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ABSTRACT
The non-volatile memory (NVM) is becoming the main device of
next-generation memory, due to the high density, near-zero standby
power, non-volatile and byte-addressable features. The multi-level
cell (MLC) technique has been used in non-volatile memory to
significantly increase device density and capacity, which however
leads to much weaker endurance than the single-level cell (SLC)
counterpart. Although wear-leveling techniques can mitigate this
weakness in MLC, the improvements upon MLC-based NVM be-
come very limited due to not achieving uniform write distribution
before some cells are really worn out. To address this problem, our
paper proposes a self-adaptive wear-leveling (SAWL) scheme for
MLC-based NVM. The idea behind SAWL is to dynamically tune
the wear-leveling granularities and balance the writes across the
cells of entire memory, thus achieving suitable tradeoff between
the lifetime and cache hit rate. Moreover, to reduce the size of the
address-mapping table, SAWL maintains a few recently-accessed
mappings in a small on-chip cache. Experimental results demon-
strate that SAWL significantly improves the NVM lifetime and the
performance, compared with state-of-the-art schemes.

CCS CONCEPTS
•Hardware→Memory and dense storage; • Security and pri-
vacy → Hardware security implementation.
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1 INTRODUCTION
Modern data-intensive systems generally require large-size mem-
ory, high I/O throughput and significant energy savings. Due to
meeting all these needs, non-volatile memory (NVM) has been
widely used in high performance systems [6, 14]. Especially the fast
recovery promise of NVM can significantly reduce the cost of down-
time [27]. The larger-size NVM can maintain more workloads than
DRAM, which efficiently alleviates the constraints from memory
size and reduce the data movements between high-speed memory
and low-speed disks to deliver high performance [14]. Moreover,
the recent measurements of the Intel Optane DC Persistent Memory
Module demonstrate the significant performance improvements
upon typical real-world applications [5]. Existing studies [10, 22]
have also shown that leakage energy grows with the memory ca-
pacity, dissipating as much heat as dynamic energy and becomes a
main contributor to operational costs. NVM technologies [2, 7, 8],
such as STT-RAM, PCM, and RRAM, hence is expected to substitute
or complement DRAM in near-future memory systems.

In practice, NVM fails to achieve high performance and actually
increases the complexity of management due to the limited lifetime,
which causes frequent updates and re-caculations. The property of
limited lifetime has become the performance bottleneck of systems.
Moreover, in order to offer large space capacity and relatively cheap
costs, device vendors often provide multi-level-cell (MLC)-based
NVM for real-world applications. Compared with single-level-cell
(SLC)-based NVM,MLC-based NVM exhibits higher storage density,
lower costs and comparable read latency, thus achieving better
performance in memory-sensitive applications. The MLC technique
has been used in different kinds of NVM, including PCM, 3D XPoint,
RRAM, STT-RAM [3, 9, 12, 13]. Unfortunately, the lifetime of MLC
becomes exacerbated, since MLC stores more bits in a single cell
and results in weak endurance. The MLC technique used in NVM is
able to support the rapid growth in device capacity and density but
at the cost of much weaker endurance than the SLC counterpart.
The advanced fabrication technique in MLC packs more than one
bit in a single cell [9], thus allowing NVM to achieve ultra-high
density. However, due to the iterative program-and-verify (P&V)
technique, the MLC technology produces remarkable variations on
access latency and cell endurance.
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Compared with SLC, the MLC-based NVM increases access la-
tency by 2∼4 times and decreases endurance by 100 times due to
unavoidable over-programming operation. For example, the SLC
PCM devices are expected to last for 107 ∼ 108 writes per cell [25],
and the RRAM technology has a per-cell write limit between 108
and 1012 in the SLC mode. But the cell endurance of MLC PCM only
reaches 105 ∼ 106 writes per cell [3], and that of the MLC RRAM
decreases to 107 writes per cell [9].

In order to extend the lifetime of MLC-based NVM, the wear-
leveling technique attempts to make write operation uniformly
distributed by frequently remapping logical lines to new physical
positions, which can also prevent brute-force attacks to a certain
physical line. However, we observe that existing wear-leveling al-
gorithms [17, 19, 21, 25] initially designed for SLC-based NVM,
become inefficient in MLC-based NVM systems. Specifically, to pre-
vent the malicious attacks [19] that guess the physical location and
continuously wear a given line, existing algorithms perform the
remapping in the randomized manner without recording the accu-
rate write counts of memory cells. Hence, they attempt to achieve
wear leveling by randomly shuffling logical-physical address map-
pings via algebraic functions to evenly disperse the logical lines
written most frequently to as many physical lines as possible. This
requires a huge number of rounds of data exchanges before a proba-
bilistically uniform distribution of write counts of all physical lines
in an NVM can be achieved [18, 24]. However, in practice, the low
endurance of MLC-based NVM implies that some cells can be worn
out long before this uniform distribution is achieved. As a result,
existing work fails to attain long lifetime of MLC-based NVM (the
quantitative analysis is shown in Section 2).

There are two straightforward solutions to accelerate data ex-
changes and avoid some lines being worn out before being swapped.
One is to increase the exchange frequency. However, frequent con-
tent exchanges increase write amplification and block the data
access, which in turn significantly decrease performance and in-
crease energy consumption.

The other is to decrease the wear-leveling granularities (e.g.,
region size) to mitigate the imbalanced writes across the entire
memory, which however significantly increases the size of address
mapping table (e.g., hundreds of megabytes). Therefore, the map-
ping table is too large to be fully held into the on-chip cache which
leads to severe performance degradation due to the long latency of
address translation.

To address this problem, a tiered architecture can be considered,
which stores the entire address mapping table in the main memory
(DRAM or NVM devices) and holds the recently-accessed entries
in a small on-chip SRAM cache. In fact, this intuitive solution of-
ten fails to provide sufficient performance improvements for the
applications with substantial random access patterns due to the
low cache hit rate. Hence, we propose a self-adaptive wear-leveling
scheme (SAWL) that dynamically changes the wear-leveling granu-
larities to accommodate more useful addresses in the cache, thus
significantly improving cache hit rate. As a result, SAWL is able
to achieve both long lifetime and high performance. The main
contributions are summarized:

(1) Insights for wear-leveling schemes on MLC-based NVM.
We investigate the effectiveness that state-of-the-art wear-
leveling algorithms work on MLC-based NVM, including

table-based wear-leveling (TBWL) [26], algebraic-based
wear-leveling (AWL) [17, 19], and hybrid wear-leveling
(HWL) schemes [21, 24]. We observe that TBWL and AWL
have the vulnerability of either Repeated Address Attack
(RAA) or significant NVM lifetime reduction. HWL is able to
achieve high lifetime but causes significant on-chip storage
overhead to store address mappings.

(2) An efficient wear-leveling scheme for MLC-based NVM.
We propose a Self-Adaptive Wear-Leveling (SAWL) scheme
for MLC-based NVM. SAWL maintains recently-accessed
address mappings in a small on-chip cache managed by the
memory controller. To improve the cache hit rate, SAWL dy-
namically changes the wear-leveling granularities by means
of region-merge and region-split operations as shown in
Section 3.2. As a result, SAWL is able to achieve both high
lifetime and performance.

(3) Implementation and evaluation. We have implemented
SAWL and evaluated it using the gem5 [1] and NVMain [16].
Experimental results show that SAWL improves 25% ∼ 51%
(50% ∼ 78%) of ideal lifetime, which indicates the lifespan of
NVM with fully uniform writes, for the MLC-based NVM
system with 106 (105) cell endurance, compared with state-
of-the-art wear-leveling schemes. Moreover, existing wear-
leveling schemes incur 25% IPC decrease on average, while
SAWL only decreases the IPC performance by 5% on average,
compared with a baseline system without any wear-leveling
algorithms.

The rest of the paper is organized as follows. Section 2 introduces
the background, related work and motivation. The design of SAWL
is described in Section 3. Section 4 presents the evaluation results
and analysis. We conclude this paper in Section 5.

2 BACKGROUND AND RELATEDWORK
In this section, we present the background and related work on
wear leveling in NVM to facilitate our discussion and analyze the
important observations that motivate our SAWL design.

2.1 Existing Wear-Leveling Algorithms
Wear-leveling schemes are proposed to extend the lifetime of NVM
and defend against security attacks by uniformly distributing writes
among all NVM cells. When a region has been written for a certain
amount, the wear-leveling algorithm is performed to exchange the
data in/beyond this region. The number of the writes to trigger the
wear-leveling is called swapping period. According to the mapping
relationship between the logical and physical addresses, existing
wear-leveling schemes can be classified into three categories: table-
based wear-leveling (TBWL), algebraic-based wear-leveling (AWL),
and hybrid wear-leveling (HWL) schemes. Wear-leveling is trans-
parent for upper-level applications due to the mapping relationship
between the logical and physical addresses. Applications can simply
access the same contents according to the same logical addresses
and overlook the physical addresses where data are actually stored.

TBWL schemes, e.g., Segment Swapping [26], record the corre-
sponding mapping relationship between a logical line address (LA)
and its physical counterpart (PA). When the write count (WC) of
one PA triggers the wear-leveling, Segment Swapping exchanges
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Figure 1: Table-based and algebraic wear-leveling schemes
((a) is TBWL scheme, (b) and (c) are AWL schemes).

the data between this PA and the least used PA in the same re-
gion, as shown in Fig. 1(a). A line is the atomic memory-access
unit whose size is equal to that of the last-level cache line. This,
however, results in a huge space overhead in keeping track of the
mapping information in all memory lines.

AWL schemes leverage algebraic mapping functions to randomly
generate the physical address for a given logical address. The space
overhead is extremely low since the algebraic function using space-
efficient hardware structure replaces the address-mapping table in
the table-based wear-leveling algorithms. The AWL-based schemes
include region-based Start-Gap (RBSG) [17] and two-level Secu-
rity Refresh (TLSR) [19], as shown in Fig. 1(b) and 1(c). RBSG al-
ways swaps a memory line with its neighboring line, which is eas-
ily attacked by maliciously-contrived code through simple buffer-
overflow detection [19]. To defend against such malicious attacks,
TLSR uses dynamically generated random keys and XOR opera-
tions to change address mappings in a more unpredictable way to
reduce the security vulnerability of TLSR. However, as the number
of regions increases, a pure AWL scheme usually fails to balance
write traffic among the regions, which enables the lines of the
heavily-written regions to be worn out much earlier than others.

HWL schemes combine the algebraic and table-based wear-
leveling algorithms, such as PCM-S [21] and MWSR [24] as shown
in Fig. 2, which use a mapping table to keep track of the map-
ping relationship between the logical region address of a line and
the physical region address of its corresponding physical line, and
leverage the algebraic function to obtain the physical location of
lines within each region according to the given logical address.
In general, the physical address offset (pao) of the memory lines
within the region can be obtained through pao = lao

⊕
key, where

lao represents the logical address offset and key denotes the offset
parameter within a region. The HWL algorithms disperse writes
across the entire memory by randomly exchanging the regions and
shifting the location of its lines simultaneously [21].

2.2 Problems of Wear-leveling Algorithms on
MLC-based NVM

The above-mentioned wear-leveling algorithms work well for SLC-
based NVM. However, we observe that these algorithms expose
strong security vulnerability and shortened lifetime for MLC-based
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Figure 2: The state-of-the-art hybrid wear-leveling schemes.
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Figure 3: The normalized lifetime of a 64GB NVM system
using TLSR algorithm with different swapping periods and
write overheads under the BPA program.

NVM, due to decreased cell endurance and increased device capacity
of MLC-based NVM, as elaborated next.

Decreased cell endurance. The MLC technique decreases
NVM cell endurance by two orders of magnitude [3, 9]. This weak-
ened endurance leads to insufficient numbers of data exchanges
across the entire memory for the existing wear-leveling algorithms
because the number of data exchanges is proportional to the cell
endurance, which results in serious write imbalance and severely
reduces the lifetime of MLC-based NVM systems.

Increased device capacity. The given trend suggests that the
capacity of a single bank and an NVM system is likely to increase
potentially exponentially with the advanced manufacturing tech-
nology andmultithreaded application requirements. Thus, to ensure
sufficient data exchanges within and among regions in the entire
memory space, the wear-leveling algorithms must increase the
number of regions, a number that is proportional to NVM capacity.
However, as the number of regions increases, the hardware over-
head increases proportionally. The space and hardware overhead
can become unacceptably high for the practical systems.

To quantitatively analyze and understand the security vulnera-
bility problem of the existing wear-leveling algorithms, we conduct
an experiment to evaluate the lifetime of MLC-based NVM devices
under the Repeated Address Attack (RAA) [18] and Birthday Para-
dox Attack (BPA) [20]. RAA is an attack program that writes data
to the same address repeatedly. BPA aims to randomly select logical
addresses and repeatedly write to each one precisely.
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Figure 4: The normalized lifetime of a 64GB NVM system
with PCM-S andMWSR algorithms under the BPA program.

1) RAA risk for Segment Swapping and RBSG. Since the
Segment Swapping does not change the inter-segment offset ad-
dress, the RAA programs are written back to the physical memory
lines with the same offset address among the segments. These mem-
ory lines are worn out at the early stage. The RBSG, which adopts
a static address mapping algorithm, fails to defend against the RAA
program since the attacked physical address cannot be migrated
to the entire address space. The attacked region then receives an
extremely, disproportionally large number of writes, and fails in
several hours. Therefore, we do not evaluate the experiments on
RBSG and Segment Swapping as they are obviously unsuitable for
large-capacity MLC-based NVM.

Since TLSR, PCM-S and MWSR algorithms can effectively mi-
grate the attacked memory lines to the entire space to resist RAA
program, we use the BPA program to evaluate the lifetime of MLC-
based NVM system. We simulate a 64GB MLC-based NVM with
32 2GB banks and 256M memory lines, including 4M spare lines
to tolerate some worn-out memory lines to prevent it from early
failures. A line fails when its write count reaches its write limit.
The NVM fails when there are not enough spare lines to replace
the failing lines. With an assumed write limit of 105 and 106 for
each cell [15], the ideal lifetime of this NVM system can be derived
to be 2.5 months and 25 months respectively with 1GBps write
traffic. For the TLSR, the outer-level swapping period is fixed at 32
and the inner-level swapping period varies from 8 to 64, while the
accumulated number of regions increases from 16K to 64M.

2) Lifetime shortening for TLSR. Fig. 3 shows the normalized
lifetime (i.e., to the ideal lifetime) of an MLC-based NVM system
with the TLSR algorithm under the BPA program. The experimental
results indicate that the lifetime of the MLC-based NVM system
shows a trend from increase to decrease with the growing of the
number of regions. When the number of regions is 32K, the MLC-
based NVM system achieves the best lifetime, which means that
the write counts of the memory lines within and among the regions
are well balanced. In addition, the swapping period has a greater
impact on NVM lifetime. When the number of regions is small (i.e.,
a region contains many memory lines), the low swapping period
can increase the number of data exchanges, and thus achieves
better wear leveling. However, when the number of regions is large,
the low swapping period improves NVM lifetime slightly. On the
contrary, the low swapping period greatly increases the number
of data exchanges, incurring many extra writes and thus reducing
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Figure 5: The normalized lifetime of a 64GB NVM system
with PCM-S and MWSR under the BPA program.

the lifetime of NVM system. Furthermore, with the increase of the
number of regions, the write distribution among the regions is more
uneven, and the regions with heavily writes are easily worn out.

As shown in Fig. 3(a), the best lifetime of the NVM system is
42% of the ideal lifetime when the number of regions is 32K and the
swapping period is equal to 8. However, this comes at the cost of a
15.6% extra write overhead, which results in a severe performance
degradation. As the swapping period increases to 32, the write
overhead decreases to 6.25%, but the system lifetime decreases to
no more than 25.4% of the ideal lifetime with the configuration of
64K regions. When the cell endurance decreases to 105, the NVM
system using TLSR lasts for 4.6% of the ideal lifetime, as shown in
Fig. 3(b). Thus, TLSR is not competent for the work of wear leveling
with MLC-based NVM.

3) Lifetime shortening for PCM-S and MWSR. Since the
PCM-S and MWSR algorithms perform similarly in the lifetime
measure while differing only in the performance measure, we only
show one curve of the lifetime result in Fig. 4. As shown in this
figure, the larger the number of the regions is, the longer lifetime
an NVM system will attain. If we do not care about the hardware
overhead of tracking mapping information, the lifetime of an NVM
system reaches 93.7% of the ideal lifetime with the number of re-
gions being 64M. When the cell endurance decreases to 105, the
lifetime of an NVM system by the PCM-S and MWSR algorithms
lasts for no more than 84% of the ideal lifetime. It is noted that, with
the large number of regions, the small exchange period slightly
decreases the lifetime because the low exchange period introduces
many extra write operations. Nevertheless, the hybridwear-leveling
is the most effective approach to improve the MLC NVM lifetime
under malicious attacks.

4) Significant on-chip storage overhead for PCM-S and
MWSR. Hybrid wear-leveling schemes need to store all address
mappings in an on-chip cache. Specifically, PCM-S needs to record
the physical address and internal offset of each logical region.
MWSR needs to store two physical addresses (i.e., the physical
addresses of the previous and current rounds), two offset addresses
(i.e., the internal offsets of the previous and current rounds) and
a write counter, for each logical region. Therefore, the space over-
heads of on-chip cache in PCM-S and MWSR algorithms are pro-
portional to the number of regions. Using smaller wear-leveling
granularity is able to increase the NVM lifetime but increases the
number of regions and thus needs a larger on-chip cache. We eval-
uate the NVM lifetime when PCM-S and MWSR are performed on
MLC-based NVM with different on-chip cache sizes, as shown in
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Fig. 5. We observe that PCM-S only achieves 72% of ideal lifetime for
the MLC-based NVM with 106 endurance, and 41% of ideal lifetime
for the MLC-based NVM with 105 endurance, even with a very
large on-chip cache, i.e., 4MB. MWSR achieves the lower lifetime
than PCM-S due to larger storage overhead of address mappings.

In summary, Segment Swapping and RBSG are vulnerable to
RAA. TLSR causes significant NVM lifetime reduction. Hybrid wear-
leveling algorithms including PCW-S and MWSR have the potential
of achieving a high lifetime but cause significant on-chip storage
overhead.

3 DESIGN AND IMPLEMENTATION
To improve the NVM lifetime and reduce the on-chip storage over-
head of hybrid wear-leveling algorithms, a naive solution called
naive wear-leveling scheme (NWL) is to store all address map-
pings in the NVM and maintain recently-accessed mapping entries
in an on-chip cache. Nevertheless, the NWL often exhibits poor
cache utilization under applications with substantial random access
patterns, resulting severe system performance degradation due to
long latency of accessing address mappings in NVM. To effectively
address this problem, we propose a self-adaptive wear-leveling
scheme, SAWL, to significantly improve the cache hit rate by dy-
namically and adaptively tuning the wear-leveling granularities
at runtime based on the workload. The SAWL scheme enables the
MLC-based NVM systems to attain high performance and long
lifetime simultaneously. In what follows, we describe the tiered
architecture and the self-adaptive wear-leveling scheme in detail.

3.1 An Architectural Overview
SAWL is a tiered wear-leveling architecture consisting of a data
exchangemodule, an address translationmodule and a region recon-
figuration module, as shown in Fig. 6. The data exchange module is
capable of implementing arbitrary hybrid wear-leveling algorithms.
Since the address translation and region reconfiguration of PCM-S
are relatively simple, we adopt PCM-S algorithm in data exchange
module. The detailed data exchange algorithms are described in
Section 2, and the relevant addresses, depending on their temporal
and spatial properties, are stored in an Integrated Mapping Table
(IMT), a Cached Mapping Table (CMT) and a Global Translation
Directory (GTD), which are managed by the address translation
module.

SAWL uses translation lines to record the locations, in which
the user data are actually stored. To prevent the translation lines
from being worn out, the NVM systemmust independently perform
hybrid wear leveling for the translation lines. Hence, a GTD table
is needed to record the relationship between the logical translation
line memory address (tlma) and its physical counterpart (tpma). To
fast access the small GTD table, we store it in the SRAM on chip. In
the meantime, to prevent the loss or corruption of the metadata (e.g.,
data stored in the CMT, GTD and IMT tables) due to power failures,
the updated metadata are written back to the NVM devices. Within
the long swapping period, the update operation is infrequent, which
has negligible influence on NVM performance. How to ensure the
crash consistency is an important challenging problem and has
been discussed in [11], which is beyond the scope of this paper and
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Figure 6: The self-adaptive tiered wear-leveling architecture
with NVM-based main memory.

we assume that there is a battery backup in memory controller to
refresh metadata during power failure like existing scheme [11].

IMT records the relationship between a logical region number
(lrn) and its corresponding physical region number (prn), where
lrn represents the N Most Significant Bits (MSB) of the logical
memory address and an lrn can be mapped to any physical region.
In addition, IMT records the offset parameter (key) of each region,
through which we obtain the corresponding intra-regional physical
address offset. The lrn is implicitly indicated by IMT. Assuming a
translation line in IMT contains 6 translation entries (determined
by the size of translation entry), the first line contains lrn0 to lrn5
at the beginning. And after several translation line remapping, the
first line may contain lrn6k to lrn6k + 5, where k is an integer. We
obtain the tpma from GTD table using tlma and finally get user
data line information from IMT table. The size of the IMT table,
e.g., tens to hundreds of megabytes, is proportional to the NVM
capacity and too large to be entirely held in the memory controller.
Therefore, the IMT table is stored in a reserved space of the NVM
devices with its entries packed into memory lines that are called
translation lines, in contrast to the data lines that hold user data.
The entries are placed in an ascending order of the lrn to facilitate
easy address lookup. To alleviate performance degradation induced
by long address translation latency, a naive scheme is to leverage
DRAM or NVM to hold complete IMT table and a CMT table in the
SRAM to buffer the recently-used IMT entries. The entries in CMT
are organized in an LRU stack and a new entry cached from NVM
will evict the least-recently-used entry in the CMT. Moreover, we
use a parameter, called wear-leveling granularity (wlд), to represent
the range of the address space covered by each entry. When SAWL
changes the wear-leveling granularities, this parameter needs to be
updated.

3.2 Self-Adaptive Wear Leveling
With the limited cache space, only a relatively small number of
mapping entries can be held in the cache. When applications ex-
hibit very weak locality and the requested addresses are sparsely
dispersed over the entire address space, the NVM system exhibits
very poor cache hit rate and performance. To address this problem,
we propose the SAWL scheme.
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Figure 7: An overview of self-adaptive wear leveling.

Based on the experimental results shown in Fig. 4, we observe
that under a hybrid wear-leveling algorithm, the lifetime of an NVM
system is generally positively correlated to the number of regions.
In other words, the larger the number of regions is, the closer
the NVM system approaches its ideal lifetime. However, with an
increasing number of regions, the number of memory lines within
a region is reduced. Hence, the address space covered by each of the
CachedMapping Table (CMT) entries, i.e., wear-leveling granularity,
decreases accordingly. Since the number of CMT entries is fixed,
the whole address space covered by the SRAM cache decreases,
which reduces the cache hit rate.

To address this performance problem, the design goal of SAWL
is to automatically tune the region size to improve NVM perfor-
mance whenever the SRAM cache demonstrates poor hit rate under
some applications, as shown in Fig. 7. To achieve this goal, SAWL
carries out a region-merge operation to merge two or more regions
into a single larger region, thus allowing an Integrated Mapping
Table (IMT) entry to cover more addresses and increasing the wear-
leveling granularity. On the other hand, since a coarse wear-leveling
granularity reduces wear leveling, SAWL counters this by carrying
out a region-split operation to divide a large region into multiple
smaller regions when the cache hit rate continues to climb beyond
a predefined threshold, and the hits have become severely unbal-
anced within the region. In addition, the NVM lifetime can be used
as an indicator to tune wear-leveling granularities. However, the
lifetime is difficult to measure during runtime. In general, the life-
time is calculated by running many requests until the NVM cell
is worn out. Since the cache hit rate is easy to capture, we adopt
the indicator of the cache hit rate which shows the performance
decrease of NVM system.

1) Region-merge operation. To perform the region-merge op-
eration, SAWL first picks out the physical location for the new
region, in which the physical location is mapped by one of non-
merged logical locations to avoid choosing the physical locations
that have been occupied by other already merged regions. Then,
SAWL chooses the closest non-merged logical location of the piked
non-merged logical location and merges them. SAWL merges two
logical locations at one merge operation. SAWL further swaps the
data of the new region with the data of the new location, ensuring
that the logical addresses and their physical counterparts of the
memory lines within the newly merged region satisfy the alge-
braic mapping. Finally, we update the address-mapping table on
the NVM and the relevant CMT entries on the SRAM. Fig. 8 depicts
an example of the region-merge operation. As shown in Fig. 8 (a),
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there are three logical regions, e.g., lrn0, lrn1 and lrn5, which are
mapped to prn3, prn8 and prn2, respectively. To merge lrn0 and its
closet logical neighbour lrn1 into one super region, we pick out a
large physical space for the newly merged region (e.g., prn2 and
prn3). We then move out the lines E and F from prn2 (the data can
be temporarily stored on cache). We also migrate the lines C, D of
lrn1 to prn2, and rotate all the memory lines within prn2 and prn3
to ensure addresses of the logical memory lines within the two
regions satisfy the algebraic mapping function. Finally, we write
back the data of lines E and F to prn8 and update the corresponding
entries in IMT and CMT tables, as shown in Fig. 8 (b). After this,
the wlд parameter of lrn0 is changed to 4, which means the lrn0
entry covers four memory addresses at present. Since lrn0 and lrn1
belong to the same large region, the physical region address and
internal offset in IMT are identical. On the address translation, the
NVM obtains the real wear-leveling granularity of a region based
on the number of adjacent regions which have the same address
information.

2) Region-split operation. In contrast to the region-merge
operation, the region-split operation splits a large region into two
smaller regions by migrating the memory lines within the large
region. More specifically, if we use the XOR operation to conduct
address mapping, there is no need to migrate the memory lines
within the old large region since the XOR operation makes the
memory lines within each post-split smaller region contiguous in
the physical space. We only need to update the address-mapping
table and the CMT entries, and the memory lines have already
satisfied the algebraic mapping function. Fig. 9 describes an example
of a simple region-split operation. As shown in Fig. 9 (a), the large
region lrn0 is split into two sub-regions (lrn0 and lrn1). Given that
the memory lines in lrn0 and lrn1 are mapped to the same physical
sub-regions, there is no need to migrate the memory lines if we
keep the original mapping relationship. Since the wear-leveling
granularities of lrn0 and lrn1 changes, we only update the relevant



SAWL ICPP ’20, August 17–20, 2020, Edmonton, AB, Canada

1 0 1 0 0 1 1 0

region address internal offset

 m bits  n bits

(a) initial configuration

1 0 1 1 1 0 1 0

 m-1 bits  n+1 bits
(b) region-merge operation

1 0 1 1 1 0 1 0

(c) region-split operation

1 0 1 0 1 0 1 0

 m bits  n bits

1 0 1 1 1 0 1 0

Figure 10: An example of size scaling for IMT entries.

entries in IMT and CMT tables. The new physical address of the
sub-regions is obtained by the region address XORing with the most
significant bit (MSB) of the offset parameter, e.g., the keys of lrn0
and lrn1. For example, the physical address of lrn0 is calculated by
the 2 ⊕ 1, where ’1’ denotes the MSB of the old key of lrn0. The
new keys is achieved by the least significant bits (LSB) of the old
key, e.g., the old key of lrn0 and lrn1 are 3 (’11’) and its LSB is ’1’
as shown in Fig. 9 (b). After the region-split completes, the lrn0
and lrn1 do not belong to a large region because their physical
addresses are different. In contrast to region-merge operations, the
overhead of region-split operations is extremely low.

To make the region-split operation efficient, we employ two
registers to record the cache hit counts of the first and the second
half of the CMT entries queue, respectively. Since the entries in
CMT are organized in an LRU stack, usually the hit count of the
first sub-queue is larger than that of the second one. If the first one
is far larger than the second one, it means that the addresses in the
second sub-queue are rarely accessed, and splitting the region is
beneficial. Otherwise, the current region size is of a satisfactory
wear-leveling granularity.

To avoid performing the region-split and region-merge opera-
tions too frequently, SAWL tunes the region size only when the
cache hit rate stays over the high threshold or below the low thresh-
old for certain number of requests. Considering the relatively large
region-merge overhead, we only merge the cached regions rather
than all the regions in the entire memory.

3) Implementation details. SAWL merges multiple regions
into one region, so that an IMT entry can cover more addresses
and increase the hit ratio. A naive approach to merge the regions
is to stall the system and merge all regions. However, since a new
IMT entry is needed only when accessing the corresponding re-
gion, it is unnecessary to merge regions and update IMT entries,
which are unused at this time. To reduce the system stalling, we
present a lazy merging and splitting scheme. A data could be ac-
cessed correctly according to the old entries before data have been
moved by a region-merge operation. When reading/writing a re-
gion, our system caches not only the required data but also all the
data in the regions to be merged according to old entries. Then the
region-merge operation for these cached regions is performed, i.e.,
exchanging data and updating IMT and CMT entries. If a read/write
request for the merged regions is issued during the merging process,
the cached data would be used to serve the request instead of the
NVM data which are exchanging. When performing wear-leveling,
system could perform the region-merge operation at the same time
if the region-merge operation is triggered. Region-split operation
only needs to update IMT and CMT entries for the splited regions,
without moving data. System can obtain the correct data address
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Figure 11: The workflow of the address translation.

according to the IMT/CMT entry, whether it is old or new. SAWL
updates the IMT and CMT entries after reading/writing/wear lev-
eling the regions for region-split operation. With the proposed
lazy scheme, SAWL reduces the number of merging and splitting
unnecessary regions and avoids the system stalling.

For the concrete implementation, the NVM systems use the
reserve space to store the IMT table. The capacity of IMT is deter-
mined by an initial wear-leveling granularity (P), i.e., the number of
IMT entries equalsM/P , whereM denotes the number of lines in
the entire memory. In the working process, the size of IMT doesn’t
change. Otherwise, the address migration incurs massive space
overhead, and the address translation becomes extremely complex.
Fig. 10 shows an example of address update for IMT. Each IMT
entry records the address information (including the region address
and offset parameter) according to the initial configuration. For
example,m bits keep the region address, and n bits record the offset
parameter. The sum ofm and n is fixed and determined by the NVM
capacity, i.e.,m+n = loдM2 . After region-merge operation completes,
the region size increases and the number of regions decreases. Thus
we use a small amount of bits to record the region address and lever-
age more bits to record the offset parameter. As shown in Fig. 10 (b),
NVM usesm−1 and n+1 bits to record the region address and offset
parameter, respectively. To indicate the sub-regions belonging to
a large region, their address information is identical. After region
splitting completes, the number of regions increases and more bits
are required to record the region address, while less bits are used
to keep the intra-regional offset, as shown in Fig. 10 (c). In addition,
the address information of the adjacent regions is different. It is
worth noting that the minimum wear-leveling granularity cannot
be smaller than the initial configuration, because the shortened
wear-leveling granularity will significantly increase the size of IMT
table and the NVM does not have sufficient reserved space to store
the increased address-mapping table. The region-split and region-
merge operations result in a dynamic tuning of the wear-leveling
granularities. Given that the number of adjacent regions that have
same address information is n, the real wear-leveling granularity
(Q) is calculated by the formula of Q = n × P .

3.3 Adaptive Address Mapping Algorithm
The wear-leveling process makes the relationship between a logi-
cal address and its physical counterpart dynamic. When a request
arrives at the memory controller, the requested address must be
translated into a physical address that is used to access the under-
lying NVM devices. This address translation in SAWL is facilitated
by the Global Translation Directory (GTD), Cached Mapping Table
(CMT) and Integrated Mapping Table (IMT). The 6-step workflow
of the address-mapping algorithm is shown in Fig. 11.
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SAWL first computes the logical region number (lrn, lrn =
lma/P ) according to the given logical memory address (lma), and
then obtains the logical translation line address (tlma, lrn

P×K ), where
P represents the initial wear-leveling granularity and K is the num-
ber of entries within a translation line, which is 6 in our design
(Step 1). The variable lrn is used to check the CMT table to see if
the translation entry is cached. If yes, the values of the real wear-
leveling granularity (Q), address information (D, the combination
of the physical region number and offset parameter) are obtained
by accessing the SRAM cache (Step 2). If it is a miss, the physi-
cal translation line addresses (tpma) value of the corresponding
translation line is obtained from the GTD table. Using the tpma
value, the translation line can be read from IMT table in DRAM
or NVM devices and placed at the top of the LRU stack (Step 3).
From this line, the Q and D values of this requested address are
found (Step 4). For example, if the lrn we compute is 6k +m, the
mth entry in this line is needed. The physical region number (prn)
and the offset parameter (key) are obtained based on the formula of
prn = D

Q and key = D%Q , respectively (Step 5). Thus, the logical ad-
dress offset (lao) and physical address offset (pao) are lao = lma%Q
and pao = lao

⊕
key (Step 6). Finally, SAWL obtains the physi-

cal memory address (pma) by combining the prn and pao using
pma = prn ×Q + pao (Step 7).

Address translation leads to extra access latency to mainmemory.
The main overhead includes looking up the CMT, GTD and IMT
tables, respectively. In general, the access latency to the CMT and
GTD tables would be about 5 ns due to their residence in SRAM,
while a DRAM/NVM read operation is at least 50 ns. For the CMT
table, the entries cached on SRAM are organized in the LRU list.
Given that the SRAM query consumes 3ns, we hence set 5ns on
average for address translation latency. Our SAWL dynamically
tunes the wear-leveling granularities (i.e., region size) to increase
the number of cached addresses, which improves the cache hit rate
and I/O performance significantly.

4 PERFORMANCE EVALUATION
4.1 Methodology

Table 1: The configurations of the simulated system.

CPU 8 cores, X86-64 processor, 3.2 GHz
Private L1 cache 64KB
Shared L2 cache 512KB
CMT cache 256KB

DRAM/PCM Capacity 128MB/8GB
Read/Write latency model DRAM 50/50ns, PCM 50/350ns [9]
Address translation latency Cache hit 5ns, Cache miss 55ns

In our experiments, we use the Gem5 simulator [1] to evaluate
various wear-leveling schemes and NVMain [16] to examine the
lifetime and cache hit rate in a time-efficient way. The configu-
rations of simulated system are shown in Table. 1. Note that we
simulate a 2GB NVM system in Section 4.3 for evaluating the NVM
life time to reduce the simulation time of system wear-out. We eval-
uate state-of-the-art hybrid wear-leveling algorithms, including the
basic non-tiered architecture (BWL), i.e., PCM-S and MWSR, naive
tiered architecture, i.e., naive wear-leveling scheme (NWL) and
compare them with our SAWL algorithm on the tiered architecture.

In the following experiments, the initial wear-leveling granu-
larity of BWL, NWL and SAWL is set to 4 memory lines to en-
sure that the lifetime MLC-based NVM systems lasts for a long
time under the worst-case attacks. In addition, we use NWL-4 and
NWL-64 to respectively represent the naive wear-leveling algo-
rithm on the tiered architecture with a region consisting of 4 and
64 memory lines respectively. For the SAWL scheme, the lowest
region-merge threshold is set to 90% based on the experimental
observation that the cache hit rate of 90% marks a turning point be-
low which the performance of NVM system decreases significantly.
For the region-split operation, the highest cache-hit-rate threshold
is set to 95%, because the performance evaluation indicates that the
wear-leveling algorithm has slightly impact on NVM performance
within the boundary. The SAWL algorithm automatically tunes
the wear-leveling granularities when the cache hit rate is above or
below this threshold for a long time. Moreover, if the hit ratio of the
first queue OR the hit ratio of the second queue ≥ 99%, the NVM
system splits the region for endurance, thus avoiding the decrease
of cache hit rate after region-split completes.

To evaluate the performance of NVM system under general ap-
plications, we use 14 representative applications from the SPEC
CPU2006 suite [4], which contain highmemory accessing frequency
with at least 100 million read/write requests in each application.
These applications have been widely used in existing lifetime anal-
ysis experiments [17, 26]. We perform evaluations by executing
the benchmark in rate mode, where all the eight cores execute the
same benchmark [23].

4.2 Parameter Training via Sensitivity Study
The key to SAWL is to dynamically adjust the region size, or wear-
leveling granularities, by applying a combination of region-merge
and region-split operations based on the workload behaviors that
are monitored using the observed runtime cache hit rate. To ac-
curately capture the runtime cache hit rate and adjust the region
size in a reliable and cost-efficient way, SAWL relies on two critical
parameters, the size of the observation window for capturing run-
time cache hit rate and the size of the settling window for reliable
and efficient region-size adjustment. In what follows we first define
these parameters and then experimentally determine their values.

1) ObservationWindow Size. SAWLmeasures the current run-
time cache hit rate by calculating the percentage of memory access
requests that hit the cache out of a certain total number of requests
observed, including the most recent one. This total number SOW
of observed requests is called the size of the observation window. We
measure the runtime cache hit rate every 100, 000 requests as it is
not very sensitive for the accuracy of measurement according to
our experiments. However, our experiments revealed that SOW is
a sensitive parameter for the accuracy of the sampled cache hit rate.
To find an optimal value for SOW , we examine how the sampled
cache hit rate changes with the size of the observation window.

Fig. 12 shows the cache hit rates of different sizes of the observa-
tion window as a function of runtime, which is defined by the total
number of requests issued, when running the SPEC CPU2006 soplex
benchmark in a 512KB cache. Specifically, as shown in Fig. 12(a),
when the window size is 220, the cache hit rate fluctuates signifi-
cantly causing SAWL to adjust the region size too frequently to be
efficient. And as the observation window size (SOW ) increases, the
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Figure 12: Cache hit rate as a function of runtime obtained
from different observation window sizes SOW when run-
ning the SPECCPU2006 soplex benchmark in a 512KB cache.
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Figure 13: The region size adjustments as a function of
the runtime with different settling window sizes under the
soplex benchmark.

sampled cache hit rate becomes less fluctuating and more stable,
which brings SAWL to miss the important time points, in these
points, the SAWL needs to split or merge regions, as indicated
by the small green circles in Fig. 12 (c) and (d). Consequently, we
choose 222 as the size of observation window.

2) Settling Window Size. SAWL waits for a certain number of
requests to ensure that the cache hit rate of the observed runtime
is sufficiently stable so as to avoid unnecessary or frequent region
adjustments. This waiting period is called the settling window and
the number of requests to wait is called the size of the settling
window (SSW ). Fig. 13 shows the adjustments of region size as a
function of the runtime (i.e., the number of requests) with different
SSW values under the soplex workload. Specifically, as shown in
Fig. 13(a), a small settling window size, i.e., 220, results in frequent
region size adjustments and incurs high write overhead. On the
contrary, Fig. 13(d) indicates that a large settling window size leads
to SAWL to fail to sufficiently adjust the region size and obtain high

performance since SAWL misses important time points of splitting
and merging regions. In fact, the cache hit rate decreases to 85.5%.
As a result, we argue that the settling window sizes in Fig. 13 (b)
and (c) are much better. By training the parameters in Fig. 12 and 13,
we experimentally determine the best SOW and SSW values are
both 222.

In order to validate the efficiency and effectiveness of the values
of SOW and SSW determined experimentally above, we evaluate
the average cache hit rates of SAWL under the three representative
benchmarks ofbzip2, cactusADM andдcc respectively. As shown in
Fig. 14, the average cache hit rates of the three workloads are 94.5%,
88% and 91.3%, respectively, which are close to those of NWL-64.
SAWL improves the hit rates via increasing the region size when
the hit rate becomes too low. Furthermore, the average region size
of SAWL is about 16 memory lines in all workloads, which means
that the BPA lifetime of NVM is about 20 months even under the
worst-case workload.

4.3 NVM Lifetime
1) NVM lifetime under the BPA program.We use the BPA pro-
gram to simulate the lifetime of an NVM system under the worst-
case scenario and use the result to evaluate the robustness of the
NVM system. We vary the swapping period from 8 to 64, which are
used in PCM-S, MWSR and SAWL, as shown in Fig. 15. We observe
that smaller swapping period increases the NVM lifetime for PCM-S
and MWSR, but at the cost of high write overhead. SAWL achieves
much higher lifetime than PCM-S and MWSR, due to storing all
address mappings in NVM and no limitation on the number of
regions. Fig. 15 shows that SAWL improves 25% ∼ 51% (50% ∼ 78%)
of ideal lifetime for the MLC-based NVM system with 106 (105) cell
endurance, compared with PCM-S and MWSR.

2) NVM lifetime under general applications. We evaluate
the lifetime of an MLC-based NVM system under general appli-
cations. Since the requested address of the real-world workload
changes every time, to evaluate the lifetime of an NVM system,
the simulation must trace each request until the NVM system fails,
which takes so much time that is unpractical. In order to reduce
the running time, we simulate a 2GB NVM system with endurance
of 105. The normalized lifetime results can also be used to other
large-capacity NVM systems. The entire space is divided into 4K ∼

1M regions, and the exchange periods of TLSR, RBSG and SAWL
algorithms are fixed at 128. Note that 4K regions are the standard
configuration for TLSR and RBSG algorithms, and 1M regions are
beneficial to our SAWL scheme.

Fig. 16 shows the normalized lifetime of the MLC-based NVM un-
der the general benchmarks. The baseline system without any wear-
leveling algorithm suffers from poor lifetime due to non-uniform
underlying writes distribution. For the RBSG algorithm, the average
lifetime (harmonic mean) of the MLC-based NVM system under all
the benchmarks achieves 15% of the ideal lifetime (ranges from 5%
to 81%). The RBSG performs unsteadily since the static address map-
ping fails to balance inter-regional write distribution under various
benchmarks. In contrast to RBSG, the results of the TLSR algorithm
are much more stable for average lifetime, achieving an average life-
time that is 43.1% of the ideal lifetime. What’s worse, underдromacs
and hmmer benchmarks, the lifetime of MLC-based NVM system
decreases to 10% of ideal lifetime, because the writes concentrate on
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Figure 14: The runtime hit rates and region size adjustments under the three representative benchmarks.
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(a) 106 endurance
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(b) 105 endurance

Figure 15: The normalized lifetime of the MLC-based NVM
systemwith PCM-S,MWSR and SAWLunder different swap-
ping periods.

b z i p 2 g c c m c f m i l c
g r o m a c s
c a c t u

s A D M
l e s l i e

3 d n a m d
g o b m k

s o p l e xh m m e r s j e n g
l i b q u a n t u m l b m

H m e a n
0

2 0
4 0
6 0
8 0

1 0 0

( b )  1 M  r e g i o n s  ( w e a r - l e v e l i n g  g r a n u l a r i t y  b e i n g  8 )

( a )  4 0 9 6  r e g i o n s  ( w e a r - l e v e l i n g  g r a n u l a r i t y  b e i n g  2 0 4 8 )

No
rm

aliz
ed 

life
tim

e (
%)  B a s e l i n e    R B S G    T L S R    S A W L

b z i p 2 g c c m c f m i l c
g r o m a c s
c a c t u

s A D M
l e s l i e

3 d n a m d
g o b m k

s o p l e xh m m e r s j e n g
l i b q u a n t u m l b m

H m e a n
0

2 0
4 0
6 0
8 0

1 0 0

No
rm

aliz
ed 

life
tim

e (
%)  B a s e l i n e    R B S G    T L S R    S A W L

Figure 16: The lifetime of the MLC-based NVM system with
RBSG, TLSR and SAWL under general applications.

a fraction of the address space. These experimental results clearly
show that both the static and dynamical random address-mapping
schemes are inadequate for most benchmarks. Compared to the
existing wear-leveling algorithms, SAWL improves NVM lifetime to
85.1% of the ideal lifetime. Under the most non-uniform distribution
benchmarks, e.g., дromacs and hmmer , SAWL still enhances NVM
lifetime to 82% and 70%, respectively. In addition, the extra write
overhead of the SAWL algorithm is less than 1% and can be ignored.
With the increase of the number of regions (1M regions), the SAWL

algorithm can obtain higher lifetime, while the lifetime of RBSG
and TLSR is lower, as shown in Fig. 16 (b). The average lifetime of
MLC-based NVM is extended to 9.8%, 40.5% and 92.5% under RBSG,
TLSR and SAWL schemes. In summary, the experimental results in
Section 2.1 and 4.2 illustrate that the SAWL algorithm significantly
improves the lifetime of the MLC-based NVM system under both
malicious attacks and general applications.

4.4 Performance Impact
In general, a fine-grained wear-leveling region could improve life-
time but degrade performance.We compare NWL-4 (4-memory-line
wear-leveling granularity on PCM-S and MWSR) and BWL with
SAWL on IPC performance. We used the Gem5 simulator [1] to
evaluate the performance impact of SAWL. In our experimental
platform, the system consists of an 8-core processor (3.2 GHz), pri-
vate 32KB L1 cache, and the shared 512 KB L2 cache. The read and
write latencies of DRAM are both 50ns, while those of MLC-based
NVM (e.g., RRAM) are 50ns and 350ns [9], respectively. We use
a queue length of 128 and the FR-FCFS scheduling scheme in the
memory controller. The address translation requires 5 ns (i.e., 16
cpu cycles) when the address is hit in the cache. Otherwise, it con-
sumes 55ns. We run the 14 SPEC2006 applications mentioned above
and compare the IPC measure with, i.e., normalized to, the Baseline
(without any wear-leveling scheme). The swapping period of the
SAWL algorithm is set to 128. As shown in Fig. 17, the average IPC
measure of the BWL, NWL-4 and SAWL schemes is decreased by
23%, 10% and 5%, respectively. Some applications, such as the bzip2
and milc , show only slight IPC degradation. This is because the
memory accesses in these applications are relatively sparse and
the most requested addresses can be hit in the cache. Therefore,
the results demonstrate that the performance impact of SAWL is
arguably negligible.

4.5 Hardware Overhead
In this subsection, we examine the hardware overhead of the
SAWL algorithm. Given that an NVM system consists of 2n re-
gions with each containing 2m lines, the space overhead of IMT
table isO(IMT ) = 2n ×(m+n) bits. The number of translation lines
is l = O (IMT )

8×256 , and the GTD overhead is O(GTD) = l
Kt × loд(l),

where Kt denotes the wear-leveling granularity of the translation
lines.

For a 64GB NVM system with 64M regions, the spatial over-
head of the IMT table is 224MB based on the calculation of
64M × 26/8, which consumes 0.3% (224MB/64GB) NVM space.
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Figure 17: IPC degradation of the NVM system (normalized
to the baseline without wear leveling) with various wear-
leveling schemes under the SPEC CPU2006 applications.

Based on above discussion, the GTD table occupies 80KB with
the wear-leveling granularity of 32. According to our above eval-
uation, 64/128/256/512KB space overheads are all suitable for the
CMT table. Therefore, the self-adaptive wear-leveling algorithm
consumes affordable hardware overhead.

5 CONCLUSION
MLC techniques can be used in the NVM systems, which leads
to their rapid growth in device capacity but at the cost of much
weaker endurance than their single-level-cell versions. Existing
wear-leveling algorithms are shown to have their respective short-
comings for MLC-based NVM systems. While hybrid wear leveling
has the potential to improve NVM lifetime, it incurs huge on-chip
space overhead. The basic architecture, which stores the entire
address mapping table on the NVM devices, leads to unacceptably
severe performance degradation due to the very long address trans-
lation latency. To thoroughly address this problem, we propose
a tiered wear-level architecture and a self-adaptive wear-leveling
(SAWL) algorithm that dynamically tunes the wear-leveling granu-
larities to accommodate more useful addresses in the cache, thus
improving cache hit rate and system performance. Experimental
results demonstrate that SAWL is effective and robust.
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