete operation is atomic like insert operation and the data
consistency can be guaranteed. If the item in position k is not the
target item, group hashing searches it in the matched group in the
second level until finds the target item and deletes it.

When hash collisions occur during insert, query and delete re-
quests, only the cells in a group need to be searched and checked,
which has the time complexity of O(1). Furthermore, the cells in a
group are contiguous in memory address, less CPU cache misses

Algorithm 3 Delete(group,key)
1: k=h(key);
2: /*Check whether the item in the first level is the target*/
3: if group->tab1[k].key == key then
4: Atomic Update group->tab1[k].bitmap to 0;
5: Persist(group->tab1[k].bitmap);
6: Delete(key,value);
7: Persist(key,value);
8: AtomicDec(group->count);
9: Persist(group->count);
10: return TRUE;
11: end if
12: /*Lookup the target item in the group of the second level*/
13: j=k-k%group->group_size;
14: for i=0; i<group->group_size; i++; do
15: if group->tab2[j+i].key == key then
16: Atomic Update group->tab2[j+i].bitmap to 0;
17: Persist(group->tab2[j+i].bitmap);
18: Delete(key,value);
19: Persist(key,value);
20: AtomicDec(group->count);
21: Persist(group->count);
22: return TRUE;
23: end if
24: end for
25: return FALSE;

would be produced during the requests, thus group hashing can
obtain more performance improvements. The group size has a
significant impact on performance and space utilization, we will
discuss it in Section 4.5.

3.5 Recovery
Group hashing must recover to a consistent state after an un-
expected system crash or power failure. Algorithm 4 shows the
pseudo-code of the recovery step in group hashing. Since only inser-
tion and deletion requests may cause data consistency problem, we
take a deletion request as an example to elaborate the recovery step
in group hashing. We classify the possible cases into two scenarios.

First, a system crash occurs between the atomic update on bitmap
and the persistence of deleting the key-value pair, i.e., between
line 5 and line 6 in Algorithm 3. In this case, bitmap has been
atomic updated to ‘0’, the deletion of the key-value pair and the
atomic decrease of the count field have not been completed. Group
hashing scans the whole hash table, and resets the data in key-
value field of the cells whose bitmap equal to ‘0’, thus the possible
partially deleted key-value pair data can be cleared. Then group
hashing counts the amount of the cells whose bitmap equals to ‘1’
and updates the count field to the correct value. After that, group
hashing recovers to a consistent state.

Second, a system crash occurs between the persistence of delet-
ing the key-value pair and the atomic update on the count field, i.e.,
between line 7 and line 8 in Algorithm 3. In this case, bitmap has
been atomic updated to ‘0’, and the deletion of the key-value pair
has been persisted, but the atomic update of count field has not been

Algorithm 4 Recover(group)
1: count=0;
2: /*Scan the whole hash table*/
3: for i=0; i<group->table_size; i++; do
4: /*Clear and reset the cells whose bitmap equals to 0*/
5: if group->tab1[i].bitmap == 0 then
6: Reset(key,value);
7: Persist(key,value);
8: else
9: count++;
10: end if
11: if group->tab2[i].bitmap == 0 then
12: Reset(key,value);
13: Persist(key,value);
14: else
15: count++;
16: end if
17: end for
18: /*Update the number of occupied cells to the correct value*/
19: group->count=count;
20: Persist(group->count);
21: return TRUE;

completed. Since group hashing does not know when the system
crash occurs, it still scans the whole hash table, resets the data in
key-value field of the cells whose bitmap equals to ‘0’, then counts
the amount of the cells whose bitmap equals to ‘1’ and updates the
count field to the correct value. In this way, group hashing can also
recover to a consistent state after the recovery step.

4 PERFORMANCE EVALUATION
In this section, we evaluate the performance of our group hashing
and answer the following questions:

(1) How does group hashing perform against existing hashing
schemes on NVM?

(2) How is the CPU cache efficiency of group hashing compared
with other hashing schemes on NVM?

(3) How is group hashing sensitive to the group size?
(4)How long does it take for group hashing to recover to a consistent

state after a system failure occurs?
We first describe the experimental setup and then evaluate group

hashing with three real-world traces.

4.1 Experimental Setup
Since NVM is not yet commercially available for us, we use a por-
tion of the DRAM region as NVM. It is managed by PMFS [6],
an open-source NVM-based file system, which gives direct access
to the memory region with mmap. As NVM has similar read la-
tency to DRAM and emulating read latency is complicated due to
CPU features such as speculative execution, memory parallelism,
prefetching, etc. [6], we only emulate NVM’s slower writes than
DRAM by adding extra latency after a clflush instruction, like pre-
vious research works on NVM [6, 29]. In our experiments, we set
the extra latency to 300ns by default [6]. The configurations of the
server we use in our experiments are listed in Table 2.

Figure 5: The average latency of requesting an item.

We compare our group hashing with (1) linear probing [24], a
traditional hashing scheme used in DRAM, (2) PFHT [5], an NVM-
friendly cuckoo hashing [22] variantwith larger buckets and atmost
one displacement during insert operations, and (3) path hashing
[34], a recently proposed NVM-friendly hashing scheme with the
technique of path sharing and path shortening. There are some
other hashing schemes used in traditional DRAM, such as chained
hashing [2], 2-choice hashing [2] and cuckoo hashing [22]. However,
chained hashing performs poorly under memory pressure due to
frequent memory allocation and free calls, 2-choice hashing has
too low space utilization ratio, PFHT is an NVM optimized variant
of cuckoo hashing, thus we do not take them into the comparison.
We use three real-world traces in the experiments.

Table 2: Server Configurations

CPU Intel Xeon E5-2620, 2.0 GHz
CPU cores 12
Processor cache 384KB/1.5MB/15MB L1/L2/L3 cache
DRAM 8GB
NVM 8GB, emulated with slowdown, the write la-

tency is 300 ns
Operating system CentOS 6.5, kernel version 3.11.0

RandomNum: This trace is widely used for evaluating the per-
formance of hashing schemes in previous research works [26, 34].
We generate the random integer ranging from 0 to 226 and use the
generated integers as the keys of the hash items to be inserted into
the hash table. The size of an item in this trace is 16 bytes.

Bag-of-Words: There are five text collections in the form of bags-
of-words in this trace [25]. We choose PubMed abstracts, which
is the largest collection and contains about 82 million items, for
evaluation. The combinations of DocID and WordID are used as the
keys of the hash items. The size of an item in this trace is 16 bytes.

Fingerprint: This trace is collected from the daily snapshots of a
Mac OS X server [27]. We use the 16-byte MD5 fingerprints of the
files as the keys of the hash items. The size of an item in this trace
is 32 bytes.

In our experiments, we use 223 hash table cells in RandomNum
trace, 224 cells in Bag-of-Words trace, and 225 cells in Fingerprint
trace. We evaluate the performance under two load factors, 0.5 and
0.75. In our group hashing, the group size, i.e., the number of cells
in a group, is set to 256 by default. In PFHT, each bucket contains 4
hash cells and we store the insertion-failure cells in an extra stash
with 3% size of the hash table. In path hashing, we set the reserved
levels to 20. To ensure data consistency like group hashing, we
add a logging scheme in linear probing, PFHT and path hashing,
referred as linear-L, PFHT-L and path-L. For all the experiments,
each result is the average of five independent executions.

4.2 Request Latency
In all the experiments, we first insert items into the hash table until
the load factor reaches the predefined value. After that, we insert
1000 items into the hash table, then query and delete 1000 items
from the hash table. At last, we calculate the average latency of re-
questing an item. Figure 5 shows the average latency of requesting
an item in different hashing schemes. As shown in the figures, our
group hashing outperforms other hashing schemes in insert, query
and delete operations under two load factors due to the low consis-
tency cost and high CPU cache efficiency. Linear hashing has better
insert and query performance than PFHT and path hashing. This is
because when hash collisions occur in linear hashing, the closest
contiguous cells are searched and checked, the collision resolution
cells are in a contiguous memory address. For small items whose
sizes are smaller than a cacheline size, a single memory access
can prefetch multiple cells belonging to the same cacheline, which
reduces the number of memory access and L3 cache miss, thus

Figure 6: The average L3 cache miss number of requesting an item.

obtaining higher insert and query performance. However, linear
hashing has poor delete performance due to the extra writes caused
by its complicated delete process, and the problem becomes worse
as the load factor increases to 0.75. We notice that PFHT performs
better than path hashing under load factor 0.5, but performs worse
than path hashing under load factor 0.75. The reason is that, under
load factor 0.75, more items are stored in the extra stash. In this case,
PFHT needs to spend more time to linearly search hash items in
the stash. In the case of load factor 0.5, as multiple cells in a bucket
of PFHT is in the continuous memory space, and less items are
stored in the stash, while the cells in the collision addressing path
(i.e., path in the binary tree) of path hashing are not in contiguous
memory space, PFHT performs better than path hashing. We also
observe that the insert and delete performance in Fingerprint trace
is much slower than that in the other two traces. This is because
Fingerprint has larger item size than the other two traces.

4.3 CPU Cache Efficiency
We use the PAPI library [20] to count the number of L3 cache miss
during insert, query and delete operations under two load factors.
Figure 6 shows the average L3 cache miss number of requesting
an item in different hashing schemes. As shown in the figures, our
group hashing produces least CPU cache misses. There are two
reasons. First, our group hashing does not include any duplicate
copy techniques, less NVM writes and cacheline flush operations
are produced. Second, contiguous cells inside a group are searched
when hash collision occurs in group hashing. A single memory
access in group hashing can prefetch the following cells belonging
to the same cacheline, thus reducing the number of memory access
and L3 cache miss. For linear hashing, it produces less L3 cache
misses than PFHT and path hashing in insert and query operations
because the collision resolution cells are in a contiguous memory
address. But linear hashing produces much more L3 cache misses in

delete operation due to the extra writes caused by the complicated
delete process. Like the request latency, PFHT produces less L3
cache misses than path hashing under load factor 0.5, but produces
more L3 cache misses than path hashing under load factor 0.75.
The reason is similar. In the case of load factor 0.75, more items are
stored in the extra stash and PFHT needs to spend more time to
linearly search hash items in the stash.

4.4 Space Utilization

Figure 7: Space utilization ratios of different hashing
schemes.

Space utilization is another important parameter for hash tables,
which is defined as the load factor when an item fails to insert
into the hash table. For PFHT, each bucket contains 4 hash cells
and we store the insertion-failure cells in an extra stash with 3%
size of the hash table. For path hashing, we set the reserved levels
to 20. For group hashing, the group size, i.e., the number of cells
in a group, is set to 256. The space utilization ratios of different
hashing schemes are shown in Figure 7. Path hashing achieves the
highest space utilization ratio due to its path sharing technique
and double hashing paths. PFHT also has two hash functions and
it has an extra stash, but its space utilization ratio is slightly lower

than path hashing because it only allows the eviction operation at
most once. The result of linear probing is not shown in the figure,
because linear probing does not have a fixed space utilization ratio,
and its load factor can be up to 1. Our group hashing achieves
about 82% in the three traces, which is lower than PFHT and path
hashing. Although two hash functions can be used in our group
hashing to improve the space utilization ratio, the continuity of
the collision resolution cells is damaged, more L3 cache misses
would be produced, which deteriorates the performance in terms
of request latency. Considering the performance benefits described
above, the space utilization ratio of group hashing is acceptable.

4.5 Effect of the group size
The group size, i.e., the number of cells in a group, can affect the
performance and space utilization ratio.We vary the group size from
64 to 1024 and evaluate the request latency and space utilization
ratio. Figure 8 (a) shows the request latency in trace RandomNum
under load factor 0.5. From the figure, we observe that the insert,
query and delete latencies increase as the group size grows. This
is because larger group sizes incur more search time when hash
collision occurs. Figure 8 (b) shows the space utilization ratio in
three traces. As shown in the figure, the space utilization ratio also
increases as the group size grows. We notice that when the group
size reaches 256, the space utilization ratio can achieve over 80%,
and the request latency is acceptable. Therefore, we choose 256 as
the default group size in our group hashing.

Figure 8: Group size vs. request latency and space utilization.

4.6 Failure Recovery
At last, we evaluate the recovery time of group hashing after a sys-
tem failure occurs. We vary the hash table size from 128MB to 1GB
and evaluate the recovery time in trace RandomNum. Compared
with the total execution time of inserting the hash table to load
factor 0.5, as shown in Table 3, the percentage of recovery time

Table 3: Recovery time for different hash table sizes

Hash Table Size 128MB 256MB 512MB 1GB
Recovery Time(ms) 77.8 156.3 314.1 630.2
Execution Time(ms) 8426.2 16854.3 33710.5 67422.8

Percentage 0.92% 0.93% 0.93% 0.93%

in the total execution time is below 1%, which is totally negligible.
The results indicate that group hashing can recover to a consistent
state quickly and efficiently after a system failure.

5 RELATEDWORK
In order to efficiently adapt to the characteristics of the emerg-
ing NVMs, designing persistent data structures for NVMs is an
interesting topic.

Most previous research works on persistent data structures for
NVMs focus on the tree-based index structures, such as B+-tree and
radix tree. CDDS B-tree [28] uses multi-version to guarantee data
consistency. However, CDDS B-tree suffers from poor insert and
query performance due to numerous dead entries and nodes. wB+-
Tree [3] uses unsorted nodes with bitmaps to reduce the number of
expensive NVM writes. Although wB+-Tree adopts 8-byte atomic
update strategy on bitmaps, it still needs logging on more complex
operations such as splits for data consistency. Chi et al. [4] observes
that using unsorted nodes in B+-Tree suffers from CPU-costly for
insertion and wasting space for deletion problems. They propose
three techniques including the sub-balanced unsorted node, over-
flow node, and merging factor schemes to address the problems. NV-
Tree [32] and FPTree [21] only keep leaf nodes in persistent NVM
while internal nodes are kept in volatile DRAM, which reduces
consistency cost significantly. WORT [13] is a recently proposed
radix tree data structure for NVM. To avoid duplicate copy writes
on NVM, it uses 8-byte atomic write to ensure data consistency.
FAST and FAIR B+-Tree [10] is another recently proposed B+-Tree
for NVM. It makes read operations tolerate transient inconsistency
to avoid expensive duplicate copy writes on NVM. However, these
tree-based indexing structures only provide O(log(N)) lookup time
complexity on average, which is much slower than hashing-based
structures.

Besides the tree-based index structures, hashing-based data struc-
tures are also widely used in main memory applications [1, 7, 8]
due to their constant-scale lookup time complexity. PFHT [5] is
an NVM-friendly cuckoo hashing variant with larger buckets and
at most one displacement during insert operations, which reduces
cascading writes and improves the CPU cache utilization. Path hash-
ing [34] is a recently proposed NVM-friendly hashing scheme. It
organizes storage cells as an inverted complete binary tree and uses
a novel hash-collision resolution method called position sharing,
which incurs no extra writes to NVMs. However, these two hashing
schemes focus on reducing extra writes to NVM and do not provide
mechanisms to maintain data consistency in case of unexpected
system failures. Furthermore, they do not consider the persistency
cost of cacheline flush and memory fence when writing to NVM
through memory bus. On the contrary, our group hashing uses
8-byte failure-atomic write to guarantee data consistency without
any duplicate copies for logging or CoW. To further improve CPU

cache efficiency, our group hashing adopts group sharing technique
to deal with hash collisions, which obtains higher performance in
terms of request latency.

6 CONCLUSION
In this paper, we propose a write-efficient and consistent hashing
scheme, called group hashing, for NVMs to improve the perfor-
mance in terms of request latency while guaranteeing data consis-
tency in case of unexpected system failures. Group hashing uses
8-byte failure-atomic write to guarantee the data consistency, which
eliminates the duplicate copy writes to NVMs, thus reducing the
consistency cost of the hash table structure. To improve CPU cache
efficiency, our group hashing leverages group sharing to deal with
hash collisions, which divides the hash table into groups and or-
ganizes the collision resolution cells in the contiguous memory
address, thus reducing CPU cache misses to obtain higher perfor-
mance in terms of request latency. Extensive experimental results
show that our group hashing achieves low request latency as well
as high CPU cache utilization, compared with state-of-the-art NVM-
based hashing schemes.

ACKNOWLEDGMENT
This work was supported by the National High Technology Re-
search and Development Program (863 Program) No.2015AA015301,
NSFC No.61772222, No.61772212, No.61472153, No.61502191; the
National Key Research and Development Program of China under
Grant 2016YFB1000202; State Key Laboratory of Computer Archi-
tecture, No.CARCH201505; This work was also supported by Engi-
neering Research Center of data storage systems and Technology,
Ministry of Education, China.

REFERENCES
[1] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike Paleczny.

2012. Workload analysis of a large-scale key-value store. ACM Sigmetrics Perfor-
mance Evaluation Review 40, 1 (2012), 53–64.

[2] J Lawrence Carter andMark NWegman. 1979. Universal classes of hash functions.
J. Comput. System Sci. 18, 2 (1979), 143–154.

[3] Shimin Chen and Qin Jin. 2015. Persistent B+-trees in non-volatile main memory.
Proceedings of the VLDB Endowment 8, 7 (2015), 786–797.

[4] Ping Chi, Wang Chien Lee, and Yuan Xie. 2016. Adapting B+-Tree for Emerging
Nonvolatile Memory-Based Main Memory. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 35, 9 (2016), 1461–1474.

[5] Biplob Debnath, Alireza Haghdoost, Asim Kadav, Mohammed G Khatib, and
Cristian Ungureanu. 2016. Revisiting hash table design for phase change memory.
ACM SIGOPS Operating Systems Review 49, 2 (2016), 18–26.

[6] Subramanya R Dulloor, Sanjay Kumar, Anil Keshavamurthy, Philip Lantz, Dheeraj
Reddy, Rajesh Sankaran, and Jeff Jackson. 2014. System software for persistent
memory. In Proceedings of the 9th European Conference on Computer Systems
(EuroSys).

[7] Bin Fan, David G Andersen, and Michael Kaminsky. 2013. MemC3: compact
and concurrent MemCache with dumber caching and smarter hashing. In in
Proceedings of the 10th USENIX Conference on Networked Systems Design and
Implementation (NSDI). 371–384.

[8] Yu Hua, Bin Xiao, Dan Feng, and Bo Yu. 2008. Bounded LSH for Similarity Search
in Peer-to-Peer File Systems. In Proceedings of the 37th International Conference
on Parallel Processing (ICPP). 644–651.

[9] Fangting Huang, Dan Feng, Yu Hua, and Wen Zhou. 2017. A wear-leveling-aware
counter mode for data encryption in non-volatile memories. In Proceedings of the
IEEE 2017 Design, Automation & Test in Europe Conference & Exhibition (DATE).
910–913.

[10] Deukyeon Hwang, Wook-Hee Kim, Youjip Won, and Beomseok Nam. 2018. En-
durable transient inconsistency in byte-addressable persistent B+-tree. In Pro-
ceedings of the 16th USENIX Conference on File and Storage Technologies(FAST).
187–200.

[11] Intel and Micron. 2015. Intel and Micron produce breakthrough memory tech-
nology. https://newsroom.intel.com/news-releases/. (2015).

[12] Emre Kültürsay, Mahmut Kandemir, Anand Sivasubramaniam, and Onur Mutlu.
2013. Evaluating STT-RAM as an energy-efficient main memory alternative. In
Proceedings of the IEEE 2013 International Symposium on Performance Analysis of
Systems and Software (ISPASS). 256–267.

[13] Se Kwon Lee, K Hyun Lim, Hyunsub Song, Beomseok Nam, and Sam H Noh.
2017. WORT: Write Optimal Radix Tree for Persistent Memory Storage Systems..
In Proceedings of the 15th USENIX Conference on File and Storage Technologies
(FAST). 257–270.

[14] Zheng Li, Fang Wang, Dan Feng, Yu Hua, Wei Tong, Jingning Liu, and Xiang Liu.
2016. Tetris Write: Exploring More Write Parallelism Considering PCM Asym-
metries. In Proceedings of the 45th International Conference on Parallel Processing
(ICPP). 159–168.

[15] Yi Lin, Po Chun Huang, Duo Liu, Xiao Zhu, and Liang Liang. 2016. Making In-
Memory Frequent Pattern Mining Durable and Energy Efficient. In Proceedings
of the 45th International Conference on Parallel Processing (ICPP). 47–56.

[16] Ren Shuo Liu, De Yu Shen, Chia Lin Yang, Shun Chih Yu, and Cheng YuanMichael
Wang. 2014. NVM Duet: unified working memory and persistent store archi-
tecture. In International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS). 455–470.

[17] Youyou Lu, Jiwu Shu, and Long Sun. 2015. Blurred persistence in transactional
persistent memory. In Proceedings of the IEEE 31st Symposium on Mass Storage
Systems and Technologies (MSST).

[18] Manqing Mao, Yu Cao, Shimeng Yu, and Chaitali Chakrabarti. 2015. Optimizing
latency, energy, and reliability of 1T1R ReRAM through appropriate voltage
settings. In Proceedings of the IEEE 33rd International Conference on Computer
Design (ICCD). 359–366.

[19] Sparsh Mittal and Jeffrey S Vetter. 2016. A survey of software techniques for using
non-volatile memories for storage and main memory systems. IEEE Transactions
on Parallel and Distributed Systems 27, 5 (2016), 1537–1550.

[20] Philip J Mucci, Shirley Browne, Christine Deane, and George Ho. 1999. PAPI:
A portable interface to hardware performance counters. In Proceedings of the
department of defense HPCMP users group conference, Vol. 710.

[21] Ismail Oukid, Johan Lasperas, Anisoara Nica, Thomas Willhalm, and Wolfgang
Lehner. 2016. FPTree: A hybrid SCM-DRAM persistent and concurrent B-tree
for storage class memory. In Proceedings of the 2016 ACM SIGMOD International
Conference on Management of Data (SIGMOD). 371–386.

[22] Rasmus Pagh and Flemming Friche Rodler. 2004. Cuckoo hashing. Journal of
Algorithms 51, 2 (2004), 122–144.

[23] Steven Pelley, Peter M. Chen, and Thomas F. Wenisch. 2014. Memory persistency.
In Proceeding of the 41st International Symposium on Computer Architecuture
(ISCA). 265–276.

[24] Boris Pittel. 1987. Linear probing: the probable largest search time grows logarith-
mically with the number of records. Journal of Algorithms 8, 2 (1987), 236–249.

[25] UC Irvine Machine Learning Repository. 2008. Bags of Words data set. http:
//archive.ics.uci.edu/ml/datasets/Bag+of+Words. (2008).

[26] Yuanyuan Sun, Yu Hua, Song Jiang, Qiuyu Li, Shunde Cao, and Pengfei Zuo. 2017.
SmartCuckoo: a fast and cost-efficient hashing index scheme for cloud storage
systems. In Proceedings of the 2017 USENIX Annual Technical Conference (ATC).
553–565.

[27] Vasily Tarasov, Amar Mudrankit, Will Buik, Philip Shilane, Geoff Kuenning, and
Erez Zadok. 2012. Generating Realistic Datasets for Deduplication Analysis.. In
Proceedings of the 2012 USENIX Annual Technical Conference (ATC). 261–272.

[28] Shivaram Venkataraman, Niraj Tolia, Parthasarathy Ranganathan, Roy H Camp-
bell, et al. 2011. Consistent and Durable Data Structures for Non-Volatile Byte-
Addressable Memory. In Proceedings of the 9th USENIX Conference on File and
Storage Technologies (FAST). 61–75.

[29] Haris Volos, Andres Jaan Tack, and Michael M Swift. 2011. Mnemosyne: Light-
weight persistent memory. In Proceedings of the 16th International Conference on
Architectural Support for Programming Languages and Operating Systems (ASP-
LOS). 91–104.

[30] Fei Xia, Dejun Jiang, Jin Xiong, and Ninghui Sun. 2017. HiKV: A Hybrid Index
Key-Value Store for DRAM-NVM Memory Systems. In Proceedings of the 2017
USENIX Annual Technical Conference (ATC). 349–362.

[31] Yuan Xie. 2011. Modeling, architecture, and applications for emerging memory
technologies. IEEE Design & Test of Computers 28, 1 (2011), 44–51.

[32] Jun Yang, Qingsong Wei, Cheng Chen, Chundong Wang, Khai Leong Yong, and
Bingsheng He. 2015. NV-Tree: Reducing consistency cost for nvm-based single
level systems. In Proceedings of the 13th USENIX Conference on File and Storage
Technologies (FAST), Vol. 15. 167–181.

[33] Yiying Zhang and Steven Swanson. 2015. A study of application performance
with non-volatile main memory. In Proceedings of the IEEE 31st Symposium on
Mass Storage Systems and Technologies (MSST).

[34] Pengfei Zuo and Yu Hua. 2017. A write-friendly hashing scheme for non-volatile
memory systems. In Proceedings of the IEEE 33rd Symposium on Mass Storage
Systems and Technologies (MSST).

https://newsroom.intel.com/news-releases/
http://archive.ics.uci.edu/ml/datasets/Bag+of+Words
http://archive.ics.uci.edu/ml/datasets/Bag+of+Words

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Non-volatile Memory Technologies
	2.2 Data Consistency for Hashing Schemes in NVM
	2.3 Motivation

	3 The Design of Group Hashing
	3.1 Design Goals
	3.2 The Overview of Group Hashing
	3.3 Failure Atomic Write in Group Hashing
	3.4 Operations
	3.5 Recovery

	4 Performance Evaluation
	4.1 Experimental Setup
	4.2 Request Latency
	4.3 CPU Cache Efficiency
	4.4 Space Utilization
	4.5 Effect of the group size
	4.6 Failure Recovery

	5 Related Work
	6 Conclusion
	References

