
2012 Proceedings IEEE INFOCOM

HOSA: Holistic Scheduling and Analysis for

Scalable Fault-tolerant FlexRay Design

Yu Hua Xue Liu Wenbo He
School of Computer, WNLO

Huazhong University of Science and Technology
Wuhan, China

csyhua@hust.edu.cn

School of Computer Science
McGill University

Montreal, Quebec, Canada
xueliu@cs.mcgill.ca

School of Computer Science
McGill University

Montreal, Quebec, Canada
wenbohe@cs.mcgill.ca

Abstract-FlexRay is a new industry standard for next
generation communication in automotives. Though there are a
few recent researches on performance analysis of FlexRay, two
important aspects of the FlexRay design have been overlooked.
The first is a holistic integrated scheduling scheme that can
handle both static and dynamic segments in a FlexRay network.
The second is cost-effective and scalable fault-tolerance. In
order to address these aspects, we propose a novel holistic
scheduling scheme, called HOSA, which can provide scalable
fault tolerance by using flexible and ease-of-use dual channel
communication in FlexRay. HOSA is built upon a novel slot
pilfering technique to schedule and optimize the available slots in
both static and dynamic segments. Moreover, in order to achieve
efficient implementation, we propose approximate computation,
which can efficiently support cost-effective and holistic schedul
ing by judiciously obtaining the tradeoff between computation
complexity and available pilfered slots. HOSA hence offers two
salient features, i.e., providing fault-tolerance and improving
bandwidth utilization. Extensive experiments based on synthetic
test cases and real-world case studies demonstrate the efficiency
and efficacy of HOSA.

I. INTRODUCTION

Modern automobiles are often driven by wire (X-by-wire),
including Anti-lock Braking System (ABS), electronic steer
ing, and Electronic Stability Control (ESC) systems. These
systems involve large amounts of sensors, actuators and Elec
tronic Control Units (ECU) working together. This highly
sophisticated interaction heavily relies on a communication
system that connects different parts in an efficient manner.
FlexRay [1] is an automotive network communications infras
tructure developed by the FlexRay Consortium. It has become
the de facto standard in the automotive industry. FlexRay
provides a communication infrastructure for future generation
high-speed X-by-wire applications in vehicles. These appli
cations are mostly real-time and safety-critical [2]. FlexRay
hence aims to provide hard real-time capabilities through
cycle-based and time-triggered communications. The FlexRay
standard is being deployed in the major line of new vehicles.
For example, the new BMW-7 series are equipped with
FlexRay-based brake system [3]. FlexRay provides two chan
nels with a high bandwidth of 10 Mb/s each and offers multiple
benefits compared with previous protocols, say Controller
Area Network (CAN) [4], across a wide range of automotive
applications. These benefits include high speed, fault tolerance,
and a deterministic cycle-based message transport, along with

a synchronized, common time base to all nodes in the system.
FlexRay is an open standard. It aims to provide scalable,

deterministic and high performance communication for au
tomotive applications. However, in order to be practical in
automotive products and obtain significant performance im
provements, two challenges need to be carefully and efficiently
dealt with.

Isolated Scheduling: FlexRay is a real-time system
to schedule time-triggered and event-triggered messages.
FlexRay supports the transmission of periodic messages in
static segments (SS) and priority-based scheduling of event
triggered messages in dynamic segments (DS). Periodic mes
sages are transmitted in the unique static slots of SS according
to time division multiple access (TDMA). The operation of the
FlexRay SS is similar to the time-triggered protocol (TTP) [5].
Moreover, aperiodic messages are sent in the dynamic slots
of DS that is similar to ByteFlight [6] and employs a flex
ible TDMA (FTDMA) approach. In both cases, the timely
message delivery depends on the message schedule that is
statically configured before the network starts to operate. The
scheduling computation involves assigning the static slots for
the periodic messages as well as the priority based dynamic
slots assignment for the aperiodic messages.

Most existing work, however, only considers the schedul
ing for either static segments [2], [7]-[9] or dynamic seg
ments [10]-[12]. This isolated scheduling severely limits the
performance in terms of bandwidth utilization and transmis
sion latency.

Limited Fault Tolerance: In FlexRay networks, faults
may be frequent and ubiquitous due to radiation, interference
and temperature variation. Such faults can be classified into
permanent and transient faults [13]. Permanent faults are
usually caused by physical damages and lead to long-term
malfunctioning. Transient faults usually result in the mis
calculations in the logic and data corruption and last for a
short duration. X-by-wire automotive applications are safety
critical. They require data integrity even with the occurrence
of transient faults. Moreover, with the increasing numbers of
rich electronic devices in cars (e.g., around 2500 signals are
exchanged among 70 ECU s of luxury cars [4], [14]), handling
transient faults demands efficient fault-tolerant techniques to
improve the system reliability.

Unfortunately, existing work fails to efficiently address the

978-1-4673-0775-8/12/$31.00 ©2012 IEEE 1233

above challenges. Specifically, although FlexRay has been
widely used as an in-vehicle communication network, its ap
plicability is severely hindered in high-speed safety-critical X
by-wire systems [15]. Flex Ray does not provide acknowledge
ment or re-transmission schemes and hence there is limited
guarantee on message delivery for reliability. Moreover, the
authors in [16] formulated the scheduling problem as a mixed
integer linear programming algorithm, but its design goal was
to re-transmit as many faulty messages as possible, which may
fail to offer reliability guarantee due to that the re-transmitted
messages are chosen in an ad-hoc manner. The re-transmission
of faulty messages can improve the reliability with extra loads
in the bandwidth and additional transmission latency. Recently,
authors in [8] uses systematic probabilistic analysis to provide
formal guarantee on desired reliability levels. However, this
work only considers the static segments of Flex Ray.

In order to address the above challenges, we propose a novel
holistic scheduling scheme, called HOSA. HOSA considers
both SS and DS in the holistic scheduling design and can
support scalable fault tolerance and improve bandwidth uti
lization. Specifically, we make the following contributions.

Holistic Scheduling. FlexRay is a high-bandwidth com
munication protocol with a cyclic operation. Each FlexRay
cycle consists of a static segment and a dynamic segment.
The former is designed for the periodic transmission of real
time data, while the latter supports the transmission of low
priority data and event-triggered (aperiodic) real-time data.
HOSA employs a novel holistic scheme to schedule both static
segments and dynamic segments in a unified manner. Fast and
accurate slot computation allows HOSA to identify available
static slots that can be pilfered by the task that transmits
dynamic messages. Idle slots are hence minimized and HOSA
achieves high bandwidth utilization.

Scalable Fault Tolerance. Scalable fault tolerance refers
to the ability of the FlexRay protocol to operate in the
configurations that provide various degrees of fault tolerance.
HOSA is compliant with existing schemes for scalable fault
tolerance, and focuses on flexibly scheduling dual channel
communication and efficiently optimizing bandwidth utiliza
tion. HOSA implements this through the design of a novel
slot pilfering technique. It further leverages approximation
computation to significantly reduce the complexity with slight
impact on the available pilfered slots.

System Implementation. In order to examine the perfor
mance of our proposed HOSA scheme in FlexRay networks,
we implement HOSA in a prototype testbed. The prototype
contains all the mentioned components and functionalities.
We use synthetic test cases and real-world case studies from
the automotive industry to evaluate the system performance in
terms of overall running time, bandwidth utilization, deadline
miss ratio and average transmission latency for both static
and dynamic segments. Experimental results demonstrate the
efficiency and efficacy of HOSA. For instance, compared with
the existing industrial FlexRay implementation [1], HOSA
obtains about 50% improvements on bandwidth utilization and
61.5% reduction in transmission latency.

The rest of this paper is organized as follows. Section II
presents the FlexRay scheduling model. Section III describes
the holistic scheduling on both static and dynamic segments.
We present the performance evaluation and related work
respectively in Section IV and V. Finally, we conclude our
paper in Section VI.

II. SCHEDULING MODEL
In this Section, we illustrate the architecture of a FlexRay

cluster and its communication cycle that contains static and
dynamic segments. We further describe the dual-channel based
design in HOSA, which supports holistic scheduling on the
FlexRay segments.

A. FlexRay Cluster

A FlexRay cluster consists of the network nodes connected
by FlexRay communication channels as shown in Figure 1.
Flex Ray allows a cluster to be flexible configuration of net
work topology, such as bus, star or hybrid connection. A
cluster is a communication system that contains mUltiple nodes
connected via at least one communication channel directly
in a bus topology or by star couplers in a star topology.
Moreover, each node in a Flex Ray cluster consists of a host
and a communication controller (cq, which are connected
by a controller-host interface (CHI). The host is a part of an
Electronic Control Units (ECU) where the application soft
ware is executed to handle incoming messages and generates
outgoing messages. The communication controller implements
the FlexRay protocol services. CHI serves as a buffer between
the host and the Cc.

Fig. I . Illustration o f a FlexRay Cluster.

In order to support real-time message communication, a
bus driver that has a transmitter and a receiver connects with
the communication controller to one communication channel
that supports the inter-node connection. The bus driver also
maintains clock synchronization with other nodes, constructs
and checks cyclic redundancy code verification. The network
nodes thus exchange periodic and aperiodic real-time messages
that are transmitted in FlexRay communication cycles.

B. Communication Cycle

FlexRay divides available bus bandwidth into mUltiple com
munication cycles in a time-triggered manner. The communi
cation cycle is an instance of the communication structure that
is periodically repeated. As shown in Figure 2, the commu
nication cycle consists of a static segment (SS), a dynamic

1234

segment (DS), a symbol window (SW), and a network idle
time (NIT). The symbol window describes a communication
period and in this period, Flex Ray allows a symbol to be
transmitted on the network. The network idle time describes a
communication-free period and contains the remaining number
of macroticks, which have not been allocated to the previous
three parts (i.e., static segment, dynamic segment, and symbol
window).

Communication
Cycle Level

o 2

Fig. 2. Communication Cycles.

62 63

FlexRay uses static and dynamic segments for message
transmission. Specifically, the static segment of the com
munication cycle supports the transmission of time-critical
messages according to a periodic cycle. Within this cycle,
a time slot is always reserved to the same network node.
The used slot has the fixed length and is assigned to a
given position in the entire segment. On the other hand, the
dynamic segment offers flexible communications, in which
message transmission is arbitrated by identifier priority (For
example, the lowest identifier messages are transmitted first).
Each node only needs to know the time slots for its incoming
and outgoing communications. The specification of these time
slots is maintained in local scheduling tables. The dynamic
property of the slot comes from the fact that its duration may
vary according to the length of the transmitted frame. Overall,
the time-triggered model of Flex Ray can hence provide time
determinism for message delivery.

The scheduling on message delivery depends on the man
agement of frame ID. A frame ID indicates the slot in which
the frame should be transmitted. A frame ID is used no more
than once in each channel in a communication cycle. Each
frame to be transmitted in a cluster has a frame ID assigned
to it. FlexRay distinguishes the frame IDs between static and
dynamic segments.

C. Static and Dynamic Segments

Static and dynamic segments are the structures of message
delivery in a FlexRay network. Static segment is a portion of
the communication cycle where the media access is controlled
via a TDMA scheme. FlexRay can determine the access
to the media in a static segment only by the progression
of time. Furthermore, the dynamic segment portion of the
communication cycle makes use of Flexible Time Division
Multiple Access (FTDMA) to schedule the media access via
a mini-slotting scheme. The minislot is a time interval of
the dynamic segment to support flexible timing configuration.
FlexRay then allows the dynamic segment access to the media
based on a priority manner for the nodes to transmit data.

Static and dynamic segments demonstrate different formats
and functionalities in the communication slots. Specifically,
static communication slot is an interval of time. The access to
a communication channel is allowed exclusively to a specific
node for transmitting a frame with a frame ID that corresponds
to the slot. Each static communication slot contains a constant
number of macroticks regardless of whether or not a frame is
sent in the slot. In the static segment, all communication slots
are of identical and static configuration.

Furthermore, dynamic communication slot contains one or
more minislots. The smallest time unit in a DS is the minislot
with a duration representation of gdMinislot. A DS contains
a maximum number of gNumberOfMinislots (between 0 and
7986) minislots. Unlike a static communication slot, FlexRay
allows the duration of a dynamic communication slot to vary
depending on the length of the frame. A variable vSlotCounter
contains the ID of the current dynamic slot starting from a
pre-configured value. In each dynamic slot, a frame with the
corresponding ID is transmitted, and hence the duration of the
dynamic slot is determined by the length of the transmitted
frame. If no frame is sent, the duration of a dynamic commu
nication slot is equal to that of one minislot. In fact, frames
are transmitted within dynamic slots that are superimposed on
the minislots.

D. Dual Channel Design

Dual channel design in the FlexRay specification [1] of
fers flexible transmission patterns for the static and dynamic
segments. Specifically, for scheduling static segments, each
network node maintains a slot counter variable SlotCounter(A)
for channel A and a slot counter variable SlotCounter(B) for
channel B. Both slot counters are initialized with 1 at the be
ginning of each communication cycle and further incremented
at the end of each communication slot.

SloICountcr(A)=] SIOtCOW1ICr(A)=2 SlotCounlcr(A)=3

Channel A Frame ID I I Frame ID 3

Channel B Frame ID I Frame ID 2

sloICOUlltL>r(B): I SloICoulllcr(B)=2 SlotCountcr(B)=J

Static Slot 1 Static Slot 2 Static Slot 3

Fig. 3. Scheduling static segments.

Figure 3 illustrates the transmission patterns in a single node
that makes use of the static segments. The scheduling on static
segments depends upon the operations defined in a schedule
table. For example, in slot 1 the node transmits a frame on
channel A and a frame on channel B. In slot 2 the node
transmits a frame only on channel B. For scheduling dynamic
segments, each network node maintains two slot counters,
respectively for channels A and B, in scheduling the dynamic
segments. Figure 4 illustrates the scheme of scheduling the
dynamic segments. Note that although the slot counters for
channel A and for channel B are incremented simultaneously
within the static segment, their values can be incremented
independently according to the dynamic arbitration scheme.

1235

SlotCoUillcr(A)=n n+l n+2 n+3 n+4 n+5 n+6

Channe�
1 A�=���r=T=r=r.2=;��,=+-Channel B

SlotCoulltcr(B =11 n+l n+2 n+3 n+4 n+5

Dynamic Segment containing multiple millis/als

Fig. 4. Scheduling dynamic segments.

III. HOLISTIC SCHEDULING

This Section presents the holistic scheduling for both static
and dynamic segments with the aid of slot pilfering technique.

A. FlexRay Node Architecture

A FlexRay network supports dual-channel communication
to offer the guarantee of transmission reliability. Figure 5
shows the node architecture for scheduling static and dynamic
segments in the dual channel. Each node uses a schedule table
to maintain and schedule the messages to be transmitted in the
static segments, while using priority queues for the dynamic
segments. Here, we use capital letter to represent the original
messages and lower case for corresponding redundant ones.

Node I
&:hedule Tllhles Priority Queues

r------------.. r-----------------I

r

l

'hmm'�: I
Chmm
:�J i i ��:: ;am�':� �:' :"'�"c111 i

I I I M,; Mh Ills M, I
: 213 1/4:: :
i 1/2 1/2 i i I 3 I 2 i
L _____________ I 1 _________________ L

Node 2
Schedule Tllhles Priority Queues

r ------------ '1-----------------, i Chmmcl A Chmmclili

�
Ch"m
�
>C1 A
�
CI""'
�
"c111 i

I I I I
: : : 1l1e Mr Mq :

:
GG

:
:

M, M. m, M. :
I 211 214 I I I
I I I I
: III 1/3:: 2 4 3 4 : I I I I
1 _____________ 11 _________________ I

I
Fig. 5. Node architecture for static and dynamic segments in a dual channel.

Static and dynamic segments have different scheduling
schemes to allow a message to be transmitted. First, for
scheduling static segments, a message in the schedule table has
a timing based sequence, i.e., the number of cycles and slots.
For example, the message Ma is transmitted on the second slot
of the first cycle, represented as "112". On the other hand, for
dynamic segments, we allocate the slot number to each node
and all messages in each priority queue will be scheduled in
the fixed priority way. For example, node 1 sends the messages
to slots 1 and 3 of channel A. For each of these slots, CHI
provides a buffer that can be written by the host and read by
the communication controller. At the beginning of each slot,
the communication controller needs to read the messages in
the buffers so as to facilitate the transmission of frames.

In order to significantly reduce the potential transmission
collision and obtain the performance improvement, during any
communication slot, Flex Ray only allows one node to send
messages on the bus. This node needs to transmit the message
with the frame ID that is equal to the current value of the slot
counter. We set two slot counters that respectively correspond
to the static and dynamic segments. In the design phase, we
decide and allocate the frame identifiers to nodes. Each node
to send messages has one or more static and/or dynamic slots.

For static and dynamic messages, we further leverage differ
ent schemes to decide which messages are transmitted during
the allocated slots. For static messages, there exists a schedule
table with the transmission time in each network node. When
transmitting a static message starts, a given message is placed
into its associated static buffer in the CHI. For example, static
message Ma sent from node I has an entry "112" in the
schedule table specifying that it should be sent in the second
slot of the first static cycle.

On the other hand, for scheduling dynamic messages, there
is an assumption that Frame ID is specified in advance. For
example, as shown in Figure 5, dynamic message Mh has the
frame identifier "3". Moreover, FlexRay allows a node to send
different messages using the same dynamic Frame ID. For
example, messages Mj and Mh on node 1 have both Frame ID
3. If two or more messages with the same frame ID prepare
to be sent in the same bus cycle, a priority scheme is used
to decide which message will be sent first. By considering
the dual-channel transmission, each dynamic message Mi or
mi has their associated priority, say prioritYMi or prioritYmi'
Messages with the same Frame ID will be inserted into a local
output queue, in which we order them based on their priorities.
The message from the head of the priority queue will be sent
in the current bus cycle. For example, message Mh will be sent
before Mj because it has a higher priority.

In addition, original and redundant messages may be not
identical in the receiver node, although this case occurs with
very small probability. In this case, the receiver node will
require a retransmission.

B. Dual Channel Scheduling

Figure 6 shows the periodic communication that has two
cycles of length in channel A and B. Each cycle contains
two time intervals with different access policies (a static and
a dynamic segment). They have different lengths that are
fixed over the cycles. Moreover, both the static and dynamic
segments have multiple slots. In the static segment, FlexRay
allows the slots number to be fixed. The length of these
slots are constant and equal, regardless of whether static
messages are sent or not in that cycle. FlexRay uses the global
configuration parameter gdStaticSlot to specify the length of a
static slot [1]. As shown in Figure 6, there are four static slots
for the static segment. Note that a FlexRay cycle generally
contains a symbol window and a network idle time. Since
they are actually not related with our scheduling analysis, for
simplicity, we ignore them in the examples.

The performance in practical FlexRay networks relies on
the definition of the dynamic segments' lengths. FlexRay
specifies the length of the dynamic segment in the number of
"minislots", which is equal to gNumberOfMinislots. During
the transmission of dynamic segments, if there is no message
to be sent during a slot, the length of this slot becomes
very small. Otherwise, the dynamic slot offers a transmission
length, i.e., the number of minislots, to allow for transmitting
the whole message.

1236

Channel A
T, .. ' ..

Static segment , Dynamic segment : Static segment -.-

..'
, Dynamic segment :

-I- _.

Channel B

3 4

I I

3 4 1

I I

3 4 1 2

T,
1 Static segment , Dynamic segment : Static segment
I- _... _._

- '
, Dynamic segment :

-. .. -.

3 4 2 3 4 1 2 3 1 2 3 45

Fig. 6. Dual channel scheduling on static and dynamic segments.

At the beginning of each communication cycle, the com
munication controller of a node resets the counters of slots
and minislots for initialization configuration. Moreover, the
controller also needs to check if there exist messages to be
transmitted, which will be further organized into the frames.
As shown in Figure 6, there exists an assumption that all
messages to be transmitted are ready before the first bus
cycle. In practice, due to different schemes in scheduling static
and dynamic segments, the transmission scenarios would be
different. Specifically, static segments use a schedule table to
select the messages into static frames to transmit in the bus
cycle. For example, messages M, and M p are placed into the
associated static buffers in the CHI in order to be transmitted
in the first bus cycle.

Moreover, transmitting a dynamic message is constrained
and conditional. Only if there exist enough idle slots until
the end of the dynamic segment, the selected messages can
be transmitted during the dynamic segment of the bus cycle.
In the real implementations, when the dynamic slot counter
reaches the value of the Frame ID of the transmitted message,
FlexRay needs to check if the current value of the minislot
counter is smaller than a given value pLatestTx. For each
network node, the value pLatestTx is fixed and depends
upon the size of the largest dynamic frame. For example,
message Me prepares for transmission before the first bus cycle
starts. However, after message mr is transmitted, there are not
enough slots left in the dynamic segment. This will delay the
transmission of Me for the next bus cycle.

C. Holistic Scheduling Segments

In order to optimize the bandwidth utilization and offer sub
stantial performance improvements, we use holistic scheduling
upon the static and dynamic segments in the FlexRay net
work. Specifically, we consider the transmission of static and
dynamic segments respectively as hard deadline periodic and
soft deadline aperiodic tasks. The design goal is to schedule a
mixture of periodic and aperiodic tasks in a dual channel to
guarantee that all periodic deadlines are met and the response
time for the aperiodic tasks can be as small as possible in
the FlexRay network. Holistic scheduling scheme hence offers
available time for completing the aperiodic tasks by "pilfering"
all the processing time from the periodic tasks without causing
their deadlines to be missed.

The main idea behind slot pilfering comes from the practical
observations and long-term experiences. When an aperiodic

request arrives, the slot judiciously pilfers all the available slots
from periodic tasks, which are used to satisfy the aperiodic
requests. On the other hand, when there are no pending
aperiodic requests, we schedule the periodic tasks as usual.
We further formulate the slot pilfering technique in a FlexRay
network that contains n periodic tasks, 'LI, 'L2,'" , 'Ln.

Definition 1. Each task, 'Li(I � i � n), is denoted by a 4-tuple
'Li = {q,1j,<pi,dd , where q is the worst-case computation
requirement, 1j is a period, <Pi(O � <Pi � 1j) is an offset
relative to time origin, and di (di � 1j) is a hard deadline. We
assume that the parameters Ci, 1j, <Pi and di, are the known
deterministic quantities.

A fixed priority algorithm, say deadline monotonic algo
rithm [17], can schedule these tasks. In the meanwhile, the
tasks with smaller value of di are allocated higher priority.

We leverage differentiated representation for scheduling the
tasks of static and dynamic segments. For a periodic task
'Li for the static segment, it leads to an infinite sequence
of jobs. We further consider the scheduling on aperiodic
tasks for dynamic segments as the problem of parameter
optimization. Specifically, we place an aperiodic task for a
dynamic segment into the queues based on deadline orders.
The slot value, associated with an enqueued aperiodic task for
the dynamic segment, demonstrates how many available slots
can be allocated to facilitate its processing, while its deadline
is still met. In order to achieve this goal, we need to use
the value of available slots to offer transmission guarantee.
New aperiodic tasks for dynamic segments will not incur
its deadline to be violated. At the same time, all periodic
deadlines for scheduling static segments are also guaranteed.
Therefore, the remaining processing time can be competed
between hard and soft aperiodics. We further describe the
aperiodic task for scheduling a dynamic segment.

Definition 2. The aperiodic task lk for scheduling a dynamic
segment is represented as a 3-tuple, lk = {abPbDd, where
ak is the associated arrival time, Pk is the processing re
quirement and Dk is the hard deadline. In order to support
the retrieval of aperiodic tasks, HOSA defines that 0 � ak �
ak+1 ,k 2': 1.

Based on the above definitions, HOSA aims to minimize
the response time of lb represented as Rk. Specifically, we
consider W(t) = Lklak<::t Pk as a cumulative aperiodic workload
process. This process collects all the aperiodic tasks. These
tasks share the same property of the arrival time within the
interval [O,t]. Moreover, a cumulative aperiodic execution
process, lOt, is a continuous function with the property of
lOt � W(t),t 2': O. HOSA thus describes the completion time
of lb as Tk = min{tl£t = L�I Pi}. Therefore, HOSA achieves
Rk = Tk - ak·

In order to efficiently support the holistic scheduling on the
static and dynamic segments in the dual channel, we need to
determine the maximum processing time that can be pilfered
from hard deadline periodic tasks. FlexRay communication
system can use a slot pilferer to schedule the static and

1237

dynamic segments. The slot pilferer can efficiently address the
problem of minimizing the response times of soft aperiodic
tasks, while offering the guarantee that the deadlines of hard
periodics are also met.

D. Slot Pilfering

We leverage a slot pilfering algorithm [18]-[20] to op
timize bandwidth utilization and offer flexible dual-channel
scheduling. The slot pilfering algorithm can minimize the
response times of soft aperiodic tasks. In order to support
aperiodic requests, a slot pilferer needs to find spare processing
time by effectively pilfering (i.e., stealing) the slots from the
hard deadline periodic tasks. ROSA hence needs to determine
the maximum amount of slots, that can be pilfered, without
violating the hard timing constraints.

The slot pilfering algorithm presents the method to find
the available slots for transmitting both static and dynamic
segments in a dual-channel way. Specifically, we first imple
ment this by modeling the processing schedule for the hard
periodic tasks. We then check the slots among the deadlines
of executing sequential tasks. ROSA stores and maintains the
values found in a table. In practice, we make use of a set of
counters to record the slots that are possible to be pilfered
at different priority levels. We further decrease the values of
these counters by considering the tasks that are carried out or
updated with the reference to the table. We finally determine
the maximum amount of processing time that is possible to be
pilfered from executing a hard deadline task without causing
its deadline to be missed.

In the context of FlexRay design, we have the following
assumption: (1) Each instance uses its worst case execution
time; (2) The deadline of each task for scheduling either static
or dynamic segment is less than or equal to its minimum inter
arrival time; (3) There is no synchronization or jitter in the task
set for scheduling either static or dynamic segment. We also
present the used notation for describing task i. Specifically,
given an interval time [O,t], li,t is the time when task i was
last released, and Xi,t is the earliest time when task i was next
released. Moreover, di,t is the next deadline on executing task i
and Ci,t is the remaining time for executing task i. ROSA thus
has Xi,t = li,t + 'Ii. When task i is complete, we have di,t =

Xi,t + Di, which is actually the deadline for the next release.
In addition, we can obtain the value of Ci,t by subtracting the
execution time used in the worst case execution time, C;, and
Ci,t = 0 if task i is complete at time t.

In order to efficiently carry out holistic scheduling on both
static and dynamic segments, during the execution interval
[t,t+di,t), we aim to find the maximum amount of slot time,
represented as S'f'tax. The time may be pilfered in the priority
level i. In the me�ntime, we need to guarantee that task i meets
its deadline. In order to efficiently compute the maximum slot
time, i.e., S;:X, we need to examine the slot computation in the
interval [t ,t + di,t), in which there exist a number of level i busy
and idle periods for holistic scheduling. Specifically, a level i
busy period refers to a continuous time interval, during which
the execution queue contains one or more tasks with priority

level i or higher. Instead, a level i idle period is a time interval
during which the execution queue is free of level i or higher
priority tasks. Therefore, any level i idle time between the
completion of task i and its deadline could be pilfered for task
i computation without causing the deadline to be missed. We
argue that the maximum slot that may be pilfered is equal to
the overall level i idle time in the interval. We further leverage
this result to calculate S'f:tax.

ROSA computes the level i idle time with the aid of
two important equations, i.e., w'f:t+! and Vi,t(Wi,r). The former
demonstrates how to determine Wi,t that represents the length
of a level i busy period beginning at time t. By considering a
given start time, the latter can determine the length of a level
i idle period. We hence execute the iteration computation over
the interval [t , t + di,t) and summarize all the idle times to find
S'f:tax. We first compute wrr+! = Si,t + LVjEHighPriority(i)Ui(Cj,t +

max(w�-xj',D) . .
r ':;'. ' 1 Cj), ill WhICh Si,t represents the level i slot
processing that is released at time t for FlexRay's segments.
This equation in fact takes into account two components to
decide the extent of the busy period for scheduling FlexRay's
segments. The first part shows the level i or higher priority pro
cessing at time t. The second part shows the level i or higher
priority processing released during the busy period, which
actually exhibits a recursive definition during the scheduling
for FlexRay's segments.

We further discuss how to obtain the value of Wi,t in
a FlexRay network. First, the increments of the processing
show the property of being monotonic with the length of the
busy period. We thus can leverage a recurrence to compute
the Wi,t. The recurrence procedure for scheduling FlexRay's
segments starts to operate when w?t = 0 and ends when
wrr+! = wi or wrr+! > di,t. On the oth�r hand, we can consider
t + Wi,t to define the start of a level i idle period during
the scheduling for FlexRay's segments. By considering a
given start time of a level i idle period, the end of this
idle time occurs either at the next release of a task of
priority i or higher or at the end of the interval [t , t + di,t).
Therefore, through computing the Vi,t(Wi,t), we obtain the
length of the level i idle window, Vi,t(Wi,t) = min{max(di,t

Wi,t, O),minVjEhp(i)Ui(max(r
Wi" ;::Xj,, 1, 0)'Fj + X},t - Wi,t)}.

}

Combining wrr+! and Vi,t(Wi,t), slot pilfering scheme for
scheduling FlexRay's segments determines the maximum slot,
Sr;x. Specifically, first, Si,t denotes the slot that is possible to
be pilfered. Its initial value is set to zero. Second, in order
to obtain the end of a busy period in the interval [t , t + di,t),
ROSA performs the computation in the w�+!. Third, by
considering the end of the busy period as the start of an
idle period, the Vi,t (Wi,t) can return the lengths of idle times.
Fourth, by computing the amount of the idle time in the last
step, ROSA increases the slot processing, Si,t. Fifth, if task i
has reached its deadline, ROSA can pilfer the maximum slot,
which is represented as Si,t. Otherwise, ROSA repeats previous
steps to carrying out the slot pilfer scheme for scheduling
FlexRay's segments.

1238

E. Approximation

Although the standard slot pilfer scheme works well for
improving bandwidth utilization, it suffers from the highly
complex computation that in fact severely limits its use in
practical applications. An approximation technique is hence
necessary and important, which offers a suitable tradeoff
between computation complexity and available pilfered slots.

To this aim, we leverage an efficient approximation ap
proach for scheduling FlexRay's segments. The basic idea
behind this approximation is to use simpler computation to
significantly reduce the computation complexity but at the
expense of obtaining slightly less available slots to be pilfered.
Specifically, through using the time between the completion
of a task and its next deadline, the approximation can find a
lower bound on the available slots. Since hard real-time task
sets contain periodic tasks for scheduling static segments, we
only need to recalculate the slots available at priority level i
when task i completes. We hence argue that a lower bound
on the level i slot, i.e., s1, can be available immediately after
task i completes. In the FlexRay network, the lower bound on
level i idle time depends on the length of interval roo We use
S1 (ro) as the notation for a function of ro that can return this
lower bound. In fact, the approximation can find the level i
idle time in the interval between the completion of task i and
the deadline on its next instance.

It is worth noting that a variation of the algorithm of slot
computation can be used to calculate s1 (ro). Specifically, Di +
T; 2: ro 2: T; represents the completion of task i. Since the task
i completes, we do not need to carry out any task with higher
priority than i. When all tasks of higher priorities than i are
released immediately, task i completes and in the meantime the
least level i idle time is available. This result can help compute
the values of S1 (ro) for each possible value of roo Therefore,
performing the computation of S1 (OJ) is to capture the level
i idle time in the interval [0, ro) to support the approximation
computation for scheduling FlexRay's segments.

IV. PERFORMANCE EVALUATION

In this Section, we show the experimental results of im
plementing our proposed HOSA running on mixed datasets
(including static and dynamic segments).

A. Experimental Configurations

Our experiments are performed using 10 FlexRay nodes
that are connected to a bus analysis tool that helps record
the information of message transmission in the FlexRay net
work. The FlexRay nodes are implemented and configured by
multiple networked boards that consist of a 16-bit Flash-based
controller unit to support the FlexRay protocol operations, 2
IP-modules for the dual-channel design, and FlexRay-enabled
transceivers to support the physical layer of the FlexRay bus.
In order to facilitate the real-time transmission analysis, we use
an independent module to receive and maintain all messages
that are transmitted on the FlexRay bus.

The experiments make use of the mixed datasets that contain
both static and dynamic segments. Specifically, for the datasets

of static segments, the datasets consist of synthetic test cases
and one real-world scenario. The synthetic test cases were
generated by varying message parameters, such as periods and
deadlines, to cover a wide range of possible scenarios. The
periods are varied between 2 ms and 50 ms. The deadlines are
varied between 1 ms to 20 ms. The FlexRay communication
cycle period is 5 ms and the static cycle length is 3 ms, based
on the experiences from the industry [9]. The test cases contain
a large number of messages. Moreover, we consider a real
world x-by-wire application, i.e., brake-by-wire, which has
been widely used in performance evaluation of the FlexRay
based design. Table I shows the details of the associated
parameters.

Message
I
2
3
4
5
6
7
8
9

10
II
12
13
14
15
16
17
18
19
20

TABLE I
BRAKE-BY-WIRE MESSAGE PARAMETERS.
Offset (ms) Period (ms) Deadline (ms)

0.26 8 8
0.72 8 8
0.52 I I
0.88 I I
0.92 I I
0.96 I I
0.22 I I
0.27 8 8
0.76 8 8
0.39 8 8
0.91 8 8
0.52 8 8
0.69 8 8
0.81 8 8
0.93 8 8
0.42 8 8
0.61 I I
0.53 I I
0.95 I I
0.77 I I

Size (bits)
1280
272

1560
563
345
425
1172
852
763
915

1245
628
427
338
847

1560
1730
532

1154
861

For the datasets of dynamic segments, we configure the
parameters introduced in Section II-B in each communication
cycle. We set the values of the parameters as shown in Table II.
The suitable timing properties of aperiodic messages used in
our experiments are taken from a message set that is published
by the Society for Automotive Engineers [21]. Hence, we
consider aperiodic messages with a period (minimum inter
arrival time) and a deadline of 50 ms. We use 30 aperiodic
messages with the IDs, from 81 to 110 or from 121 to 150,
respectively corresponding to the sequential numbers in 80 and
120 slots. The maximum number of their transmission slots
cSlotlDMax are 110 and 150, respectively.

TABLE II
CONFIGURATION PARAMETERS FOR DYNAMIC SEGMENTS.

Configuration Parameter Value
gdMacrotick [JlsJ 1

gNumberOfStaticSlots [macrotick] 80, 1 20
gdCycle [JlsJ 5000

gdStaticSlot[macrotick] 40
gdMacroPerCycle 5000

gdMinislot[macrotick] 8
gdSymbolWindow[macrotick] 0

gdDynamicSlotIdlePhase[minislot] 1
gdMinislotActionPointOffset[macrotick] 2

We uniformly distribute the aperiodic messages in 10
FlexRay nodes. In each network node, an interrupt-based
routine running as the host process generates the aperiodic
messages. We use a 16-bit reload timer to count down the

1239

time until the next generation of each message. Furthermore,
for generating the event-based messages, a randO function in
C standard library computes the next generation time.

The minimum length of the dynamic segment is determined
by gNumberOfMinislots. We select the dynamic segments
with 50 and 100 minislots in our evaluation. In order to adjust
the length of the dynamic segment, We vary the value of
parameter gNumberOfMiniSlots. In order to compensate the
modification of the dynamic segment length, we change the
parameter gdN IT (duration of network idle time) so as to keep
the frame cycle duration of 5000 f../,s as a constant.

We compare the HOSA scheme with the standard imple
mentation of FlexRay specification (FSPEC) [1] and HOSA
without the approximation for reducing computation complex
ity, in terms of overall running time, bandwidth utilization,
average transmission latency for static and dynamic segments,
and deadline miss ratio.

B. Results

Figure 7 demonstrates the average running time with re
spect to the increments of messages in both brake-by-wire
scenario and synthetic test cases. Specifically, the brake-by
wire scenario describes relatively light overhead as shown
in Figure 7(a). The proposed HOSA scheme completes the
message transmission within 40 seconds (for 80 slots) or 62
seconds (for 120 slots), which are much smaller than 1240 or
1600 seconds from using the standard FSPEC. The reason is
that HOSA leverages flexible slot scheduling scheme for both
static and dynamic segments, which significantly improves the
message transmission and decreases deadline miss ratio (as
shown in Figure 10).

Moreover, we also observe that the running time for 120
slots is larger than that for 80 slots since the former potentially
leads to more idle slots and the utilization of the overall
bandwidth decreases, which is also verified by the results in
Figure 8. In addition, if there is no approximation, the running
time will increase to 652 and 761 seconds respectively for the
cases of 80 and 120 slots. This result also demonstrates the
efficiency of the approximation for reducing the complexity
of the slot computation.

In order to examine the scalability of the proposed HOSA
scheme, we execute the holistic scheduling upon synthetic test
cases that contain much larger message set. Figure 7(b) shows
the experimental results and HOSA requires much smaller
running time than the standard FSPEC, in particular in the
large scale.

�
E
F
'"
c 'c !IX)
c
,
II:

............. F5PEC(80 slots)

-HOSA(80slots)
- HOSA (80 slots-no appro.)
-FSPEC(120slots)
�HOSA(120Slots)
......l?- HOSA (120 slots-no appro.)

Number of Messages

(a) Brake-by-wire case.

--e--FSPEC
-HOSA

_ -HOSA(no approximation)

'lli .,
Number of Messages

(b) Synthetic test case.

Fig. 7. Running time for brake-by-wire application and synthetic test cases.

Bandwidth utilization refers to the ratio of the bandwidth
that is actually used to the whole bandwidth. HOSA offers
flexible scheduling and obtains significant improvements upon
bandwidth utilization with the aid of slot pilfering technique.
Figure 8 shows the bandwidth utilization of HOSA and
FSPEC under 50 and 100 minislots. We observe that HOSA
improves 48.6% and 51.2% bandwidth utilization over the
standard FSPEC, respectively in 50 and 100 minislots. HOSA
can therefore optimize the bandwidth utilization. Moreover,
without the approximation, the slot computation incurs longer
waiting time and leads to more potential re-transmission that
reduces the practical bandwidth utilization.

100 llOSA
� 90

" 80
0

70
d
N 60

50
=> 40
�
� 30
. 20 �
"
d 10 '"

50 minisJots 100 minisJots

Fig. 8. Bandwidth utilization.

-fSPEq60mlnlslotsl
-HOSA(60mlnlslots)
-HOSA(60 minislOts-no appro.)

-FSPEq100minlslOtsJ
� HOSA(100mlnlslOtsJ
.......... HOSA (100 minislots-no appro.)

Mess_gelD Mess_gelD

(a) Synthetic test cases. (b) Brake-by-wire messages.

Fig. 9. Average transmission latency of both static and dynamic segments.

The transmission latency is counted from the generation
time to the time when the message is completely transmitted.
Figure 9 shows the average transmission latency of both static
and dynamic segments. Specifically, we examine the transmis
sion latency respectively in the synthetic cases and brake-by
wire scenario, both of which exhibit similar observations. For
instance, in the Figure 9(a), we divide the messages into two
types, i.e., static (from 1 to 80 IDs) and dynamic (from 81 to
110 IDs) segments. Both HOSA and FSPEC can provide hard
transmission guarantee to static segments. They hence obtain
the same latency (from 1 to 80 message IDs).

Moreover, for dynamic segments (from 81 to 110 message
IDs), HOSA requires on average 61.5% and 68.2% smaller
latency than the standard FSPEC. The decrements in the
Figure 9(b) are 71.5% and 78.2% respectively. HOSA can
hence efficiently support the transmission for both static and
dynamic segments. In addition, the results also demonstrate the
approximation (represented as appro. in Figure 9) technique
can significantly reduce transmission latency due to its simple
computation.

The deadline miss ratio is defined as the number of
messages with missed deadlines divided by the number of

1240

messages transmitted. Figure 10 demonstrates the deadline
miss ratio when taking into account 50 and 100 minislots.
Since HOSA significantly reduces the transmission delay
and improves the bandwidth utilization, the ratio of missed
messages is on average 3.5%, which is much smaller than
7.2% in no approximation and 27.8% in the FSPEC scheme.

30

2: 25
o � 20

� 15
.
.= \ 0

FSPEC

IIOSA-no
approximat ion

FSPEC

IlOSA-no

50 m i n i s lots 100 m i n i s lots

Fig. 1 0. Deadline miss ratio.

V. RELATED WORK

One of the first in-vehicle communication networks is the
controller area network (CAN) [4] that provides bounded delay
communication at data rates between 125 kb/s and 1 Mb/s.
However, it is not suitable for new applications, e.g., x-by
wire applications, which are hard-real-time in essence, and
require high-speed, robust, and predictable communication.
The attempts to meet these demands are time-triggered CAN
(TTCAN [22]), time-triggered protocol (TIP [5]), and Byte
Flight [6]. TTCAN and TTP are time-triggered technology
with predictable medium access, while ByteFlight is based on
FTDMA.

Existing work on FlexRay mainly considers a single channel
scenario, in which either static segments or dynamic seg
ments are scheduled. Optimizing bandwidth utilization [8]
is formulated into constraint logic programming to provide
fault-tolerant schedule in the presence of transient and in
termittent faults. Scheduling static segments [7] and dynamic
segment [10] is formulated into nonlinear integer programming
problem to maximize bandwidth utilization. Based on mixed
integer linear programming, an optimization framework [2]
is proposed to schedule transactions consisting of tasks and
signals on a FlexRay-based system. Although authors in [23]
propose the schedulability analysis for determining the timing
properties of message transmitted in both static and dynamic
segments, the analysis only considers the scenario of a single
channel.

VI. CONCLUSION

Providing scalable fault-tolerance is important to the
FlexRay networks. This paper proposes a cost-effective
scheme, called HOSA, that supports holistic scheduling on
both static and dynamic segments in the dual-channel com
munication system. HOSA leverages a slot pilfering technique
to significantly minimize idle slots, improve bandwidth uti
lization and decrease transmission latency. HOSA efficiently
handles the complexity of slot computation with the aid of
a proper approximation approach. Extensive experimental re
sults based on synthetic and real-world test cases demonstrate
the efficiency and efficacy of the proposed HOSA scheme.

ACKNOWLEDGMENT

This work was supported in part by National Natural
Science Foundation of China (NSFC) under Grant 61173043
and 60703046, and NSERC Discovery Grant 341823-07, and
FQRNT grant 201O-NC-131844.

REFERENCES

[1] 'The flexray communication system specification, version 2. 1 ,"
http://www·flexray. com.

[2] H. Zeng, M. Di Natale, A. Ghosal, and A. Sangiovanni-Vincentelli,
"Schedule optimization of time-triggered systems communicating over
the flexray static segment," IEEE Transactions on Industrial Informatics,
vol. 7, no. I , pp. 1-17 , 20 1 1 .

[3] B. brake system relies on FlexRay,
. . http://www.automotivedesignline.comlnewsI2 1 850 1 1 96

.
. . July, 2009.

[4] N. Navet, Y. Song, F. Simonot-Lion, and C. Wilwert, "Trends in
automotive communication systems," Proceedings of the IEEE, vol. 93,
no. 6, pp. 1 204- 1 223, 2005.

[5] H. Kopetz and G. Bauer, "The time-triggered architecture," Proceedings
of the IEEE, vol. 9 1 , no. I , pp. 1 1 2- 1 26, 2003.

[6] J. Berwanger, M. Peller, and R. Griessbach, "A new high performance
data bus system for safety-related applications," BMW AG, EE-22I,
Munich, Germany, http://www.byteflight.comlspecification. 1 999s.

[7] K. Schmidt and E. Schmidt, "Message scheduling for the flexray proto
col : The static segment," IEEE Transactions on Vehicular Technology,
vol. 58 , no. 5, pp. 2 1 70-2 1 79, 2009.

[8] B. Tanasa, U. D.Bordoloi, P. Eles, and Z. Peng, "Scheduling for Fault
Tolerant Communication on the Static Segment of FlexRay," Proc. IEEE
Real-Time Systems Symposium, 20 1 0.

[9] M. Lukasiewycz, M. GlaB, 1. Teich, and P. Milbredt, "Flex ray schedule
optimization of the static segment," Proc. CODES+ ISSS, 2009.

[1 0] E. Schmidt and K. Schmidt, "Message scheduling for the flexray
protocol: The dynamic segment," IEEE Transactions on Vehicular Tech
nology, vol. 58 , no. 5, pp. 2 1 60-2 1 69, 2009.

[I I] K. Schmidt, E. G. Schmidt, A. Demirci, E. Yuruklu, and U. Karakaya,
"An Experimental Study of the Flex Ray Dynamic Segment," Proc.
Advances in Automotive Control, 20 1 0.

[1 2] K. Jung, M. Song, D. Lee, and S. Jin, "Priority-based scheduling of
dynamic segment in FlexRay network," Proc. International Conference
on Control, Automation and Systems, 2008.

[1 3] H. Kopetz, R. Obermaisser, P. Peti, and N. Suri, "From a federated to
an integrated architecture for dependable real-time embedded systems,"
Technical Report, TECHNISCHE UNIV VIENNA (AUSTRIA), 2004.

[1 4] A. Albert, "Comparison of event-triggered and time-triggered concepts
with regard to distributed control systems," Embedded World, vol. 2004,
pp. 235-252, 2004.

[1 5] Y. Sedaghat and S. Miremadi, "Categorizing and analysis of activated
faults in the flexray communication controller registers," Proc. IEEE
European Test Symposium" pp. 1 2 1 - 1 26, 2009.

[1 6] W. Li, M. Di Natale, W. Zheng, P. Giusto, A. Sangiovanni-Vincentelli,
and S. Seshia, "Optimizations of an application-level protocol for
enhanced dependability in flex ray," Proc. Design, Automation and Test
in Europe, 2009.

[1 7] J. Lehoczky, L. Sha, and Y. Ding, 'The rate monotonic scheduling
algorithm: Exact characterization and average case behavior," Proc.
Real-Time Systems Symposium, pp. 1 66- 1 7 1 , 1 987.

[1 8] J. Lehoczky and S. Ramos-Thuel, "An optimal algorithm for scheduling
soft-aperiodic tasks in fixed-priority preemptive systems," Proc. Real
Time Systems Symposium, pp. 1 1 0- 1 23 , 1 992.

[1 9] R. Davis, K. Tindell, and A. Bums, "Scheduling slack time in fixed
priority pre-emptive systems," Proc. Real-Time Systems Symposium,
pp. 222-23 1 , 1 993.

[20] S. Thuel and 1. Lehoczky, "Algorithms for scheduling hard aperiodic
tasks in fixed-priority systems using slack stealing," Proc. Real-Time
Systems Symposium, pp. 22-33 , 1 994.

[2 1] SAE, "Class C Application Requirements, SAE 12056/ 1 ," SAE Hand
book, Soc. Automotive Engineers, Warrendale, PA , vol. 2, pp. 23.366-
23.37 1 , June, 1 993.

[22] TTCAN, ''http://www.cancia.orglcanlttcan/,'' May 2005.
[23] T. Pop, P. Pop, P. Eles, Z. Peng, and A. Andrei, "Timing analysis of

the flexray communication protocol," Real-time systems, vol. 39, no. I ,
pp. 205-235, 2008.

1241

