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Abstract—Data deduplication is able to effectively identify and
eliminate redundant data and only maintain a single copy of
files and chunks. Hence, it is widely used in distributed storage
systems and cloud storage to save the users’ network bandwidth
for uploading files. However, the occurrence of deduplication can
be easily identified by monitoring and analyzing network traffic,
which leads to the risk of user privacy leakage. An attacker
can carry out a very dangerous side channel attack, i.e., learn-
the-remaining-information (LRI) attack, to reveal users’ privacy
information by exploiting the side channel of network traffic in
deduplication. Existing work addresses the LRI attack at the
cost of the high bandwidth consumption. In order to address
this problem, we propose a simple yet effective scheme, called
randomized redundant chunk scheme (RRCS), to significantly
mitigate the risk of the LRI attack while maintaining the high
bandwidth efficiency of deduplication. The idea behind RRCS
is to add randomized redundant chunks to mix up the real
deduplication states of files used for the LRI attack, which
effectively obfuscates the view of the attacker, who attempts to
exploit the side channel of network traffic for the LRI attack. Our
security analysis shows that RRCS significantly mitigates the risk
of the LRI attack. We have implemented the RRCS prototype
and evaluated it by using three real-world datasets. Experimental
results demonstrate RRCS significantly outperforms existing
work in terms of bandwidth efficiency.

I. INTRODUCTION

According to an International Data Corporation (IDC) re-

port [1], the amount of worldwide digital data created and

replicated reaches 4.4 Zettabytes in 2013, while it is expected

to exceed 44 Zettabytes in 2020. IDC analysis also shows that

nearly 75% data has a copy, which indicates a large amount

of data redundancy existing in our digital world. Moreover,

Microsoft Research collects the file data from 857 desktop

computers with the size of 162TB, and observes that there

exist nearly 40% duplicate data in personal data and nearly

68% duplicate data in the shared data among users [2]. The

data redundancy causes large consumption of storage capacity

and network bandwidth in distributed file and storage systems

as well as cloud storage.

In order to save network bandwidth and storage space, data

deduplication [3]–[7] identifies data redundancy and maintains

a single copy of files or chunks, which has been widely used

in cloud storage services [8]–[14]. In general, deduplication

may occur either at the source (client) or the target (server).

In the source-based deduplication, before uploading files (or

chunks), their fingerprints are first uploaded to the server. If the

fingerprints exist in the index of the server, the corresponding

files will not be uploaded. In the target-based deduplication,

files are directly uploaded to the server, and then deduplicated.

The former can obtain both bandwidth and storage savings,

while the latter only saves storage space. Moreover, duplicates

can be detected among the files owned by a single user or cross

users. The single-user deduplication only identifies redundant

data in a single user. Based on the single-user deduplication,

further using the cross-user deduplication can identify more

redundant data among users, thus obtaining significant space

savings [2]. Hence, current cloud storage systems typically

perform cross-user source-based deduplication for higher s-

torage and bandwidth efficiency [11], [12].

Although the cross-user source-based deduplication sig-

nificantly improves storage and bandwidth utilizations, the

occurrence of deduplication can be easily identified by mon-

itoring and analyzing network traffic, resulting in the risk

of user privacy leakage. By exploiting the side channel of

network traffic in deduplication, the attacker can carry out a

very dangerous side channel attack, i.e., learn-the-remaining-

information (LRI) attack, to obtain user privacy, which is

detailed in Section II-B. Harnik et al. [15] perform tests and

find that the LRI attack can occur in the popular cloud storage

services such as Dropbox [8] and Mozy [9]. Unfortunately, the

LRI attack in deduplication is difficult to be addressed due to

the following challenges.

• The Limitations Using CE or MLE. To protect data

confidentiality in deduplication, convergent encryption (CE) is

used to encrypt data [16]. CE proposed by Douceur et al. [17]

uses the hash of files to encrypt the files so that the repeated

files always generate identical ciphertexts. Thus deduplication

can be done over the encrypted data. Bellare et al. [18]

formalize CE and its variants as a cryptographic primitive,

called message-locked encryption (MLE). However, even if

data are encrypted by CE/MLE in cryptography deduplication

systems, there still exists the risk of the LRI attack. Because

the attacker could always carry out the LRI attack based

on the side channel of network traffic to perceive whether

deduplication occurs without probing the data themselves

transmitted in the network.

• Deduplication Inefficiency. There are two baseline so-

lutions to defend against the LRI attack. The first solution

is to use encryption to avoid cross-user deduplication. Before

uploading files to the cloud server, a client encrypts the files

using the users’ personal keys, and the duplicate files cross
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users will produce different ciphertexts via encryption with dif-

ferent keys. This solution prevents the cross-user deduplication

in the server, but substantially increases bandwidth and storage

overheads. The second solution is to perform target-based

deduplication. Files are directly uploaded to the server and

then deduplicated. This solution has no bandwidth saving and

only reduces the storage overhead compared with source-based

deduplication. Both solutions substantially decrease the dedu-

plication efficiency. Hence, it is nontrivial to defend against

the LRI attack while ensuring the deduplication efficiency.

Several schemes have been proposed to defend against

the LRI attack. Heen et al. [19] propose a gateway-based

deduplication model that uses a gateway (i.e., home router)

as the third entity in deduplication systems to improve the

resistance to the LRI attack. However, the solution needs an

extra gateway provided by the Network Service Provider [19],

which is not always possible in practical settings. Harnik

et al. [15] propose the randomized threshold solution (RTS)

without the need of an extra gateway. However, RTS causes

huge bandwidth overhead due to uploading redundant data,

and has the risk of leaking privacy with a certain probability.

To address these challenges, this paper proposes a

bandwidth-efficient randomized redundant chunk scheme (R-

RCS) to mitigate the risk of the LRI attack in cloud storage

while maintaining the high bandwidth efficiency of deduplica-

tion. By carefully adding randomized chunk-level redundancy

for each uploaded file, RRCS can mix up the real deduplication

states of files used for the LRI attack, and effectively obfuscate

the view of the attacker, who attempts to exploit the side

channel of network traffic for the LRI attack. Specifically, the

main contributions of this paper include:

• We propose RRCS, a simple yet effective scheme to

defend against the LRI attack. In RRCS, when a client

uploads the non-duplicate chunks of a file to the server, a

small amount of redundant data chunks are also uploaded,

which obfuscate the attacker’s view on the network traffic.

The number of the redundant chunks is chosen at random.

The randomness of redundant chunks in RRCS mixes up

the real deduplication states of files to defend against the

LRI attack.

• We present an in-depth security analysis for RRCS. In the

security analysis, we first show that all possible variants

of the deduplication detection method are not effective in

RRCS, and then demonstrate that RRCS can significantly

reduce the risk of the LRI attack.

• We have implemented the RRCS prototype in a dedu-

plication system, and examined the real performance of

RRCS by using multiple large-scale real-world datasets,

including Fslhomes [20], MacOS [20], and Onefull [21].

Extensive experimental results demonstrate that RRCS

has much less bandwidth overhead than RTS [15].

II. BACKGROUND AND MOTIVATION

A. System and Threat Models
We consider a general cloud storage service model that

includes two entities, i.e., the user and cloud storage server.

In the threat model of the side channel attack, the attack is

launched by the users who aim to steal the privacy information

of other users [15], [19], [22]. The attacker can act as a user

via its own account or use multiple accounts to disguise as

multiple users. The cloud storage server communicates with

the users through Internet. The connections from the clients to

the cloud storage server are encrypted by Secure Socket Layer

(SSL) [23] or Transport Layer Security (TLS) protocol [24].

Hence, the attacker can monitor and measure the amount

of network traffic between the client and server but cannot

intercept and analyze the contents of the transmitted data. The

attacker can then perform the sophisticated traffic analysis with

sufficient computing resources. For example, the user A is the

victim who has uploaded his/her file with privacy information

to the cloud storage server. The user B is the attacker who can

upload any number of files to the same cloud storage server.

During the file uploads, the user B monitors the amount of

their network traffic to determine the duplication states of files

and then infers the privacy information in the file uploaded by

the user A, as the method described in Section II-B.

In summary, this paper mainly focuses on the side channel

of traffic information1, like existing work [15], [19], [22] on

side channel attacks. Thus the attacker could only infer/probe

the privacy by observing the amount of network traffic be-

tween the client and server. The variants of the deduplication

detection method are discussed in details in Section IV-A.

B. The LRI Attack in Deduplication

An attacker can easily identify whether deduplication occurs

for a file via monitoring and analyzing the network traffic, and

further carries out the learn-the-remaining-information (LRI)

attack to reveal user privacy information as presented in the

following.

The LRI Attack: In the LRI attack, the attacker knows

a large part of the target file in the cloud and tries to learn

the remaining unknown parts of the target file via uploading

all possible versions of the file’s content, i.e, m files. As

shown in Figure 1, the attacker knows all the contents of

the target file X except the sensitive information θ. To learn

the sensitive information, the attacker needs to upload m files

(F1, F2, ..., Fm) with all possible values of θ (θ1, θ2, ..., θm),

respectively. If a file Fk with the value θk is deduplicated and

other files are not, the attacker knows that the information

θ = θk. Note that the attacker knows that, for the m files, only

one file is the same as the file X and the remaining m − 1
files are similar to the file X since only a small part of their

contents are different from file X . The different parts of their

contents are the sensitive information, such as the PIN [15],

the password of bank account [12], and the salary number,

which can usually be represented as a small number of bits

and easily covered in one-chunk size (about 8kB) in the chunk

level.

1Note that if the attacker has the ability to control the SSL encryption
or memory sniffing, etc., a new kind of attack can be formed, whereby the
attacker could potentially obtain the deduplication state of a file. However,
such attack is much harder than the side channel of traffic information, and
is beyond the scope of the threat models we consider.
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The LRI attack can be applied in extensive application

scenarios whenever the privacy information is in a moderately
sized domain, i.e., the number of possible versions of the target

file is moderate [15], [19]. We use two examples to show

how the LRI attack is used to obtain the other users’ private

information in practice.

• Stealing the salary information. Alice and Bob belong

to the same company. Alice knows Bob’s employee number

and other personal information about Bob. The salary of the

company is in the range of 5,000 to 15,000, and a multiple of

1,000. If Alice wants to know Bob’s salary, she can backup

11 (m = 11) versions of the payroll with Bob’s name, Bob’s

employee number and the salary ranging from 5,000 to 15,000

to the same server in which Bob has backed up his payroll.

Thus Alice can know the salary of Bob that is in the payroll

version in which the deduplication occurs.

• Stealing the medical test results. Bob backups the result

of his medical test to a cloud storage service. The medical

test results are presented in the standard document templates

that are public. Moreover, some medical test results usually

come from a small domain, such as, a yes or no result for a

pregnancy test, and a hundred likely range for a cholesterol

test. Thus Alice can obtain the Bob’s test result via backing

up a small number of documents to the same cloud storage

service that Bob uses.

Note that in the LRI attack, the server cannot catch or

sanction the attacker. That is because the attacker uploads

his/her own files to the server regardless of the number of

uploaded files and thus the behavior of the attacker is the

same as that of a normal user [15].

C. Related Work on the LRI Attack
The security issues of cross-user deduplication in cloud

storage services have been widely studied, including data

confidentiality [16], [18], [25], [26], side channel attacks [15],

[19], and the proofs of ownership [27], [28]. Convergent

encryption [18] is proposed to ensure the data confidentiality

in deduplication systems. However, even with data encryption,

deduplication still leaks the sensitive information of users via

the LRI attack [15], [19]. Existing work addressing the LRI

attack can be divided into two categories.

The first category is based on a special deduplication system

model, i.e., gateway-based system model. The model consists

of three entities, i.e., the user, the gateway provided by the

Network Service Provider, and the storage server. Heen et

al. [19] assume that the gateway is installed in the attacker’s

home network, and propose to use the gateway to mix up

the traffic of the cloud storage service with that of other

services. Shin el al. [22] assume that the gateway is shared

by multiple users, and propose to leverage the gateway to mix

up the traffic among multiple users. These solutions avoid the

attacker to learn the occurrence of deduplication by monitoring

the network traffic of clients, thus improving the resistance

to the LRI attack. However, an extra gateway provided by

the Network Service Provider is needed, which is not always

possible in practical settings.
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Fig. 1. The LRI attack.

The second category addresses the LRI attack in the general

deduplication system model including two entities, i.e., the

user and the storage server. The general system model is

widely used in current cloud storage systems [8]–[10]. Harnik

et al. [15] propose the randomized threshold solution (RTS).

For each file X , the server sets a threshold tX which is chosen

uniformly from the range [2, d] at random (d might be a public

parameter). The server keeps a counter cX to count the number

of previously uploaded copies of file X . When a new copy of

file X is uploaded, RTS checks the counter cX . If cX is smaller

than tX , the file is uploaded and deduplicated in the server.

Otherwise it is deduplicated in the client. Harnik et al. show

that RTS has a risk of privacy leakage with probability 1
d−1 .

Because tX is chosen uniformly at random, when tX = 2,

the attacker uploads one copy of file X and can learn that

deduplication occurs. Moreover, RTS assigns thresholds to all

files which consumes high bandwidth overhead in the practical

deduplication as presented in Section V.

Unlike the gateway-based solution [19], [22], RRCS does

not require an extra gateway that is not always available.

Compared with RTS [15], RRCS can obtain 2 ∼ 10 times

higher redundancy elimination ratio as shown in Section V-D,

due to exploiting fine-grained redundancy to defend against

the LRI attack.

D. Motivation
1) File-level vs. Chunk-level Deduplication: From the iden-

tification granularity of the duplicate data, the deduplication

is divided into two categories, i.e., file-level and chunk-level

deduplication. Specifically, file-level deduplication considers

the whole file as a unit to eliminate redundant data. Chunk-

level deduplication divides the entire file into chunks (fixed-

sized [3] or variable-sized [4], [29]), and then considers the

chunk as a unit to eliminate redundant data. Compared with

file-level deduplication, the chunk-level deduplication not only

identifies the identical files, but also eliminates the identical

chunks among the similar files. Consequently, chunk-level

deduplication can obtain higher deduplication ratio, and thus

has been widely used in backup systems [3], [4], [21] and

cloud storage systems [11], [12].

For file-level deduplication, there are two deduplication

states for a file in a given storage system, i.e., duplicate

and non-duplicate. The client does not upload the duplicate-

detected files in the former case. In the latter case, the client

needs to upload the non-duplicate files. In the LRI attack, for

m files, only the file Fk with correct sensitive information is

the same as the target file X and thus not uploaded. Other files

Fi(i ∈ [1,m]&i �= k) with incorrect information are uploaded.
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Fig. 2. The LRI attack in chunk-level deduplication.

If we want to mix up the deduplication states of the file Fk and

other files to defend against the LRI attack, we need to upload

the whole file regardless of whether deduplication occurs, like

RTS [15], which incurs high bandwidth overhead.

This paper focuses on defending against the LRI attack

in chunk-level deduplication. Chunk-level deduplication deals

with duplicate files based on their redundant level. Specifi-

cally, there are three deduplication states for a file: (1) Full

deduplication (Dfull). A client uploads a file Xa to the server.

If an existing file Xb is completely identical to the file Xa,

Xa will be deduplicated without the need of uploading. (2)

Partial deduplication (Dpart). A file Xc in the server is similar

(partially identical) to file Xa to be uploaded, meaning that

they share some duplicate chunks. The client only uploads

the non-duplicate chunks. (3) No deduplication (Dno). If no

identical/similar files exist in the server, the whole file Xa

needs to be uploaded.

As shown in Figure 2, in the LRI attack, for the m files,

the file Fk with correct sensitive information is completely

identical to the target file X , i.e, Dfull, whose uploading

traffic is zero. Other files have N − 1 duplicate chunks and

one non-duplicate chunk with the value θi (as described in

Section II-B), belonging to Dpart, whose uploading traffics are

equal to one-chunk size. To defend against the LRI attack, we

can explore leveraging chunk-level redundancy rather than the

whole-file redundancy, to mix up the deduplication states of

the file Fk and other files Fi(i ∈ [1,m]&i �= k) via uploading

some redundant chunks in each file.

2) Deterministic Chunk-level Redundancy for Defending
against the LRI Attack: For the m files used for the LRI

attack, the uploading traffic of the file Fk with correct sensitive

information is zero and the uploading traffic of the other m−1
files are the size of one chunk. To mix up the m files in terms

of the uploading traffic, a simple solution is to add a fixed

number of redundant chunks to ensure that the traffic of each

file is always more than one-chunk size. Specifically, for a

file with non-duplicate chunks, we upload its non-duplicate

chunks. For a file without non-duplicate chunks, i.e., the whole

file is duplicate, we randomly choose one chunk of the file to

upload. Thus one chunk is uploaded for Fk in the solution.

Hence, the m files are indistinguishable in terms of uploading

traffic, since the traffic of each file is equal to the size of one

chunk.

However, in fact, the solution is easily broken. The attacker

can append one non-duplicate chunk in each file to break

the solution, as shown in Figure 3. The non-duplicate chunk

can be randomly generated. Since the average chunk size is

about 8 KB, a randomly generated chunk is unlikely to exist
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Fig. 3. Appending Chunks Attack. (The appended non-duplicate chunk is
marked by yellow in the figure).

in the server since there are 22
16

possible chunks. By doing

so, the traffic of Fk is the size of one chunk and the traffics

of other files are the total size of two chunks. Thus Fk with

correct sensitive information is easily identified from the m
files according to the traffic.

To enhance the simple solution, we can add more redundant

chunks to ensure that the traffic of each file is always more

than the size of l chunks (1 < l < N ), e.g., l = N/2.

However, the attacker can also append more than l non-

duplicate chunks in each file. The traffic of Fk is the size

of one chunk less than the traffics of other files, which breaks

the enhanced solution. We name the method that appends one

or multiple non-duplicate chunks in each file to assist the LRI

attack as Appending Chunks Attack (ACA). In summary, using

deterministic chunk-level redundancy fails to mitigate the risk

of the LRI attack.

III. DESIGN AND IMPLEMENTATION

As mentioned above that using deterministic chunk-level

redundancy fails to mitigate the risk of the LRI attack, we

present the Randomized Redundant Chunk Scheme (RRCS)

which explores and exploits randomized chunk-level redun-

dancy to mitigate the risk of the LRI attack.

A. The Randomized Redundant Chunk Scheme

The idea behind RRCS is to explore and exploit randomized

chunk-level redundancy to obfuscate the view of the attacker,

who attempts to measure the uploading traffics of files for

executing the LRI attack.

In RRCS, the basic idea of adding redundant chunks is to

choose the number of the redundant chunks from a range

uniformly at random. The redundant chunks are randomly

chosen from all the duplicate chunks of the file. By doing

so, RRCS can significantly weaken the correlation between

the deduplicated and the existing files in the server from

the network traffic point of view, and effectively prevent

the potential attacker that observes the network traffic from

accurately determining whether deduplication occurs.

1) The Overview of RRCS: RRCS determines the uploaded

chunks based on the real deduplication states of files via mix-

ing the redundant chunks. Figure 4 shows the framework of

RRCS. RRCS includes three key function modules, range gen-

eration (RG), secure bounds setting (SBS), security-irrelevant

redundancy elimination (SRE). When uploading the random-

number redundant chunks, RRCS first uses RG to generate a

fixed range in which the random number is chosen. However,

the fixed range may cause a security issue. SBS is used to

deal with the bounds of the fixed range to avoid the security
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Fig. 4. The framework of the randomized redundant chunk algorithm.

issue. There may exist security-irrelevant redundant chunks in

RRCS. SRE reduces the security-irrelevant redundant chunks

to improve the deduplication efficiency. The modules are

detailed as follows.
2) Range Generation: For each file, RRCS first assigns a

range [0, λN ] (λ ∈ (0, 1]), in which the number of redundant

chunks R is chosen uniformly at random. N is the total

number of chunks in a file, which the attacker can obtain

by chunking the file using the chunking algorithm. λ is a

parameter assigned by the deduplication system, which might

be public. How to set the parameter λ for the system is a

tradeoff between the security and bandwidth efficiency, which

we will discuss in Section IV and V. If λN is not an integer,

λN = �λN�.
Security Analysis for the Range. As described in Sec-

tion II-B, m files (F1, F2, ..., Fm) are used for executing the

LRI attack, in which the file Fk has the correct sensitive

information. We add Ri(i = 1, 2, ...,m) redundant chunks for

file Fi, and Ri is randomly chosen form the range [0, λN ].
Thus the number of actually uploaded chunks in Fk is in the

range [0, λN ], due to no non-duplicate chunks. The numbers

of actually uploaded chunks in other m − 1 files Fi(i ∈
[1,m]&i �= k) are in the range 1 + [0, λN ] = [1, λN + 1],
due to one non-duplicate chunk. Hence, the file Fk and other

files have different ranges in terms of the uploading traffic,

which is not secure enough for the LRI attack. There are two

events causing privacy leakage.

• If Rk for the file Fk happens to be 0 with probability
1

λN+1 , the uploading traffic of Fk is zero. Thus the

attacker can easily distinguish Fk from the m files since

the uploading traffic of the other m − 1 files is always

more than zero.

• If Ri(i ∈ [1,m]&i �= k) for all the m − 1 files with

incorrect sensitive information happen to be λN with

probability 1
λN+1

m−1
, the uploading traffics of all the

m− 1 files are equal to the size of λN +1 chunks. Thus

the attacker can determine the remaining one file is Fk

since the uploading traffic of Fk is always no more than

the size of λN chunks.

In summary, assigning the same range of the number of the

redundant chunks to the m files results in the risk of privacy

leakage with probability 1
λN+1 + 1

λN+1

m−1
.

3) Secure Bounds Setting: When R happens to be the

bound of the fixed range [0, λN ], the attacker can identify the

file Fk with correct sensitive information, resulting in privacy

leakage with a certain probability. In the following, we aim to

set the secure bounds to avoid the privacy leakage.

Form the above discussion, we argue that the problem of

the bounds can be avoided only when the numbers of actually

uploaded chunks in all the m files are in the same range. We

show how to avoid the problem below. Since the server can

TABLE I
NOTATIONS USED IN THE PAPER

Label Description

N The total number of chunks in the file
K The number of non-duplicate chunks after deduplication
R The number of redundant chunks added by RRCS
R′ The number of redundant chunks after eliminating the

security-irrelevant chunks
U The number of actually uploaded chunks (= K +R′)
H The set which R is randomly chosen from

Hfull in Dfull, Hpart in Dpart

clearly know that each uploaded file is completely identical

(Dfull) or partially identical (Dpart) to the files in the server,

different R ranges can be set for different cases. For example,

For the file belonging to Dfull, R is randomly chosen from

[1, λN + 1]. For the file belonging to Dpart, R is randomly

chosen from [0, λN ]. Thus the number of actually uploaded

chunks in Fk which belongs to Dfull is in the range [1, λN +
1]. The numbers of actually uploaded chunks in other m− 1
files which belongs to Dpart are also in the range 1+[0, λN ] =
[1, λN + 1].

Overall, we denote that R is randomly chosen from the set

Hfull in the case of Dful, and randomly chosen from the

set Hpart in the case of Dpart. In order to mix up the two

deduplication states in the m files used for the LRI attack, it

is easy to get the equation:

Hpart + 1 = Hfull (1)

Note that the equation means adding 1 to each element in set

Hpart to form the set Hfull.

4) Security-irrelevant Redundancy Elimination: For a file

with N chunks, due to adding the redundant chunks, the

number of uploaded chunks, U , is possibly larger than N .

It is not necessary to upload more than N chunks, since

the U − N redundant chunks become the security-irrelevant

redundant chunks without contributions to the security. We

hence upload N chunks by reducing the number of redundant

chunks, R, when U is larger than N .

5) The RRCS Algorithm: We summarize the RRCS al-

gorithm in Algorithm 1. First, the server assigns the range

[0, λN ] as the set Hpart for a file. RRCS algorithm generates

set Hfull by the Equation 1: Hpart + 1 = Hfull. The two

sets are used for two real deduplication states of files, i.e.,

Dpart and Dfull, respectively. RRCS algorithm then judges

which deduplication state the file belongs to by checking the

number of its non-duplicate chunks K. K = 0 means the file

is completely identical to a file in the server. RRCS algorithm

further configures the set H = Hfull. Moreover, 0 < K < N
means the file will be partially identical (similar) to files in the

server, and we have the set H = Hpart. Otherwise, K = N
means the file has no duplicate chunks in the server, and we

have the set H = {0}. The number of redundant chunks R
is randomly chosen from the set H . If R + K > N , RRCS

algorithm sets R′ = N − K. Otherwise, R′ = R. Finally,

RRCS algorithm generates R′ redundant chunks by choosing

from the duplicate chunks.
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Algorithm 1 The RRCS Algorithm

Input: The system parameter λ; the total number of chunks in a
file, N ; and the number of non-duplicate chunks in the file, K;

Output: The chunks which need to be uploaded for the file;
1: λN = �λN�;
2: Hpart = [0, λN ];
3: Hfull = Hpart + 1 = [1, λN + 1];
4: if (K == 0) then
5: H = Hfull;
6: else if (0 < K < N) then
7: H = Hpart;
8: else
9: H = {0};

10: end if
11: R is randomly chosen from the set H;
12: if (R+K > N) then
13: R′ = N −K;
14: else
15: R′ = R;
16: end if
17: Generate R′ redundant chunks by choosing from the duplicate

chunks;

From the RRCS algorithm, we can see that the number of

the chunks which need to be uploaded U(= K + R′) meets

1 ≤ U ≤ N . For a special case that a file only has one chunk,

i.e., N = 1, the file is directly uploaded in RRCS algorithm.

B. Implementation
In the subsection, we present how to implement RRCS in

the chunk-level deduplication system.

As shown in Figure 5, in chunk-level deduplication, the

real deduplication states of files include full deduplication

(Dfull), partial deduplication (Dpart), and no deduplication

(Dno) (described in Section II-D). Dfull consists of two cases,

i.e., single-user duplicate files and cross-user duplicate files.

The single-user duplicate file means that a file uploaded by a

user is identical to the file previously uploaded by the user,

and thus observing the occurrence of Dfull for the single-user

duplicate file does not cause privacy leakage, as demonstrated

in [15]. Hence, RRCS directly deduplicates the single-user

duplicate files in the client to obtain the bandwidth savings.

The cross-user duplicate file means that a file uploaded by a

user is identical to the file previously uploaded by other users.

Observing the occurrence of Dfull for the cross-user duplicate

file can be used to reveal other users’ privacy. Hence, RRCS

mixes up the case with Dpart using the RRCS algorithm. We

directly upload the files occurring in Dno.

RRCS is implemented in the server. For a file to be

uploaded, the client first divides the file into chunks using

fixed-sized [3] or variable-sized [4], [29] chunking algorithms

and then uploads the fingerprints of all chunks to the server.

After receiving the fingerprints, the server can know the

deduplication state of the file via querying the fingerprint

index. The server employs the RRCS algorithm to determine

the chunks needing to be uploaded which include the non-

duplicate chunks and mixed redundant chunks, and then re-

sponds to the client. The client finally uploads these chunks

but cannot distinguish the redundant and non-duplicate chunks.
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Fig. 5. The implementation of RRCS in deduplication systems.

IV. SECURITY ANALYSIS

In this section, we first discuss all variants of the dedupli-

cation detection method and analyze whether the variants are

effective in RRCS. We then analyze the security properties of

RRCS for the LRI attack.

A. The Variants of the Deduplication Detection

In order to comprehensively evaluate the solutions in re-

sisting the LRI attack, we first elaborate below the baseline

deduplication detection method from the attacker and its

possible variants. As shown in Section II-A, the attacker’s

goal is to exploit/identify the occurrence of deduplication to

launch the LRI attack. To launch the attack, the attacker can

pass the file to the client to upload to the deduplication server.

By measuring the uploading traffic, i.e., the side channel,

the attacker could attempt to infer/probe the occurrence of

deduplication. There are several variants of the above detection

method, but we show below that those variants can all be

reduced to the above baseline detection method. Thus, later

in the next subsection we will only focus on the defense of

above baseline case.

The variants include: 1) The attacker might upload the same

file multiple times. However, only the first upload could be

deemed useful for the attacker. This is because the file will

be stored in the server after its first uploaded (regardless of

whether there was an old copy of the file or not in the server),

and thus all the subsequent upload of the same file will be

always identical to the attacker’s own file. Such reasoning

could be extended to the case where the attacker might use

multiple accounts to disguise as multiple users to upload the

same file. 2) The attacker can also try to upload a file to

the server and then immediately delete the file. By repeating

the operations of uploading and deleting the file, in theory the

attacker can perform multiple uploadings. However, this is not

feasible in practice. As pointed out by Harnik et al. [15], many

online storage services, such as DropBox, Memopal and Mozy,

need to keep copies of the deleted files for a period of at least

30 days, either for the purpose of storage resilience or version

recovery. Users hence can restore to past versions. Therefore,

the execution of each iteration of the attack has to last at least

30 days. The need of long term execution and the fact that the

target file status in cloud could be easily changed during the

long period due to normal application requests would render

such attack practically useless to the attacker. Again, only the

first uploaded file is useful for the attacker in RRCS.
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B. Security Strength of RRCS
We analyze the security of RRCS for the LRI attack in

the general case. We then analyze the security of RRCS for

the LRI attack assisted by the Appending Chunks Attack

(presented in Section II-D2).
1) The LRI Attack in the General Case: For the LRI attack,

the attacker knows a big part of the targeted file X and

tries to determine the remaining unknown parts of file X
via uploading all possible versions of the file’s content. All

possible versions are m files in which only one file is the

same as file X and the remaining m − 1 files are similar to

file X since only a small part of their contents are different

from file X , as the background described in Section II-B. The

sizes of different contents are smaller than that of one data

chunk. The attacker could observe the client’s upload of m
similar files Fi (i = 1, 2, ...,m) via chunk-level deduplication

and measure the uploading traffic.
In general, by observing the results of measuring the up-

loading traffic, the attacker can find that the uploading traffic

of one file Fk is zero, and the uploading traffics of other files

are equal to the size of one chunk. The attacker hence confirms

the content of the file Fk is the same as the target file X .
In order to prove that RRCS can address the LRI attack in

the general case, we demonstrate in Theorem 1 that m files

should be indistinguishable in RRCS.

Theorem 1: In the general case, the m files used for the LRI
attack are indistinguishable from the attacker’s view in RRCS.

Proof 1: Initially, the target file X exists in the server. m
files (F1, F2, ..., Fm) are uploaded for the LRI attack, in which

file Fk is the same as file X . Due to adding randomized

redundant chunks in RRCS, the uploading traffic of file Fk

is equal to the size of Rk chunks. The uploading traffics of

the other m − 1 files Fi (i ∈ [1,m], i �= k) are equal to

the size of 1 + Ri (i ∈ [1,m], i �= k) chunks. Since Fk

belongs to Dfull and the other m − 1 files belong to Dpart,

we have that Rk is randomly chosen from the set Hfull, and

Ri (i ∈ [1,m], i �= k) are randomly chosen from Hpart, as

shown in Section III-A3. We thus obtain Rk ∈ Hfull and

1 + Ri ∈ 1 + Hpart
2 (i ∈ [1,m], i �= k). According to

Equation 1, we have Hfull = 1+Hpart. Hence, the identical

file Fk and other m − 1 similar files have the same range of

uploading traffic, from the attacker’s view. Hence, the attacker

cannot distinguish between the identical file Fk and the other

m− 1 files Fi (i ∈ [1,m], i �= k).
In summary, RRCS defends against the LRI attack by

making the m files used for executing the LRI attack indistin-

guishable from the attacker’s view in the general case.
2) The LRI Attack Assisted by the ACA: To execute the

Appending Chunks Attack (ACA), the attacker can append

one or multiple non-duplicate chunks to each file in the m
files used for the LRI attack. In the following, we analyze the

security of RRCS for the LRI attack assisted by the ACA.
Initially, the target file X exists in the server. m files

(F1, F2, ..., Fm) are uploaded for the LRI attack, in which

21 +Hpart means adding 1 to each element in set Hpart.
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Fig. 6. RRCS under the Appending Chunks Attack. (The appended non-
duplicate chunks are marked by yellow in the figure).

each file has N chunks and the file Fk is the same as file X .

By executing the ACA, L(L ≥ 1) non-duplicate chunks are

appended to each file. We denote the m files appended non-

duplicate chunks as F ′1, F
′
2, ..., F

′
m, which have N+L chunks.

Due to being appended by non-duplicate chunks, all the m new

files belong to Dpart, in which Ri(i ∈ [1,m]) are randomly

chosen from the range [1, λN + 1] in RRCS. Thus the range

of the number of actually uploaded chunks in the file F ′k is

0+L+[1, λN+1] = [L+1, λN+L+1], and the ranges in the

other m−1 files are 1+L+[1, λN+1] = [L+2, λN+L+2],
as shown in Figure 6. The file F ′k and other m− 1 files have

different ranges in terms of the uploading traffic.

To analyze security, we demonstrate in Theorem 2 that

RRCS leaks no information with high probability for ACA.

Theorem 2: For the LRI attack assisted by the Appending
Chunks Attack, RRCS leaks no information which prevents the
attacker from accurately identifying the file with the correct
sensitive information from the m files, with the probability of
1− 1

λ(N+L)+1 − 1
λ(N+L)+1

m−1
.

Proof 2: We consider all four events in RRCS where the

attacker wants to identify F ′k with correct sensitive information

from the m files appended by non-duplicate chunks.

1) The attacker uploads the m files. If observing the

uploading traffic of one file is equal to the size of L+1
chunks, the attacker can determine that the file is F ′k,

since L+1 only belongs to the range of the number of

actually uploaded chunks in F ′k.

2) If the traffics of m − 1 files are equal to the size of

λ(N +L) +L+2 chunks 3, the attacker can determine

that the remaining one file is F ′k, since λ(N+L)+L+2
only belongs to the ranges of the number of actually

uploaded chunks in the m − 1 files with incorrect

sensitive information.

3) If the traffics of all m files are between the sizes of

L+2 and λ(N+L)+L+1 chunks, the attacker fails to

determine which file is F ′k. This is because the traffics

of all m files can cover the range of [L+2, λ(N +L)+
L + 1] chunks size. The m files are indistinguishable

from the attacker’s view in RRCS, based on the proof

in Section IV-B1.

4) If the traffics of n files are the size of λ(N +L)+L+2
chunks and the traffics of the remaining m−n files are

between the sizes of L + 2 chunks and λ(N + L) +
L + 1 chunks, the attacker can determine that F ′k is

3If λ(N + L) is not an integer, λ(N + L) = �λ(N + L)�.
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not in the n files but still cannot identify F ′k from the

remaining m−n files. Thus the m−n files containing Fk

are indistinguishable from the attacker’s view in RRCS,

based on the proof in Section IV-B1.

The first event that leaks information, occurs with probabil-

ity 1
λ(N+L)+1 . 4 The second event leaking information occurs

with probability 1
λ(N+L)+1

m−1
. Whereas the third and fourth

events, which do not leak information, occur with probability

1− 1
λ(N+L)+1 − 1

λ(N+L)+1

m−1
.

Remark. How to set λ for the server is a tradeoff between the

security and bandwidth efficiency. The larger λ is, the higher

the probability of leaking no information is. But larger λ also

leads to larger range of R, which would naturally result in

more potential bandwidth overhead. Nevertheless, even when

λ = 1, RRCS provides the best security guarantee while

can also obtain good bandwidth efficiency as demonstrated

in Section V-D.

V. PERFORMANCE EVALUATION

A. Setup and Datasets

To evaluate the performance of RRCS, we implement a

prototype of cross-user source-based deduplication with RRCS

in the distributed cloud system. Each client is equipped with

the Ubuntu 12.04 operating system running on a quad-core

Intel Core i5-4460 CPU at 3.20 GHz, with a 16GB RAM and

a 2TB hard disk. Each server has a 16-core CPU, a 32GB

RAM and a 10TB hard disk. The RRCS prototype is written

in C language in a Linux environment.

We examine the performance of RRCS using three real-

world trace-based datasets, i.e., Fslhomes [20], MacOS [20],

and Onefull [21]. We explore the characteristics of the datasets

in Section V-B and summarize them in Table II.

• Fslhomes was collected in the File system and Storage

Lab (FSL) at Stony Brook University, which contains the

snapshots of students’ home directories from a shared

network file system. The files contain virtual machine

images, office documents, source code, binaries and other

miscellaneous files.

• MacOS was collected from a MacOS X Enterprise Server

that holds 247 users and provides multiple services:

email, webservers, calendar server, mailman for mailing

lists, wiki server, mySQL, and a trouble-ticketing server.

• Onefull is a subset of the trace reported by Xia et al. [21],

which was collected from the personal computers of 15

graduate students in our research group.

As described in Section III-B, single-user duplicate files do

not cause privacy leakage. We eliminate single-user duplicate

files in the source (client), which obtains significant bandwidth

savings in RRCS and RTS. RRCS and RTS hence exhibit the

same bandwidth efficiency, i.e., no bandwidth overhead, in

eliminating the single-user redundancy. On the other hand,

4Note that since the average size of personal files is over 600kB in the real-
world datasets as shown in Table II and thus the average number of chunks
N is large enough (N > 600kB/10kB = 60), the probability of leaking
information 1

λ(N+L)+1
is very small.

TABLE II
THE CHARACTERISTICS OF DATASETS

Fslhome MacOS Onefull
Total size 5.1TB 1.9TB 219GB

Avg. chunk size 8kB 8kB 10kB
Avg. file size 1530kB 683kB 622kB

Cross-user redundancy ratio 39% 48% 25%
The total number of files 3.663M 3.058M 378K

The number of unique files 2.238M 1.600M 283K
The number of 0.316M 0.281M 7.8K

> 3 copies unique files (8.4%) (7.4%) (2.8%)
The number of 0.068M 0.011M 2.0K

> 5 copies unique files (4.8%) (0.7%) (0.7%)
The number of 0.017M 0.003M 0

> 10 copies unique files (0.9%) (0.2%) (0)

for cross-user deduplication, RRCS and RTS add different

amounts of redundancy for defending against the side channel

attacks. Therefore, we examine the performance of eliminating

the cross-user redundancy in RRCS and RTS. In the perfor-

mance evaluation, we eliminate single-user duplicate files in

the client and evaluate the bandwidth efficiency of cross-user

deduplication as shown in Section V-D.

B. The Characteristics of the Datasets

Before evaluating the performance of RRCS, we explore

and analyze the characteristics of cross-user file redundancy

in the three real-world datasets owning many users. We count

the number of the files that have k copies (k = 1, 2, 3, ...),
while k is the number of users sharing the file.

The relationships between the number of files and their

copies are shown in Figure 7. The number of files exponen-

tially decreases as a function of the number of file copies.

We can observe that most files only have a few copies (i.e.,
shared by a few users). We summarize the results in Table II

(M is 106, and K is 103 in the Table). For Fslhomes dataset,

the number of unique files containing more than 5 copies only

accounts for 4.8% of the total number of the unique files. For

MacOS dataset, the number of unique files containing more

than 5 copies only accounts for 0.7% of the total number of

unique files. We also investigate the redundancy characteristics

in chunk-level which show the similar results.

As a result, most files only have a few copies (or shared

by a few users) in the real-world datasets. RTS [15] performs

target-based deduplication when the number of file copies is

smaller than a pre-defined threshold (detailed in Section II-C).

However, since the files having a few copies account for a

significant proportion as shown in Figure 7, most files are

performed target-based deduplication in RTS. Therefore, RTS

becomes bandwidth-inefficient in the real-world datasets.

C. Uploading a Single File Multiple Times

We mainly consider five deduplication schemes, including

source-based deduplication, target-based deduplication, file-

level RTS, chunk-level RTS, and RRCS. Based on the file-level

RTS described in Section II-C, we develop the chunk-level

RTS for comparisons, in which a random threshold T is set

for each chunk. The five deduplication schemes have the same

space savings in the storage server, but different bandwidth
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Fig. 7. The characteristics of datasets. (The blue lines show the percentage of the number of files having k copies in the total number of files.)

savings (i.e., the reduced amount of the transmitted data by

the above five deduplication schemes).

In order to intuitively compare the characteristic of the

five deduplication schemes in bandwidth overhead, we first

consider a simple situation that the same file is uploaded

multiple times by different users. We use an 800kB-size file,

which is divided into 100 chunks with the average chunk size

of 8kB. We upload the file k times and observe the changes

of the total amount of the transmitted data among the above

mentioned four schemes. Specifically, file-level (chunk-level)

RTS uses the target-based deduplication when the number of

the uploaded copies of the file (chunk) is smaller than the

threshold T that is chosen uniformly from the range [2, d].
We use the parameter setting in their paper [15], i.e., d = 20.

RRCS needs to upload the randomized redundant chunks for

defending against the LRI attack.

Figure 8 shows the changes of the total amount of the

transmitted data (i.e., the total traffic) with the increase of

the file upload number k. For the target-based deduplication,

the total traffic of uploading file k times is equal to k times

the size of the file. For file-level RTS, the total traffic is equal

to k times the size of the file when k is smaller than the

threshold T , and the file is deduplicated in the client when k
is larger than T . T = 11 in the Figure 8, which is selected

by the average value in the range [2, 20]. Other cases that

the T is set to other numbers are easy to understand. For

chunk-level RTS, the total traffic increases slower than that

of file-level RTS. When the number of file uploads is high

(i.e., 17), file-level and chunk-level RTS have the near-same

total traffic, since setting a threshold to a file has the same

expectation of the total traffic as setting a threshold to each

chunk in the file. For RRCS, the total traffic grows slowly

due to adding chunk-level redundancy, and the curve shows a

fluctuation since the number of redundant chunks is at random.

Compared with RTS, when the file uploading times k is quite
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Fig. 8. The total traffic with the increase of the number of file uploads.

large (more than 42 in Figure 8), the total traffic in RRCS may

be more than RTS. However, we argue that the files containing

many copies are very few in the real-world datasets as shown

in Section V-B. Thus RRCS can obtain significant bandwidth

saving compared with RTS in the real-world datasets, as we

demonstrate in the next subsection.

D. Bandwidth Overhead
We compare these deduplication schemes in terms of band-

width overhead in cross-user deduplication, using the three

real-world datasets mentioned above. Specifically, in file-level

(chunk-level) RTS, we also use the range [2, 20] in which the

threshold of each file (chunk) is uniformly chosen at random,

as the parameter setting in their paper [15]. In RRCS, we

respectively set the system parameter λ = 0.5 and λ = 1 to

show how the different λ impacts the bandwidth efficiency.
Figure 9 shows the normalized bandwidth overhead of five

schemes. The bandwidth overhead of target-based deduplica-

tion is equal to the total file size. Compared with target-based

deduplication, source-based deduplication reduces 25%−48%
of bandwidth overhead in the three datasets, due to eliminating

all redundancy in the client. File-level (chunk-level) RTS

reduce 3.2%−6.6% (4.6%−7.9%) of bandwidth overhead, due

to only obtaining the bandwidth saving of the files (chunks)

that have many copies. In fact, these files (chunks) having

many copies are quite few as discussed in Section V-B. RRCS

with λ = 0.5 reduces 20.0%− 32.3% of bandwidth overhead

and RRCS with λ = 1 reduces 13.4%− 23.0% of bandwidth

overhead. We observe that with the increase of λ, the band-

width overhead of RRCS increases, since larger λ provides

better security guarantee while consuming more bandwidth

overhead, as discussed in Section IV-B2. Other cases that the

λ is set to other numbers are easy to understand. Even though

in the worst case where λ = 1 in terms of bandwidth overhead,

RRCS still consumes much less bandwidth overhead than RTS.
Figure 10 shows the redundancy elimination (RE) ratios of

the five schemes. RE ratio is defined as the ratio of the size

of eliminated redundancy data to that of all redundancy data.

Source-based deduplication eliminates 100% data redundancy

which however has no security guarantee. File-level (chunk-

level) RTS only eliminates 8.1% − 16.8% (9.8% − 20.3%)

of redundancy, due to only eliminating the redundancy of the

files (chunks) that have many copies. RRCS with λ = 0.5
eliminates 76.1%−78.0% of redundancy and RRCS with λ =
1 eliminates 47.9% − 53.6% of redundancy. Compared with

RTS, RRCS can eliminate 2 to 10 times more data redundancy.
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From Figure 10, we also observe that RRCS achieves

approximately the same RE ratios for the three datasets with

the same λ, even though these datasets have different total

sizes as shown in Table II. This is because RRCS adds the

per-file redundancy to defend against the LRI attack and

the amount of added redundancy is only related to λ and

independent with the number of files in a dataset. Therefore,

RRCS demonstrates good scalability in terms of dataset sizes.

VI. CONCLUSION

This paper proposes a simple yet effective scheme called

RRCS to address an important security issue that deduplication

can be exploited to carry out the LRI attack to steal user

privacy in cloud storage services. RRCS mixes up the real

deduplication states of files used for the LRI attack by adding

the randomized redundant chunks, which prevents the attacker

from accurately identifying the file with correct sensitive

information and thus significantly mitigates the risk of the

LRI attack. RRCS also allows the system to control the

tradeoff/balance between the security and bandwidth efficiency

by a configurable parameter λ. A larger λ results in higher

security but lower deduplication efficiency. When λ = 1,

RRCS provides the optimal security guarantee while also

obtains a relatively high redundancy elimination ratio, i.e.,

about 50%. Based on the real RRCS prototype, experimental

results from using three real-world datasets demonstrate that

RRCS has much less bandwidth overhead than RTS.
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