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Abstract—Cloud computing applications face the challenges of
dealing with a huge volume of data that needs the support of fast
approximate queries to enhance system scalability and improve
quality of service, especially when users are not aware of exact
query inputs. Locality-Sensitive Hashing (LSH) can support the
approximate queries that unfortunately suffer from imbalanced
load and space inefficiency among distributed data servers, which
severely limits the query accuracy and incurs long query latency
between users and cloud servers. In this paper, we propose a novel
scheme, called NEST, which offers ease-of-use and cost-effective
approximate query service for cloud computing. The novelty of
NEST is to leverage cuckoo-driven locality-sensitive hashing to
find similar items that are further placed closely to obtain load-
balancing buckets in hash tables. NEST hence carries out flat and
manageable addressing in adjacent buckets, and obtains constant-
scale query complexity even in the worst case. The benefits of
NEST include the increments of space utilization and fast query
response. Theoretical analysis and extensive experiments in a
large-scale cloud testbed demonstrate the salient properties of
NEST to meet the needs of approximate query service in cloud
computing environments.

I. INTRODUCTION

Cloud computing applications generally have the salient

property of massive data. The datasets with a volume of

Petabytes or Exabytes and the data streams with a speed of

Gigabits per second often have to be processed and analyzed

in a timely fashion. According to a recent International Data

Corporation (IDC) study, the amount of information created

and replicated is more than 1.8 Zettabytes in 2011 [1]. More-

over, from small hand-held devices to huge data centers, we are

collecting and analyzing ever-greater amounts of information.

Users routinely pose queries across hundreds of Gigabytes

of data stored on their hard drives or data centers. Some

commercial companies generally handle Terabytes and even

Petabytes of data everyday [2]–[4].

How to accurately return the queried results to requests

is becoming more challenging than ever to cloud comput-

ing systems that generally consume substantial resources to

support query-related operations [5]–[7]. Cloud computing

demands not only a huge amount of storage capacity, but

also the support of low-latency and scalable queries [3]. In

order to address this challenge, query services have received

many attentions in the cloud computing communities, such as

query optimization for parallel data processing [4], automatic

management of search services [8], similarity search in file

systems [9], information retrieval for ranked queries [5], sim-

ilarity search over cloud data [6], multi-keyword ranked and

fuzzy keyword search over cloud data [10], [11], approximate

membership query [12] and retrieval for content cloud [13].

Many practical applications in the cloud require real-time

Approximate Near Neighbor (ANN) query service. Cloud

users, however, often fail to provide clear and accurate query

requests. Hence, the content cloud systems offer the ANN

query to allow users to find the nearest files in distance

measures by carrying out a multi-attribute query, such as

filename, size, creation time, etc. On the other hand, a cloud

system needs to support approximate queries to get particular

search results. Consider another example of image protection

and spam detection among billions of images in a cloud. A

system supporting ANN queries can help identify and detect

the modified images, which are often altered by cropping,

re-scaling, rotation, flipping, color change or text insertion.

Therefore, providing quick and accurate service of ANN query

becomes a necessity for cloud development and construc-

tion [4].

Despite the fact that Locality Sensitive Hashing (LSH) [14]

can be used to support ANN query due to its simplicity of

hashing computation and faithful maintenance of data locality,

performing efficient LSH-based ANN query needs to deal

with two challenging problems. First, LSH suffers from space-

inefficiency and low-speed I/O access because it leverages

many hash tables to maintain data locality and a large fraction

of data needs to be placed in hard disks. Although the

space inefficiency has been partially addressed by multi-probe

LSH [15], it decreases space overhead but becomes inefficient

to support constant-scale complexity for queries, which makes

it not suitable in large-scale cloud computing applications.

Second, LSH produces imbalanced load in the buckets of hash

tables to maintain data locality. In order to deal with hash

collisions, some buckets in a hash table often contain too

many items in the linked lists that produce linear searching

time. In contrast, other buckets may contain very few or even

zero items. Vertical addressing, such as probing data along

a linked list within a bucket, further aggregates the negative

effect and produces O(n) complexity for n items in a linked

list. The high complexity severely degrades the efficiency of
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query services.
In this paper, we propose a NEST design for cloud appli-

cations to support ANN query service and address the above

problems of LSH. First, to build a space-efficient structure, we

transform conventional vertical addressing of hash tables in

LSH into flat and manageable addressing, thus allowing adja-

cent buckets to be correlated. As a result, we can significantly

decrease the number of vacant buckets. Second, to alleviate

the imbalanced load in the buckets, we use a cuckoo-driven

method in LSH to obtain constant-scale operation complexity

even in the worst case. The cuckoo method [16] can balance

the load among the LSH buckets by providing more than one

available bucket.
The name of cuckoo-driven method comes from cuckoo

birds in nature, which kicks other eggs or birds out of

their nests. This behavior is similar to the hashing scheme

that recursively kicks items out of their positions as needed.

Cuckoo hashing uses two or more hash functions for resolving

hash collisions to alleviate the complexity of using the linked

lists. Instead of only indicating a single position that an

item a should be placed, cuckoo hashing can provide two

possible positions, i.e., h1(a) and h2(a). Hence, collisions can

be minimized and a bucket stores only one item. The presence

of an item can be determined by probing two positions.
Cuckoo hashing, however, cannot totally eliminate data

collisions. An insertion of a new item causes a failure when

there are collisions in all probed positions. Even the “kicking

out” hashing to make empty room for a new item is likely

to produce endless loop. To break the loop, one way is to

perform a full rehash if this rare event occurs. Since the item

insertion failure in the cuckoo hashing scheme occurs with

a low probability, such rehashing has very small impact on

the average performance. In practice, the cost of performing

a rehashing can be dramatically reduced by the use of a very

small additional constant-size space.
When facing the challenges of obtaining locality-aware data

and achieving load balance in the cloud servers, it is worth

noting that performing a simple combination of LSH and

cuckoo hashing will be inefficient to support ANN query

service due to extra frequent “kicking out” operations and high

rehashing costs caused by the cuckoo hashing. To overcome

such inefficiency, we propose locality-aware algorithms in

the NEST design that leverages the adjacent buckets in the

cuckoo hashing to manage the overflowed data during the LSH

computation. This paper has made the following contributions.

• Locality-aware Balanced Scheme. We propose a novel

locality-aware balanced scheme, called NEST, in the

cloud servers. NEST achieves locality-aware storage by

using LSH, and load-balanced storage by using the

cuckoo-driven method, to move crowded items to alter-

native empty positions. NEST can further significantly

decrease the endless loop burden in the cuckoo hashing

by allocating new items in neighboring buckets, which is

perfectly allowed in LSH.

• Constant-scale Worst-case Complexity. NEST demon-

strates salient performance in practical operations, such

as item deletion and ANN query, which are bounded

by constant-scale worst-case complexity. In essence, we

replace conventional vertical addressing, such as a linked

list in a bucket, with flat and manageable addressing to

a bucket and its limited number of neighbors. NEST

has the same constant-scale worst-case complexity for

item insertion in most cases, which shows its good

scalability. The rehashing event has a very low probability

to occur and has little impact on the overall operational

performance of NEST.

• Practical implementation. We have implemented the

NEST prototype and compared it with the simple combi-

nation of “LSH with Cuckoo Hashing (LSH-CH)”, and

LSB-tree [17] for ANN query in a large-scale cloud

computing testbed. LSH-CH is a simple combination of

LSH and cuckoo hashing, which fails to efficiently handle

the increments of hash collisions when data exhibits an

obvious locality property. We use a real-world trace to

examine the real performance of the proposed NEST.

Comparison results demonstrate performance gains of

NEST for its low query latency, high query accuracy and

space saving properties.

The rest of the paper is organized as follows. Section II

shows research backgrounds and related work. Section III

presents the NEST design and practical operations. We give

extensive experimental results in Section IV and conclude the

paper in Section V.

II. BACKGROUNDS AND RELATED WORK

This section shows the research backgrounds and related

work of locality sensitive hashing and cuckoo hashing tech-

niques for ANN query.

Definition 1: ANN Query. Given a set S of data points in

θ -dimensional space and a query point q, ANN query returns

the nearest (or generally ϑ nearest) points of S to q.

Data points a and b having θ -dimensional attributes can be

represented as vectors �aθ and �bθ . If their distance is smaller

than a pre-defined constant R, we say that they are correlated.

Correlated items constitute the set of an ANN query result. The

distance between two items can be defined in many ways, such

as the well known Euclidean distance, Manhattan distance and

Max distance.

A. Locality Sensitive Hashing

Locality Sensitive Hashing (LSH) [14] has the property

that close items will collide with a higher probability than

distant ones. In order to support ANN query, we need to

hash query point q into buckets in multiple hash tables, and

furthermore union all items in those chosen buckets by ranking

them according to their distances to the query point q. We

define S to be the domain of items. Distance functions || ∗ ||s
correspond to different LSH families of ls norms based on s-

stable distribution to allow each hash function LSHa,b : Rθ → Z
to map a θ -dimensional vector v onto a set of integers.

Definition 2: LSH Function Family. H = {h : S →U} is

called (R,cR,P1,P2)-sensitive for any p,q ∈ S
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• If ||p,q||s ≤ R then PrH[h(p) = h(q)]≥ P1,

• If ||p,q||s > cR then PrH[h(p) = h(q)]≤ P2.

The settings of c > 1 and P1 > P2 are configured to sup-

port ANN query service. The practical implementation needs

to enlarge the gap between P1 and P2 by using multiple

hash functions. The hash function in H can be defined as

LSHa,b(v) = � a·v+b
ω �, where a is a θ -dimensional random

vector with chosen entries following an s-stable distribution, b
is a real number chosen uniformly from the range [0,ω) and

ω is a large constant.

We need to configure two main parameters, M, the ca-

pacity of a function family G, and d, the number of hash

tables, to build an LSH. Specifically, given a function family

G = {g : S → UM} and LSHj ∈ H for 1 ≤ j ≤ M, we have

g(v) = (LSH1(v), · · · ,LSHM(v)) as the concatenation of M
LSH functions, where v is a θ -dimensional vector. Further-

more, an LSH consists of d hash tables, each of which has a

function gi (1≤ i≤ d) from G.

LSH has been successfully applied in approximate queries

of vector space and semantic access. The locality sensitive

hashing however has to deal with the imbalanced load in the

buckets due to hash collisions. Some buckets may contain too

many items to be stored in the linked lists, thus increasing

searching complexity. On the contrary, other buckets may

contain less or even zero items. We hence take into account the

cuckoo hashing technique to obtain constant-scale searching

complexity.

B. Cuckoo Hashing

Cuckoo hashing [16] is a dynamization of a static dictionary

and provides a useful methodology for building practical, high-

performance hash tables. It combines the power of allowing

multiple hash locations for an item with the power of dynam-

ically changing the location of an item among its possible

locations.

Definition 3: Standard Cuckoo Hashing. Cuckoo hashing

uses two hash tables, T1 and T2, each consisting of m space

units, and two hash functions, h1,h2 :U →{0, ...,m−1}. Every

item a ∈ S is stored either in bucket h1(a) of T1 or in bucket

h2(a) of T2, but never in both. The hash functions hi are

assumed to behave as independent, random hash functions.

Figure 1 shows an example of cuckoo hashing. Initially,

we have three items, a,b and c. Each item has two available

positions in hash tables. If either of them is empty, an item will

be inserted, as shown in Figure 1(a). When inserting a new

item x, both of two available positions have been occupied and

item x can “kick out” one existing item that will continue the

same operations until all items can find positions as shown in

Figure 1(b). If an endless loop takes place, the cuckoo hashing

carries out a rehashing operation.

It is shown in [18] that if m ≥ (1+ ε)n for some constant

ε > 0 (i.e. two tables are almost half full), and h1,h2 are picked

uniformly at random from an (O(1),O(logn))-universal fam-

ily, the probability of failing to arrange all items of dataset S
according to h1 and h2 is O(1/n).

(a) Standard cuckoo hashing. (b) Hashing collision of insertion.

Fig. 1. Cuckoo hashing structure.

The d-ary cuckoo hashing further makes an extension and

allows each item to have d > 2 available positions.

Definition 4: d-extension. Each item a has d possible lo-

cations, i.e., h1(a),h2(a), ...,hd(a), where d > 2 is a small

constant.

Cuckoo hashing provides flexibility for each item that is

stored in one of d ≥ 2 candidate positions. A property of

cuckoo hashing is the increments of load factors in hash

tables while maintaining query times bounded to a constant.

Cuckoo hashing becomes much faster than chained hashing

when increasing hash table load factors [16]. Specifically,

performing the relocation of earlier inserted items to any of

their other positions demonstrates the linear probing chain

sequence upper bounded at d. When an item a is inserted,

it can be placed immediately if one of its d locations is

currently empty. Otherwise, one of the items in its d locations

must be replaced and moved to another of its d choices to

make room for a. This item in turn needs to replace another

item out of one of its d locations. Inserting an item may

require a sequence of item replacement and movement, each

maintaining the property that each item is assigned to one of

its d potential locations, until no further evictions are needed.

In practice, the number of hash functions can be reduced

from the worst-case d to 2 with the aid of popular double-

hashing technique. Its basic idea is that two hash functions

h1 and h2 can generate more functions in the form hi(x) =
h1(x)+ ih2(x). In the cuckoo hashing, we define the i value

belongs to the range from 0 to d− 1. Therefore, more hash

functions do not incur additional computation overheads while

helping obtain higher load factors in the hash tables.

The cuckoo hashing is essentially a multi-choice scheme

to allow each item to have more than one available hashing

positions. The items can hence “move” among multiple po-

sitions to achieve load balance and guarantee constant-scale

complexity of operations. However, a simple combination,

i.e., utilizing cuckoo hashing in LSH, will result in frequent

operations of item replacement and potentially produce high

probability of rehashing due to limited available buckets.

III. NEST DESIGN

This section presents NEST scheme and illustrates the

practical locality-aware operations, including item insertion,

deletion and ANN query. We also study the rehash probability

of the NEST design.
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NEST takes into account the case for d > 2 due to two main

reasons. One is that LSH requires multi-hashing computation

to enhance the accuracy of locality aggregation. More hashing

functions lead to higher aggregation accuracy. The other

reason is that multi-hashing is more important and practical in

real-world applications. When d = 2, after the first choice has

been made to kick out an item, there are no further choices

besides the other position. The special case (d = 2) appears

much simpler. In the literature, the case where d > 2 remains

less well understood. A natural approach is to use random

selection among d choices, like random walk, which is adopted

in NEST.

A. Structure
NEST structure uses a multi-choice hashing scheme to

place items as shown in Figure 2. It uses LSH to allow each

item to have d available positions. The item can select an

empty bucket to place. Furthermore, since LSH can faithfully

maintain the locality characteristic of data, adjacent buckets

exhibit correlation property. If no empty bucket is available,

it may choose one from adjacent buckets to reduce or avoid

endless loop.

(a) A multi-choice LSH. (b) Available locations for an item a.

Fig. 2. NEST structure.

Figure 2(a) shows an example of the NEST structure. The

blue bucket is the hit position by LSH computation and their

adjacent neighboring buckets indicated by green color also

exhibit data correlation for ANN query. Once all positions

LSHi(a) are full, the item can choose an adjacent and empty

bucket for storage. For instance, in Figure 2(b), if d = 3,

LSH1(a), LSH2(a) and LSH3(a) have been occupied by other

items b, e and d and in this case, the item a may choose the

position of the right neighbor of LSH2(a).
Furthermore, if all neighbors of hit positions are full, we

will carry out the “kicking out” operation to make a room for

item a. After the probing operations on adjacent neighbors,

the probability of endless “kicking out” in NEST is much

smaller than the normal cuckoo hashing because we can take

advantage of neighboring buckets to solve hash collision,

as shown in Figure 3. In the worst case, if such “kicking

out” operation looking for empty position fails, we can carry

out the rehashing operation as a final solution. The adjacent

probing can significantly reduce or even avoid the occurrence

of hash failing. Such scheme works well in NEST, but not

in the standard cuckoo hashing. The reason is that items

in adjacent buckets in NEST are locality-aware by using

LSH computation, while they are uniformly distributed in the

standard cuckoo hashing.

(a) Hashing collisions for placing
item a.

(b) Moving item h to its another
location.

Fig. 3. Cuckoo-based solution for hashing collisions.

B. Practical Operations

We describe practical locality-aware operations of NEST to

support item insertion, ANN query and item deletion.

1) Insertion: The insertion operation needs to place items

in hashed or adjacent empty buckets to obtain load balance.

Figure 4 shows the recursive insertion algorithm for item a.

This algorithm consists of three parts. We need to first find an

empty position for the new item a. If no hash collisions occur,

this item can be directly inserted as described in Figure 5.

If there is no empty bucket among the positions hit by

LSH computation, NEST needs to probe adjacent buckets of

LSHi(a) as described in Figure 6. The third part employs the

“kicking out” operation to help item a to find an empty bucket

if the first two parts fail to do so.

We denote B[∗] to be the data in that bucket and use Δ to

represent the number of neighbors to be probed, which is an

adjustable parameter depending upon locality pattern in real-

world applications. In addition, once we test MaxLoop rounds

of “kicking out” operation and the insertion fails, we have to

execute the rehash operation.

Insert(Item a)
1: DirectInsert(Item a)
2: Adjacent Probe(Item a, Number Δ)
3: η := 1
4: while η ≤MaxLoop do
5: B[LSHk(a)]→ temp for some random k ∈ {1, · · · ,d}
6: a→ B[LSHk(a)]
7: Insert(Item temp)
8: η ++
9: end while

10: Rehash()

Fig. 4. Algorithm for item insertion.

The key question in item insertion is which item to be

moved if d potential positions for a newly inserted item a
are occupied. A natural approach in practice is to pick one

of the d buckets randomly, replace the item b at that bucket

with a, and then try to place b in one of its other (d− 1)
bucket positions. If all of the buckets for b are full, choose

one of the other (d−1) buckets (other than the one that now

contains a, to avoid the obvious loop) randomly, replace the

item in the chosen bucket with b, and repeat the same process.

At each step (after the first), we place the item whenever an
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DirectInsert(Item a)
1: i := 1
2: while B[LSHi(a)]! = NULL and i≤ d do
3: i++
4: end while/* an empty position to insert a */
5: if (i≤ d) then
6: a→ B[LSHi(a)]
7: Return /* finish the insertion */
8: end if

Fig. 5. Algorithm for directly inserting an item without any hash collision.

Adjacent Probe(Item a, Number Δ)
1: i := 0
2: while (i≤ d−1) do
3: i++, j := 1
4: while | j| ≤ Δ do
5: if (B[LSHi(a)+ j] = NULL) then
6: a→ B[LSHi(a)+ j] /*check right neighbors */
7: Return /* finish the insertion */
8: end if
9: if (B[LSHi(a)− j] = NULL) then

10: a→ B[LSHi(a)− j] /*check left neighbors */
11: Return /* finish the insertion */
12: end if
13: j++
14: end while
15: end while

Fig. 6. Algorithm for probing adjacent buckets.

empty bucket is found, or else randomly exchange the item

with one of (d− 1) choices. We refer to this process as the

random-walk insertion method for cuckoo hashing.

The ideal scenario of inserting an item is that there is no

visit to any hash table bucket more than once. Each item

can hence locate in a certain bucket without kicking out

other items. Once the insertion procedure returns a previously

visited bucket, the behavior may lead to endless loop that

requires relatively high-cost rehashing operations. We study

the probability of rehashing occurrence. In practice, the re-

hash occurs if an item insertion cannot stop, i.e. no vacant

bucket, after MaxLoop steps. The MaxLoop is a constant

to be set application-related. In standard cuckoo hashing, let

MaxLoop = λ logn for n items and λ is an approximately

chosen constant [16]. We take into account the s-stable dis-

tribution in the probability analysis. When s = 2, the 2-stable

normal distribution has the density function g(x) = e−x2/2√
2π

.

2) ANN Query: The ANN query needs to obtain approx-

imate neighbors to a query point q. NEST can complete the

ANN query operation in a simple way. Figure 7 illustrates the

ANN query algorithm that allows the query to obtain totally

d× (2Δ+ 1) items, thus requiring accesses to memory for d
times. Each access needs to probe 2Δ + 1 buckets that are

stored and at most 2Δ+ 1 non-empty buckets provide items.

The final set Result contains correlated data items to satisfy

the ANN query request.

3) Deletion: In the item deletion, we need to find the item

to be deleted and then remove it from the bucket of hash table.

Figure 8 shows the algorithm of deleting an item a from NEST.

ANN Query(Item q)
1: Result := /0
2: for (i := 1, i≤ d), i++ do
3: for ( j :=−Δ, j ≤ Δ, j++) do
4: Result := Result +B[LSHi(q)+ j]
5: end for
6: end for
7: Return Result

Fig. 7. Algorithm to support ANN query for queried item q.

Assume that the deletion operation is to remove an existing

item. If an item to be deleted does not exist, NEST will return

an error.

Deletion(Item a)
1: i := 1, j :=−Δ
2: while i≤ d do
3: while B[LSHi(a)+ j]! = a and j ≤ Δ do
4: j++
5: end while
6: if (B[LSHi(a)+ j] == a) then
7: Delete a from B[LSHi(a)+ j], Return
8: end if
9: i++, j :=−Δ

10: end while

Fig. 8. Algorithm for deleting an item.

C. Rehash Probability

The rehash analysis is based on two reasonable assumptions

as follows.

Assumption 1: Vacant Bucket First. When inserting an

item, if one of its d neighboring buckets is vacant, we will

place the item into that vacant bucket without kicking out

existing items.

Assumption 2: No Instant Loop. An item a kicked out by

item b will choose other (d− 1) buckets for placement, but

not kick out its previous b to avoid an instant loop.

Theorem 1: Given n items following 2-stable normal distri-

bution, each item has d locations with 2Δ adjacent neighbors

in NEST. The rehashing probability has an upper bound of

P(d+2dΔ)+(MaxLoop−1)(d−1+2dΔ)
1

d(d +2dΔ−1)MaxLoop−1
(1)

where P1 = 1−2NCDF(−ω)− 2√
2πω

(1−e−(ω2/2)) and NCDF

is the cumulative distribution function for a random variable

following N(0,1).
Proof: Item insertion operations are actually an iterative

process by kicking out one of totally (d + 2dΔ) items if all

available buckets have been full in the worst case. For a new

item a, it has (d + 2dΔ) choices and the probability that all

buckets are full is P(d+2dΔ)
1 , where P1 is the locality-aware

probability in Definition 2.

The item a can randomly choose one item from (d +2dΔ)
buckets with the probability 1/(d + 2dΔ). The chosen item

happens to have all (d−1+2dΔ) buckets that are also full with
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the probability of P(d−1+2dΔ)
1 based on the Assumption 2. This

iterative process continues until reaching the MaxLoop steps

in the worst case. We hence have the upper-bound probability

of rehashing occurrence

P(d+2dΔ)+(MaxLoop−1)(d−1+2dΔ)
1

d(d +2dΔ−1)MaxLoop−1
(2)

We further study how to obtain the P1 value that is the

probability of hash collisions of two items. First, let fs(t)
be the probability density function of s-stable distribution.

According to the conclusion in [19], the probability that items

p and qi(1≤ i≤ n) collide in an LSH is

P∗(κi) = Pa,b[ha,b(p) = ha,b(qi)] =
∫ ω

0

1

κi
fs(

t
κi
)(1− t

ω
)dt (3)

where vector a is drawn from an s-stable distribution, vector

b is uniformly drawn from [0,ω). For a fixed ω , P∗(κi)
decreases monotonically with κi = ||p − qi||s. Hence, the

probability that an item p collides with the dataset of n items

is
∑n

i=1 P∗(κi)
n .

Furthermore, LSH family (R,cR,P1,P2) is sensitive for

P1 = P∗(1) and P2 = P∗(c). The probability density function

fs(
t
κi
) can help compute P1 for the s-stable distribution. When

considering s = 2 Normal distribution, by using a simple

calculation, we have

P1 = 1−2NCDF(−ω)− 2√
2πω

(1− e−(ω
2/2)) (4)

where NCDF is cumulative distribution function for random

variable following N(0,1).

D. Summary

In the NEST design, deletion and ANN query operations

can obtain constant-scale complexity even in the worst case.

They are bounded by probing at most O(d · (2Δ+1)) buckets,

in which parameters d and Δ are small constants (e.g., Δ = 1).

The insertion operation can be done in O(d · (2Δ+ 1)), (i.e.,

O(1)) complexity in most cases. In a few cases, the complexity

becomes O(MaxLoop · d · (2Δ+ 1)), which is O(1) as well.

Rarely does the insertion operation need to invoke rehashing.

Such low rehash probability for NEST is analyzed in the above

section.

IV. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed

NEST structure by implementing a prototype in a large-

scale cloud computing environment. The evaluation metrics

include accuracy and latency of ANN query, I/O costs and

space overhead. Another salient feature of NEST, small rehash

probability, is also evaluated.

A. Implementation Details

We implement NEST in a large-scale cloud computing envi-

ronment that consists of 100 servers, each of which is equipped

with Intel 2.0GHz dualcore CPU, 2GB DRAM, 250GB disk

and 1000PT quad-port Ethernet network interface card. The

prototype is developed in the Linux kernel 2.4.21 environment

and all functional components in NEST are implemented in

the user space.

We describe the characteristics of the real-world trace for

our experiments. From 2000 to 2004, metadata traces [20] have

been collected from more than 63,398 distinct file systems that

contain 4 billion files. This is one of the largest sets of file-

system metadata collected. The 92GB-size trace has been pub-

lished in SNIA [21]. The multiple attributes of data in the trace

include file size, file age, file-type frequency, directory size,

namespace structure, file-system population, storage capacity

and consumption, and degree of file modification. The access

pattern studies [20] further show the data locality properties

in terms of read, write and query operations.

In the real cloud system implementation, we partition entire

real-world traces into sequential segments that faithfully main-

tain the original access patterns and data locality. Each cloud

server stores one trace segment. A segment, that contains the

data with multiple attributes, can be represented as a multi-

dimensional vector that consists of their average values. In the

same way, a query request from a client can also be represented

as a vector. Thus, by using the vectors of segment and query

requests, we leverage locality-aware computation to obtain the

correlation degree between servers and query requests. If the

correlation degree is larger than a threshold, the servers to

be queried possibly contain the query results with a high

probability. This scheme significantly narrows the searching

scope and avoids the brute-force searching operations on all

cloud servers. Moreover, both clients and servers use multiple

threads to exchange messages and data.

Query requests are generated from the attribute space of

above typical traces and are randomly selected by considering

1000 uniform or 1000 zipfian distributions. We set the zip-

fian parameter H to be 0.75. The total 2000 query requests

constitute a query set and we examine the query accuracy

and latency. In practice, ANN query can be interpreted as

querying multiple nearest neighbors by first identifying the

closest ones to the queried point, and then measuring their

distances. If the distance is smaller than a threshold, we say

the queried point is an approximate member to dataset S.

Moreover, in order to construct suitable ANN queries, the

methodology of statistically generating random queries in a

multi-dimensional space leverages the file static attributes and

behavioral attributes that are derived from the available I/O

traces [20], [22]. For example, an ANN query in the form

of (11:20, 26.8, 65.7, 6) represents a search for the top-

6 files that are closest to the description of a file that is

last revised at time 11:20, with size of “read” and “write”

data being approximately 26.8MB and 65.7MB, respectively.

The members in this tuple will be further normalized in the
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LSH based computation. In addition, due to space limitation,

we only exhibits the performance of querying top-6 nearest

neighbors. Experiments for querying more nearest neighbors

have been done and results show similar observations and

conclusions.

The load factor in hash tables may affect the response to

queries. Fortunately, cuckoo hashing has a higher load factor in

hash tables without incurring too much delay to queries. It has

been shown mathematically that with 3 or more hash functions

and with a load factor up to 91%, insertion operations can

be done in an expected constant time [16], [18]. We hence

set a maximum load factor of 90% for the cuckoo hashing

implementation.

In order to obtain accurate parameters, we use the popular

sampling method that is proposed in LSH statement [14],

[15] and practical applications [17]. “Approximate Measure
χ = ||p�1 − q||/||p1 − q||” evaluates the query quality for

queried point q, where p�1 and p1 respectively represent the

actual and searched nearest neighbors by computing their

Euclidean distances. With the aid of this sampling technique,

we determine the R values to be 700 for the metadata set.

In addition, a rehashing in insertion operation may incur the

relocation of items. By analyzing the results of the average

numbers of relocation per insertion, we recommend to use

d = 10 LSH functions to obtain a suitable tradeoff between

computation complexity and the number of relocation. We

also set ω = 0.85, M = 10 and Δ = 5 in the experiments to

guarantee high query accuracy.

We compare the NEST performance with LSB-tree [17],

LSH with Cuckoo Hashing (LSH-CH) and Baseline ap-

proaches. Since traditional cuckoo hashing techniques can

only support exact-matching query, but not approximate query,

we select the state-of-the-art work, LSB-tree [17] that can

support ANN query, for performance comparisons. LSB-tree

is the most recent work that can obtain high-quality ANN

query result. It uses Z-order method to produce associated

values that are indexed by a conventional B-tree. It addresses

the endless loop by using an auxiliary data structure. LSH-

CH is a data structure with a simple combination of LSH

and cuckoo hashing. The Baseline approach utilizes the basic

brute-force retrieval to identify the closest point in the dataset.

It determines an approximate membership by computing the

distance between the queried point and its closest neighbor.

Note that our comparison does not imply, in any sense,

that other structures are not suitable for their original design

purposes. Instead, we intend to show that NEST is an ele-

gant scheme for ANN query in large-scale cloud computing

applications.

B. Performance Results

We show the advantages of NEST over Baseline, LSH-

CH and LSB-tree approaches by comparing their experimental

results in terms of query latency, accuracy, space overhead, I/O

cost and rehash probability.

1) ANN Query Latency: Figure 9 shows the ANN query

latency when using metadata trace. We observe that NEST,

LSH-CH and LSB-tree obtain significant improvements upon

Baseline approach due to hashing computation, rather than

linearly brute-force searching. NEST further obtains on av-

erage 36.5% and 42.8% shorter running time than LSB-tree

respectively in uniform and zipfian distributions. Moreover,

compared with LSB-tree, LSH-CH obtains on average 8.51%

and 9.45% latency reduction. The main reason is that LSB-

tree needs to run Z-order codes and retrieve a B-tree after

the hashing computation. NEST and LSH-CH can carry out

constant-scale complexity even in the worst case. In addition,

as described in Section IV-A, since the simple combination

of LSH and cuckoo hashing, i.e., LSH-CH, addresses the

loop by using an auxiliary structure, the queries in LSH-CH

have to navigate the auxiliary storage space to find possible

approximate items, thus incurring a larger latency than NEST.

(a) Uniform.

(b) Zipfian.

Fig. 9. ANN query latency.

2) Space Overhead: Figure 10 shows the space overhead

normalized to LSH-CH. We observe that NEST can obtain

significant space savings. Compared with the space overhead

of LSH-CH that has an auxiliary structure, the average savings

from NEST are 47.9% in the trace.
Moreover, LSB-tree needs to keep additional Z-order codes

in a B-tree to facilitate ANN query and thus consumes larger

space than NEST. The smallest space overhead of NEST is the

result of cuckoo hashing usage to achieve load balance among

the buckets of hash tables. The flat hash-based addressing in

NEST can improve the space utilization.
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Fig. 10. Normalized space overhead.

3) I/O Costs: We take into account I/O costs by examining

the access times that include the visits on high-speed memory

and low-speed disk. Figure 11 illustrates the total I/O costs

for approximate queries. The Baseline approach requires the

largest number of accesses since it needs to probe the entire

dataset. LSH-CH needs to examine the auxiliary space and

hence incurs more costs than LSB-tree and NEST.

Furthermore, performing the index on a B-tree makes LSB-

tree produce 1.76 times more visits (average values) than

NEST in the trace. NEST needs to probe limited and deter-

ministic locations to obtain query results and its operations of

constant-scale complexity significantly reduce the costs of I/O

accesses.

4) ANN Query Accuracy: We examine query accuracy of

NEST and other three approaches by using the metric of

average “Approximate Measure” in the trace by using uniform

and zipfian query requests as shown in Figure 12. The Baseline

uses linear searching on the entire dataset and causes very

long query latency, which leads to potential inaccuracy of

query results due to stale information of delayed update.

Its slow response to update information in multiple servers

incurs false positives and false negatives, and hence greatly

degrades the query accuracy. The average query accuracy

of NEST is 90.5% in the trace, which is higher than the

percentages of 82.7% in LSB-tree, and 79.3% in LSH-CH.

Such improvement comes from the adjacent probing operation

in NEST to guarantee query accuracy. Moreover, LSH-CH

consumes relatively smaller accuracy than LSB-tree since the

auxiliary structure in the former is not locality-aware for

the approximate query. We also observe that the uniform

distribution receives higher query accuracy than the zipfian

because items in the latter are naturally closer and it is more

difficult to clearly identify them.

5) Rehash Probability: Hash collisions often appear in the

computation of hash functions. Without exception, NEST has a

chance for rehashing when hash collisions occur. Surprisingly,

the rehashing probability has been reduced significantly. Fig-

ure 13 shows the experimental results by comparing NEST

with the standard cuckoo hashing, when we carry out item

insertions. An insertion failure means that an endless loop

takes place. The average failure probabilities of NEST are

(a) Uniform.

(b) Zipfian.

Fig. 11. Total I/O costs for ANN query.

very small in the trace. In other words, a failure only occurs

when millions of insertions are done. In contrast, the standard

cuckoo hashing has a much higher failure probability and we

can observe a failure when inserting thousands of items. Such

significant decrement of failure rate is because NEST allows

items to be inserted into adjacent and correlated buckets.

C. Summary

The extensive experiments demonstrate NEST has great

advantages over existing work in terms of query latency, ac-

curacy, space overhead, and rehash probability. In particular, a

simple combination of LSH and cuckoo hashing, say LSH-CH,

does not work well. NEST can efficiently exploit and leverage

the locality of datasets to support approximate query in a

cloud environment. It achieves load-balance in its stored data

structure, while significantly alleviates the system performance

degradation due to hash collisions by employing locality-aware

algorithms.

V. CONCLUSION

This paper presented a novel locality-aware hashing scheme,

called NEST, for large-scale cloud computing applications.

The new design of NEST provides solutions to two challenges

in supporting approximate queries, namely, locality-aware

and balanced storage among cloud servers. NEST uses an

enhanced LSH to store one item in one bucket, exploited by

cuckoo hashing to achieve load-balance. The LSH in NEST,
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(a) Uniform.

(b) Zipfian.

Fig. 12. ANN query accuracy.

Fig. 13. Insertion failure probability due to the loops.

in turn, can significantly reduce the probability of the loop in

cuckoo hashing by allowing adjacent buckets to be locality-

aware and correlated items to be placed closely with a high

probability. We then obtain a fast and limited flat addressing,

which is O(1) complexity even in the worst case for ANN

query, while conventional vertical addressing structures (e.g.,

the linked lists) for LSH have O(n) complexity. NEST hence

can efficiently support ANN query service in large-scale cloud

computing applications, which is also verified by our extensive

experiments in a real cloud implementation.
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