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Abstract—With the rapid growth of data, communication
overhead has become an important concern in applications of
data centers and cloud computing. However, existing distributed
graph-processing frameworks routinely suffer from high com-
munication costs, leading to very long waiting times experienced
by users for the graph-computing results. In order to address
this problem, we propose a new computation model with low
communication costs, called LCC-BSP. We use this model to
design and implement a high-performance distributed graph-
processing framework called LCC-Graph. This framework elimi-
nates the high communication costs in existing distributed graph-
processing frameworks. Moreover, LCC-Graph also minimizes
the computation workload of each vertex, significantly reducing
the computation time for each superstep. Evaluation of LCC-
Graph on a 32-node cluster, driven by real-world graph datasets,
shows that it significantly outperforms existing distributed graph-
processing frameworks in terms of runtime, particularly when
the system is supported by a high-bandwidth network. For ex-
ample, LCC-Graph achieves an order of magnitude performance
improvement over GPS and GraphLab.

I. INTRODUCTION
Due to the increasing need to analyze, process and mine

large real-world graphs, such as social networks, web graphs,

chemical compounds and biological structures, there has been

a recent surge of interest in distributed graph-processing

frameworks in both academia and industry. Several Bulk

Synchronous Parallel (BSP) computation model [1] based

distributed graph-processing frameworks, such as Pregel [2],

GPS [3], Giraph [4], GoldenOrb [5] and Grace [6], have been

proposed to handle large-scale graphs. The BSP computation

model employs a “think like a vertex” programming model to

support iterative graph computation, which considers a graph-

computing job as a set of iterations called supersteps. Within

each iteration, vertices run in parallel across a distributed

cluster of compute nodes. During the execution process of each

iteration, vertices interact with each other by passing messages

directly, generating an enormously large number of messages.

This fine-grained message-passing communication model is

inefficient due to the average overhead of each message [2]–

[4], [7]–[9].

To improve the communication efficiency, several BSP-

based distributed graph-processing frameworks, such as Pregel

[2] and GPS [3], leverage the message buffering technique

to amortize the average overhead of each message. This

technique seems to be an effective solution to the problem of

inefficient communication. However, even with this message
buffering technique, BSP-based distributed graph-processing

frameworks still suffer from high communication costs. For

example, our experiments show that when GPS performs the

PageRank [10] algorithm with the message buffering technique

on a 40Gbps network, the communication cost is responsible

for 95% of the overall run time and only 0.9% of the network

bandwidth is utilized. The communication cost is defined as

the time for vertices to interact with each other, including

the communication time for sending messages through the

network and the extra sender-side and receiver-side communi-

cation overheads. The high communication costs stem mainly

from the following four factors.

1) The bulk of the extra communication volume that comes

from the need to carry the destination vertex name on

each message. For most graph algorithms, such as Label

Propagation [11], Single-Source Shortest-Paths [7] and

PageRank [10], the extra communication volume due to

vertex names is responsible for up to 67% of the overall

communication volume, as discussed in Section II.

2) Data copying overhead. At the sender side, any message

generated by a work thread is first sent to the message

buffers [2], [3]. When a message buffer is filled up,

the message batch in the message buffer is sent to the

network. At the receiver side, when a message batch is

received by the message parser, it parses the message

batch and enqueues the messages in the message batch to

the message queues of the destination vertices according

to the name of each destination vertex [2], [3]. Thus, each

vertex can identify the messages sent to itself. There are

two rounds of data copying, one at the sender side and

the other at the receiver side.

3) The parsing overhead that is used by the message parser
to parse the received message batches [2], [3].

4) The poor communication bandwidth utilization that stems

from the slow process of message generation and the

general-purpose communication protocols that only pro-

vide a limited bandwidth.

At the other end of the spectrum of the graph-processing

frameworks research, GraphChi [8] has been proposed to

process graphs with billions of edges on just one commodity

computer, by relying on secondary storage. In each iteration,

GraphChi executes subgraphs sequentially. Each execution



Fig. 1. The Execution Process of Any Pair of Compute Nodes in BSP-based Distributed Graph-Processing Frameworks with Message Buffering Technique.

process of a subgraph consists of three stages. (1) loading

subgraph from disk. (2) computation. (3) saving results to

disk. By using the Parallel Sliding Window (PSW), GraphChi

has four salient advantages. First, it only uses edge values

to implement the interactions among vertices, minimizing the

disk I/O workloads. Second, it avoids costly data copying and

parsing overheads. Third, it alleviates random accesses to disks

to improve the I/O performance. Finally, the computation time

of each vertex is reduced to the time for reading/writing its

in-edge/out-edge values only.

However, GraphChi is a single-node disk-based graph-

processing framework that suffers from poor performance due

to its limited scalability and costly disk I/Os. Furthermore,

the PSW of GraphChi is not suitable for and cannot be

used in distributed graph-processing frameworks because the

shards [8] are tightly coupled by PSW, that is, when loading

a subgraph S, GraphChi needs to obtain not only in-edges

and local out-edges from shard S, but also other out-edges

from other shards [8]. Each shard is a disk file that stores all

the edges along with their values that have their destination

vertices in a given subgraph.

In this paper, inspired by the salient advantages of

GraphChi, we propose a high-performance distributed in-

memory graph-processing framework, called LCC-Graph. The

high performance of LCC-Graph stems from the low commu-

nication costs and reduced computation time. LCC-Graph is

significantly different from GraphChi because the former is

designed to reduce the high communication costs experienced

by existing distributed graph-processing frameworks while

the latter aims to improve the performance of single-node

disk-based graph-processing frameworks by reducing disk I/O

costs. By designing and implementing LCC-Graph, this paper

makes the following three contributions.

1) A computation model with low communication costs,

called LCC-BSP, that decomposes each superstep into

two distinct steps of computation and communication. In

the computation step, each vertex does computation task

by reading and writing its edge values directly, reducing

the computation time. In the communication step, each

compute node exchanges full remote out-edge data blocks

with other compute nodes to implement edge-value trans-

fers among inter-node vertices. The clear advantage of

this decomposition of superstep is that the interactions

among vertices will be finished instantaneously and si-

multaneously in a well-orchestrated concurrent manner

after the computation step that runs for only a short period

of time.

2) An edge-block based data representation. By organizing

the edge values of each compute node intelligently in

the preprocessing phase, this data representation pro-

vides four salient advantages that enable the reduced

communication costs and computation time in LCC-BSP.

First, it eliminates the high extra volume of communica-

tion in existing BSP-based distributed graph-processing

frameworks. Second, it avoids the data copying and

batch parsing overheads. Third, it enables the network

bandwidth capacity to be efficiently utilized. Finally, the

computation workload of each vertex is reduced.

3) The design and prototype implementation of LCC-Graph.

LCC-Graph is also capable of improving the performance

of those graph algorithms with relatively small numbers

of interactions among vertices, despite the fact that, in

most graph algorithm jobs [10], [12], [13], almost all the

vertices interact with each other. Moreover, it also flexibly

supports some peculiar requirements of graph algorithms

even if these cases rarely happen. These requirements

include messages sent to non-neighbor vertices and mul-

tiple messages sent to a single destination vertex.

The rest of the paper is structured as follows. Background

and motivation are presented in Section II. Section III intro-

duces our LCC-BSP, a high-performance computation model.

Section IV presents LCC-Graph, our LCC-BSP based graph-

processing framework. Experimental evaluations of the LCC-

Graph prototype are presented in Section V. We discuss related

work in Section VI and conclude the paper in Section VII.

II. BACKGROUND AND MOTIVATION

In this section, we present a brief introduction to the

Bulk Synchronous Parallel (BSP) computation model, in or-

der to explore the efficiency issues of existing BSP-based

distributed graph-processing frameworks. We then introduce

GraphChi, a single-node disk-based graph-processing frame-

work. GraphChi has four salient advantages that reduce the

disk I/O costs. The insights gained through the efficiency

issues of existing BSP-based distributed graph-processing

frameworks and the advantages of GraphChi help motivate us

to propose an LCC-BSP computation model that eliminates

the high communication costs incurred by existing BSP-

based distributed graph-processing frameworks, and reduces

the computation workload of each vertex.



A. BSP Computation Model

BSP-based distributed graph-processing frameworks, such

as Pregel [2], GPS [3], Giraph [4] and GoldenOrb [5], can

easily express graph algorithms in a fully vertex-centric fash-

ion. In these frameworks, the vertices of a directed graph

are distributed across compute nodes during the preprocessing

phase. A graph-computing job consists of iterations called

supersteps, which terminates when all vertices vote to stop

computation. In each superstep, a user-defined Compute(v)
function is invoked for each vertex v, conceptually in parallel.

In fact, due to the limited core count of each compute node,

the executions of vertices are assigned to a limited number of

work threads that execute concurrently. All work threads of

compute nodes start simultaneously. Then, each work thread

loops through its assigned vertices by using the vertex-program

(i.e., the Compute(v) function). Each vertex-program first

does a computation task and then a communication task by

sending messages to its neighbors. The superstep ends when

the last communication task has finished.

As mentioned before, the fine-grained and intermittent na-

ture in which the very large number of messages are generated

and exchanged in each superstep, by the vertices executed

by the work threads, results in very high communication

costs [8], [14], [15]. While several BSP-based distributed

graph-processing frameworks, such as Pregel [2] and GPS

[3], address this problem by leveraging the message buffering
technique to amortize the average overhead of each message,

they continue to suffer from the high communication costs

[4], [7], [8], even when the message buffering technique is

employed. Figure 1 shows the execution process of any pair of

compute nodes in the BSP-based distributed graph-processing

frameworks with the message buffering technique. The main

reasons for the high communication costs are fourfold.

First, the bulk of the extra communication volume is at-

tributed to the need to carry the destination vertex name on

each message. The names of the destination vertices are used

by the receiver sides to route messages to the message queue

of their respective destination vertices [2], [3]. For most graph

algorithms, such as Label Propagation [11], Single-Source

Shortest-Paths [7] and PageRank [10], a message usually

carries a value with a short size, such as a 4-byte integer or

floating-point number used to store the label value, shortest-

path value or pagerank value. However, the size of the name of

each destination vertex is usually longer than that of the mes-

sage value (i.e., payload). For example, in order to handle the

graphs with more than four billion vertices, graph-processing

frameworks must use an 8-byte long-integer number to identify

each vertex. In this case, the extra communication volume

due to vertex names is responsible for 67% of the overall

communication volume.

Second, as discussed in Section I, there are two rounds

of data copying, one at the sender side and the other at the

receiver side, i.e., sending the messages to the message buffers

and enqueuing the messages in the message batches to the

message queues of the destination vertices [2], [3].

Third, at the receiver side, in order to dispatch the messages

in the message batches to the message queues of the destina-

tions vertices, the message parser parses the message batches,

resulting in the high parsing overhead [3].

Finally, the network bandwidth capacity is utilized poorly.

The reasons are twofold. First, the message buffers are filled

up rather slowly because any two consecutive buffer-filling

operations of a work thread are separated by the three distinc-

tive tasks of computation, message generation and decision

on the placement of each message. Therefore, it will take a

relatively long time to fill up a message buffer of a reasonably

large size to achieve a good amortization, which causes a long

idle period of the network. In fact, the larger the size of the

message buffers is, the longer the idle periods of the network

are. Hence, the size of the message buffer is a tradeoff between

the gains from the batched communication and the idle periods

of the network. Second, existing distributed graph-processing

frameworks are usually designed on the basis of the general-

purpose communication protocols that only provide a limited

bandwidth. This limit hinders these frameworks from speeding

up the transfers of the batched messages, particularly when the

system is supported by a high-bandwidth network.

B. GraphChi
Graphchi [8] is a single-node disk-based graph processing

framework. It introduces a novel mechanism called Parallel

Sliding Windows (PSW) to reduce the disk I/O costs to

improve performance. GraphChi works as follows. In prepro-

cessing stage, the vertices of the input graph are divided into

continuous but disjoint P intervals, each of which is associated

with a shard. Each shard is a disk file that stores all the edges

along with their values that have their destination vertex labels

in a given interval. Edges are stored in order of their sources.

This data representation has a clear advantage, that is, for any

loaded subgraph S, shard S contains the information of all

the in-edges and local out-edges of the loaded subgraph, and

all the out-edges with their destination vertices in a given

unloaded subgraph R can be obtained from a contiguous

disk file chunk in the shard R. In each iteration, GraphChi

executes P subgraphs sequentially. Each execution process of a

subgraph S consists of three stages. (1) loading subgraph from

disk. GraphChi obtains all the in-edges and local out-edges by

reading the full shard S and other out-edges by reading P-1

contiguous disk file chunks in other P-1 shards. (2) executing

the user-defined Update(v) function for each vertex v in the

loaded subgraph. (3) saving results to disk.

There are four salient advantages of PSW. First, it mini-

mizes the disk I/O workloads. In the stage of saving results,

GraphChi only needs to write the edge values back to the

disk files (shards) since only the edge values are updated dur-

ing computation [8]. However, in existing distributed graph-

processing frameworks, each message consists of a destination

name and a message value. Second, it avoids costly data

copying and parsing overheads. The edge values indexed by

the vertices are available immediately for the vertices after

the subgraph is loaded. Also, the saving results stage can be



executed immediately after the computation stage is finished.

Third, by reading/writing the full shard and the contiguous

disk file chunks, it alleviates random accesses to improve the

I/O performance. Finally, the computation time of each vertex

is reduced to the time for reading/writing its in-edge/out-

edge values only, eliminating the time for message generation,

decision on the placement of and filling each message in

existing distributed graph-processing frameworks.

However, as mentioned in Section I, the PSW of GraphChi

is not suitable for and cannot be used in distributed graph-

processing frameworks that are of higher scalability and per-

formance than GraphChi.

III. LCC-BSP COMPUTATION MODEL

LCC-BSP, like the BSP computation model, considers a

graph-computing job as a set of supersteps. However, unlike

BSP, the communication process in LCC-BSP is decoupled

from its computation process by explicitly dividing each

superstep into a computation step and a communication step.

At the end of each superstep, a barrier is required to ensure

the determinism of graph-computing jobs.

In the computation step, a user-defined Update(v) function

is invoked for each vertex v in parallel. Inside Update(v),
the vertex v updates its state by its in-edge values and then

updates its out-edge values. The in-edge values of vertex v
were updated by the source vertices of the in-edges in the

previous superstep, and the out-edge values of vertex v will

be used by the destination vertices of the out-edges in the next

superstep.

In the communication step, edge values are moved to

implement the interactions among vertices, since the out-edges

of a vertex are the in-edges of its neighboring vertices. For

each compute node, all out-edge values for a given remote

compute node are organized into a single full remote out-edge

data block in the preprocessing phase judiciously. Similarly, all

in-edge values for a given remote compute node are organized

into a single full remote in-edge data block. A remote out-edge

data block is an exact copy of a remote in-edge data block of a

remote compute node. After the computation step has finished,

each compute node only needs to send P-1 remote out-edge

data blocks to P-1 remote compute nodes simultaneously,

to update their respective copies, where P is the number of

compute nodes.

A synchronous barrier is added between the computation

step and the communication step in each superstep. This

barrier ensures the determinism, i.e., all out-edge values are

updated completely before sending the out-edge value blocks

to remote compute nodes. Intuitively, this barrier can poten-

tially cause some synchronization cost in each computation

step. However, our experimental observations show that this

barrier does not delay the overall run time of each superstep.

First, the time spent on the computation step of each compute

node is very short. Second, the slowest compute node in

the computation step is usually also the slowest one in the

communication step.

Fig. 2. The Execution Process of Any Pair of Compute Nodes in the LCC-
BSP Computation Model.

Fig. 3. An Example of LCC-BSP Computation Model.

A. Performance Analysis
The clear advantage of this computation model is that, in

each superstep, the interactions among vertices will be finished

instantaneously and simultaneously in a well-orchestrated con-

current manner after the computation step that runs only a

short period of time. Furthermore, the key advantage of the

communication step is that each out-edge data block is an

exact copy of an in-edge data block of a remote compute node,

that is, each edge value has an identical and fixed position

in the two copies. Using the fixed position, each edge value

indexed by its vertex can be identified by the vertex directly in

both the sender side and the receiver side without the vertex

name, avoiding the high data copying and parsing overheads.

As shown in Figure 2, there are four salient features that

contribute to the high performance of this computation model.

The reduced communication volume. LCC-BSP eliminates

high extra volume of communication required to carry the

name of destination vertex on each message in existing BSP-

based distributed graph-processing frameworks. Since the out-

edge data blocks that are sent to the network only include the

edge values.

The eliminated data copying and parsing overheads. As

mentioned before, the Update(v) function reads/writes the

edge values directly in both sender side and the receiver side,

avoiding the high data copying and parsing overheads.

The reduced computation time. In each computation step,

the computation time is much shorter than that of the existing

BSP-based distributed graph-processing frameworks, since the

computation time of each vertex is reduced to the time for

reading/writing its in-edge/out-edge values only, eliminating

the time for message generation, decision on the placement of

and filling each message in the latter.

Highly efficient communication. First, in each superstep,

LCC-Graph only causes a very short idle period of the

network occupied by the computation step due to the reduced

computation time. Second, in the communication step, each

compute node only needs to send P-1 remote out-edge data

blocks to P-1 remote compute nodes simultaneously. This

well-orchestrated concurrent manner provides a sufficiently



large instantaneous network workload that enables the net-

work bandwidth capacity to be efficiently utilized, particularly

when the system is supported by a high-bandwidth network

that is more easily accessible than ever before. Intuitively

existing BSP-based distributed graph-processing frameworks

with message buffers can also provide a large instantaneous

network workload by using large enough message buffers.

However, larger message buffers cause longer idle periods of

the network used by the work threads to fill up the message

buffers due to the slow process of message generation, as

discussed in Section II. Moreover, the optimization of the

network ecosystem presented in Section IV helps further speed

up the transfer of the out-edge data blocks. In the context

of this paper, the network ecosystem is interpreted as the

combination of the network hardware and communication

protocol software.

B. High Flexibility
LCC-BSP also flexibly supports some peculiar requirements

of graph algorithms by using a mignon message block attached

to each out-edge data block, even if these cases rarely occur.

These requirements include messages sent to non-neighbor

vertices and multiple messages sent to a single destination

vertex. Like existing BSP-based distributed graph-processing

frameworks, these messages carried by the mignon message
blocks are separated and routed to their destination vertices

by the receiver side. They also include the names of the

destination vertices. However, the introduced extra overhead

is negligible since the number of these messages is very small

and the overhead associated with each of these messages is

amortized by the efficient communication of LCC-BSP. This

feature of flexibility is also provided by Pregel [2]. By using

this compensatory technique, LCC-BSP computation model

acts exactly as the BSP computation model.

C. An Example
To better illustrate the LCC-BSP computation model we

use an example of the computation of PageRank [3]. In this

example, the directed graph is organized into three subgraphs

residing in three compute nodes. Each subgraph includes a

local edge data block (LDB), two remote in-edge data blocks

(RIDBs) and two remote out-edge data blocks (RODBs).

Figure 3 shows a superstep of LCC-BSP computation model

processing the PageRank algorithm.

In the computation step, each vertex v is executed by

using the Update(v):PageRank function concurrently with

other vertices. Consider vertex i as an example. First, a new

pagerank is calculated according to the in-edge values of

vertex i. Then the value of vertex i is updated with the new

pagerank. Finally the out-edges’ values of vertex i are updated

based on new pagerank. The edge values, organized into edge

data blocks, are read and written by the Update(v):PageRank
function directly, avoiding data copyings. In the communica-

tion step, two remote out-edge data blocks of each compute

node are sent to two other compute nodes, to update their

respective copies. In this example, compute node 0 sends the

red block to compute node 1 and the green block to compute

Fig. 4. An Example of Graph Partitioning and Re-labeling Vertices. Circles
denote vertices with their labels. Note that each partition is a subset of vertices
in graph G. To help us better understand the subgraph construction process,
the edges are also illustrated in subfigures (b) and (c).

node 2. Meanwhile each compute node will receive two remote

out-edge data blocks from two other compute nodes to update

its corresponding remote in-edge data blocks. In this example,

compute node 0 receives the yellow block from compute node

1 and the blue block from compute node 2.

D. Challenges
There are two key challenges in the implementation of the

LCC-BSP computation model. The first one is to organize

all the out-edge/in-edge values from a given compute node

to another into a single remote out-edge/in-edge data block.

The other is to guarantee that each out-edge data block is an

exact copy of an in-edge data block of a remote compute node.

To address these challenges, the new edge-block based data
representation is introduced, as presented in Section IV-A.

IV. LCC-GRAPH FRAMEWORK
In this section, we present LCC-Graph. Key components

and unique features of the LCC-Graph are detailed in various

subsections next.

A. The Edge-block Based Data Representation
In this subsection, we present the edge-block based data

representation that provides four salient features of the LCC-

BSP computation model. We will now describe how the

input graph is partitioned and organized into edge-block based

subgraphs during the preprocessing phase. Each subgraph

resides in the memory of a compute node.

Definitions: Let G =(V,E) denote an input graph with its

vertex set V and edge set E, and let Partition0∪Partition1

∪ · · · ∪PartitionP-1 = V be the P partitions of V, where

Partitioni∩ Partitionj=∅ (i �= j). For each Partitioni, the vertices

in Partitioni, along with their edges, are defined as a subgraph

of the input graph. The input is a directed graph and an undi-

rected graph can be treated as a directed one by considering

each undirected edge as two opposite directed edges.

Graph Partitioning: By using a user-specified graph par-

titioning method, the input graph is divided into P partitions,

as depicted in Figure 4(b), where P is the number of compute

nodes.

Relabeling Vertices: It is assumed that the vertices are

labeled from 1 to |V|. After dividing the input graph into

P partitions, the vertices of the graph are unordered again.

We re-label vertices of the P partitions sequentially to make

the labels of vertices form P continuous but disjoint intervals,

corresponding to the P partitions. Consider as an example the

re-labeled graph G, shown in Figure 4(c), the labels of vertices

consist of four continuous but disjoint intervals, i.e., interval0:



Fig. 5. Shards of re-labeled graph G. Each row of edge blocks denotes a
directed edge with its value.

[1-4], interval1: [5-8], interval2: [9-12] and interval3: [13-16],

corresponding to Partition0, Partition1, Partition2 and Partition3

respectively. By using the continuous but disjoint intervals,

it is easy to identify which partition the vertices belong to,

instead of accessing the global graph-partitioning information.

This measure further enables the judicious date representation,

described next.

Shards: A shard is a consecutive memory chunk that stores

all the edges along with their values that have their destination

vertex labels in a given interval. That is, a shard is associated

with each interval. Edges are stored in order of their sources.

Shards are labeled from 0 to P-1. As shown in Figure 5, four

shards are generated for the four intervals, labeled as shard0,

shard1, shard2 and shard3 respectively.

Constructing Subgraphs: In order to create a subgraphp for

the vertices in Partitionp, where 0 ≤ p ≤ P-1 and P is the num-

ber of compute nodes, in-edges and out-edges of these vertices

need to be obtained. First, shardp contains the information of all

the in-edges and local out-edges (their destinations are also

in Partitionp) for the vertices in Partitionp, so the in-edges and

local out-edges can be easily obtained from shardp. Consider

the re-labeled Graph G, shown in Figure 4(c), vertex “2”

residing in Partition0 has two in-edges (“1→2” and “4→2”)

and a local out-edge (“2→3”), which are stored in the first

row, seventh row and the third row in the shard0 respectively,

as shown in Figure 5. Second, since the out-edges of a given

vertex are the in-edges of its neighboring vertices, the remote

out-edges of the vertex are stored in the other P-1 shards.

Consider the vertex “2”, it has a remote out-edge(“2→12”)

which is stored in the first row in shard2. Moreover, since all

the labels of the vertices in Partitionp are within the intervalp
and the edges in each shard are stored in order of their

sources, the remote out-edges of the vertices in Partitionp

with their destinations within a given remote Partitionj are

stored in a contiguous memory chunk in the shardj. Hence,

the full remote out-edges of the vertices in Partitionp can be

obtained from the P-1 contiguous memory chunks in the other

P-1 shards. However, in a distributed setting, it is inefficient

to deploy P shards on all compute nodes of the cluster. Thus,

each shard is decomposed into P edge blocks (labeled 0 to

P-1) according to the interval that contains the source vertex

labels corresponding to the edges. As shown in Figure 5, each

shard is split into four edge blocks: block0, block1, block2

and block3. There are P2 edge blocks in total, and we use

B(x, y) to identify an edge block, with block label x and shard

label y. Consider Figure 5 as an example, in order to construct

subgraph0, all the in-edges and local out-edges of vertices in

Partition0 can be obtained first by a full reading of the shard0

(from block0 to block3).Then all the remote out-edges can

be obtained from the block0 of shard1, block0 of shard2 and

block0 of shard3 respectively.

After blocking, we can construct P subgraphs for P compute

nodes. Each subgraphp consists of a local-edge block (LB)

B(blockp, shardp), P-1 remote in-edge blocks (RIBs) B(blocki,

shardp) and P-1 remote out-edge blocks (ROBs) B(blockp,

shardj), where 0 ≤ i ≤ P-1, 0 ≤ j ≤ P-1, i �= p, j �= p.

Consider the re-labeled graph G in Figure 4(c) as an example,

four subgraphs are constructed, as shown in Figure 6. Each

subgraphp (0 ≤ p ≤ 3) consists of a local-edge block, three

remote in-edge blocks and three remote out-edge blocks. For

each subgraphp, the local-edge block and the three remote in-

edge blocks are in the column p, depicted using the same color

in the figure; the three remote out-edge blocks, depicted using

different colors, are in the row p. Each remote out-edge block

includes all the edges whose destination vertices reside within

a given remote partition. Each remote in-edge block includes

all the edges whose source vertices reside within a given

remote partition. The local-edge block B(blockp, shardp) is a

special case because both the source vertices and destination

vertices of the edges are in the partitionp.

B. Edge Data Block based Communication

Block dependencies: For each subgraphp (0 ≤ p ≤ P-1),

each remote out-edge block B(blockp, shardj) is a copy of the

remote in-edge block B(blockp, shardj) of subgraph j, where

0 ≤ j ≤ P-1 and p �= j. As shown in Figure 6, consider

subgraph0, the remote out-edge block B(block0, shard1) of

subgraph0 is a copy of the remote in-edge block B(block0,

shard1) of subgraph1; the remote out-edge block B(block0,

shard2) of subgraph0 is a copy of the remote in-edge block

B(block0, shard2) of subgraph2; and the remote out-edge block

B(block0, shard3) of subgraph0 is a copy of the remote in-edge

block B(block0, shard3) of subgraph3.

Communication: Since only the edge values are mutated

during computation, each edge block B(x, y) is split into an

adjacency block B adj(x, y) and an edge data block B data(x,

y). The adjacency blocks store the topological structure of the

input graph and the edge data blocks store the edge values. In

the communication step, the P-1 remote out-edge data blocks

of each compute node will be sent to the other P-1 compute

nodes to update their respective copies.

Local edge data block B data(p, p): The local edge

block B(p, p) of each subgraphp is a special case since both

the source and destination vertices of its edges belong to

partitionp. In the computation step, conflicts can occur when

the values of these edges are accessed by the source vertices

and destination vertices of these edges simultaneously, which

breaks determinism. To guarantee determinism, we implement

two copies of the local-edge data block B data(p, p). One

is used for reading and the other for writing. In the next

superstep, the two copies switch their roles.



Fig. 6. Subgraphs of G. The x axis denotes the shard labels, and the y axis denotes the block labels corresponding Figure 5.

C. Network Ecosystem
In the network ecosystem, the TCP/IP socket interface calls

were initially used for inter-node communication and LCC-

Graph was performing over a 1Gbps Ethernet, which can

only provide ∼110MB/s of actual network bandwidth. Using

the edge data block based communication model, LCC-Graph

consumes the whole 1Gbps Ethernet network bandwidth, i.e.,

it can obtain better performance if running on a higher

bandwidth network. Hence, we run LCC-Graph on a 40Gbps

Infiniband network. However, the TCP/IP protocol now be-

comes the new bottleneck, due to its low efficiency for multi-

layer complex structures. In fact, LCC-Graph can only obtain

∼1.2GB/s actual application bandwidth on TCP/IP over the

40Gbps Infiniband network, far below the peak performance.

Hence a more efficient communication protocol is required.

The InfiniBand Architecture (IBA) [16] defines a switched

network fabric for the interconnection of processing nodes,

which provides a communication and management infras-

tructure for inter-processor communication. In an InfiniBand

network, processing nodes are connected to the fabric by

channel adapters (CAs). The InfiniBand Architecture supports

two semantics, channel and memory. In memory semantics,

InfiniBand supports remote direct memory access (RDMA)

operations that include RDMA write and RDMA read. RDMA

operations are single-sided and do not incur software over-

heads on the remote side, resulting in efficient communication.

Hence, we have implemented LCC-Graph on the InfiniBand

Architecture, using RDMA communication operations. In this

case, LCC-Graph can obtain ∼2.53GB/s actual application

bandwidth, further shortening the communication time.

D. Remote Out-edge Data Block Compression
For most graph algorithms, almost all the edge values are

updated in supersteps, such as PargeRank [10], Community

Detection [13] and Connected Components [12]. In order to

further speed up the graph algorithms with only a few up-

dated edge values, a remote out-edge data block compression

(CoDB) scheme is introduced in LCC-Graph.

For each compute node, we define a CoDB for each out-

edge data block. Each element in the CoDB includes an offset
and an edge value. The offset indicates the edge value offset in

the out-edge data block. The edge value is the new value of the

edge that is updated in this superstep. Each offset is a 4-byte

integer number which is large enough to store the maximum

value of the offsets due to the limited number of the edge

values in each out-edge data block. The extra communication

volume for carrying the offsets is smaller than that of existing

BSP-based distributed graph-processing frameworks since the

size of destination vertex names on the messages in the latter

is larger than the size of the offsets. Like the latter, this

scheme also leads to extra overhead at the receiver side.

However, by using this scheme, the communication cost of

LCC-Graph is still significantly smaller than that of the latter,

due to the smaller extra communication volume and higher

communication efficiency.
Update Counters (UCs): LCC-Graph defines a UC for

each remote out-edge data block to record the number of

updated edge values in the remote out-edge data block. In

the computation step, when an edge is updated, the UC is

increased by 1 and a CoDB element will be added to the

CoDB. We call this process compression that is enabled by a

configurable option. Users can disable this option by default

for higher performance. Because, for most graph algorithms,

almost all the edge values are updated in supersteps.
Threshold Values (TVs): In the communication step, if the

remote out-edge data block compression option is enabled, the

CoDBs will be sent to other compute nodes, instead of the

full remote out-edge data blocks. However, CoDB introduces

additional communication volume to carry the offset for each

edge value. Hence, a TV is required for each remote out-edge

data block to control the ratio of compressed edge values,

where 0 ≤ TV ≤ 1. In the compression process, if the ratio of

compressed edge values to total edge values of the remote out-

edge data block reaches the TV, compression is abandoned. In

this case, the remote out-edge data block will be sent in the

communication step.
When a compute node has received a CoDB, it uses the

offset of each element to locate the address of the edge value

in the corresponding remote in-edge data block and replace

the edge value using the new one.

V. EXPERIMENTAL EVALUATION
In this section, we conduct extensive experiments to evaluate

the performance of LCC-Graph. Experiments are conducted

on a 32-node cluster. Each compute node has two quad-core

Intel Xeon E5620 processors with 24GB of RAM. Nodes

are connected via a 40Gbps InfiniBand network and a 1Gpbs

Ethernet for high-bandwidth and low-bandwidth interconnect

evaluations respectively.
Graph Algorithms: We implement several graph algo-

rithms to evaluate LCC-Graph: Single-Source Shortest-Paths

(SSSP) [7], PageRank (PR) [10], Community Detection (CD)

[13] and Connected Components (CC) [12]. The SSSP al-

gorithm computes the distance of the shortest path from a



given source vertex u to each other vertex in a graph. The PR

algorithm is used by Google Search to rank websites in their

search engine. The CC algorithm finds connected components

of a given graph, i.e., a maximum set of vertices in which any

pair of vertices can reach each other. The CD algorithm works

as follows. Each vertex is initially assigned a unique label.

Each vertex updates its label with the label most frequently

used by its neighbors. This process is repeated until a stable

set of labels is reached. We define the sets of vertices that

have the same labels as “network communities”.

Baseline Frameworks: We compare LCC-Graph with two

baseline frameworks. One is an up-to-date version of GPS,

which is an open-source Pregel implementation from Stan-

fords InfoLab [3]. It is a representative BSP-based distributed

graph-processing framework. The other is GraphLab, an open-

source project originated at CMU [17] and now supported

by GraphLab Inc. GraphLab is a representative distributed

shared-memory graph-processing framework. We use the latest

version of GraphLab 2.2 (released in March 2014), which

supports distributed computation and incorporates the features

and improvements of PowerGraph [18], [19].

Datasets: We evaluate LCC-Graph using several real-world

graph datasets that are summarized in Table I. These datasets

are used frequently in many published comparative evaluations

of graph-processing frameworks [3], [8], [19].

Preprocessing: We conduct experiments to evaluate GPS,

GraphLab and LCC-Graph in terms of preprocessing time. The

experimental results show that the preprocessing time of LCC-

Graph is similar to that of GPS and slightly shorter than that of

GraphLab when the same graph partitioning method is used.

The preprocessing times are not included in calculations in the

other experiments described in the following subsections.

A. Runtime Breakdown
Experiments are conducted to investigate LCC-Graph and

GPS in terms of communication cost and computation time.

GraphLab is excluded from this evaluation since it is difficult

to explicitly measure its communication cost due to its dis-

tributed shared-memory technique. Each framework runs the

PR, CD, CC and SSSP graph algorithms on 24 compute nodes

with the Twitter-2010 graph. Compute nodes are connected via

a 40Gbps InfiniBand network. PR runs 10 supersteps for each

experiment.

Communication Cost: The communication cost is defined

as the time spent by vertices to interact with one another.

In LCC-Graph, each superstep is explicitly divided into a

computation step and a communication step. Hence, in each

superstep, the communication cost is the time for the com-

munication step. For GPS, the communication cost consists

of the sender-side communication overhead, the time spent on

sending message batches, and the receiver-side communication

overhead.

For fair comparison, GPS is evaluated with two config-

urations of message buffer size, i.e., 100KB (the default

value) and 80MB which is large enough to accommodate all

the messages sent from one compute node to another in
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Fig. 7. Runtime Breakdown.

each superstep. We record the communication cost for each

experiment. Figure 7(a) shows the difference between LCC-

Graph and GPS in terms of communication cost. GPS with

the 80MB buffer configuration only gains less than 6%

improvements in the communication cost, compared to its

default configuration. The reasons are the high extra volume of

communication, limited effectiveness of the message buffering
technique and poor communication bandwidth utilization in

GPS, as discussed in Section II. However, the communication

cost of LCC-Graph is 59x, 60x, 66x, and 14x shorter than that

of GPS with the 80MB buffer configuration when running the

PR, CD, CC and SSSP algorithms respectively. The reasons

are the reduced communication volume, the highly efficient

communication and the elimination of the extra overhead at

the receiver side. We also observe that the communication cost

gap between LCC-Graph and GPS is narrower for SSSP than

for the other graph algorithms. The reason is that the SSSP

graph algorithm generates only a few inter-vertex interactions

during the execution process. Even so, the communication cost

of LCC-Graph is still 14x shorter than that of GPS.

The experimental results indicate that the communication

cost of GPS dominates the overall run time in each graph-

computing job. For example, when GPS performs the PageR-

ank algorithm, the communication cost is responsible for

95% of the overall run time. On the contrary, it is the low

communication cost of LCC-Graph that contributes to its high-

performance in each graph-computing job.

Computation Time: In these experiments, we also measure

the time spent on computation in each graph-computing job.

Experimental results, as shown in Figure 7(b), indicate that

the computation time of LCC-Graph is 2.5x-3.4x shorter than

that of GPS. As discussed in Section III, this performance im-

provement stems from the reduced computation work of each

vertex. The reduced computation time is another contributor

to the high-performance of LCC-Graph.

B. Effects of Network Bandwidth

Experiments are also conducted to study the effect of the

network bandwidth on the performance of these frameworks.

In these experiments, each framework is deployed on 16

compute nodes, and runs 10 supersteps of PR on the Twitter-

2010 graph.

Over the 1Gbps Ethernet: We first test LCC-Graph against

GraphLab and GPS over the 1Gbps Ethernet. As illustrated

in Figure 8(a), LCC-Graph is 5.6x and 1.7x faster than GPS

and GraphLab respectively. The run-times of LCC-Graph are

similar when running on either TCP/IP or RDMA. The reason

is that edge data block based communication model saturates



TABLE I
GRAPH DATASETS SUMMARY.

DataSets |V | |E| Type Avg/In/Out degree Max -/In/Out degree Largest SCC
LiveJournal [20] 4.8×106 69×106 Social Network 18/14/14 20K/13.9K/20K 3.8M (79%)

Twitter-2010 [21] 41×106 1.4×109 Social Network 58/35/35 2.9M/770K/2.9M 33.4M (80.3%)

UK-2007-05 [21] 106×106 3.7×109 Web 63/35/35 975K/15K/975K 68.5M (64.7%)
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the 1Gbps network bandwidth when running on either TCP/IP

or RDMA. In fact, the actual obtained bandwidth, calculated

as the size of the out-edge data blocks divided by the commu-

nication time, is ∼110MB/s, which reaches the upper limit of

the 1Gbps Ethernet network. In these experiments, the network

bandwidth is the performance bottleneck in LCC-Graph.

Over the 40Gbps Infiniband: We then evaluate LCC-

Graph against GraphLab and GPS over the 40Gbps Infini-

band. The experimental results shown in Figure 8(a) indi-

cate that LCC-Graph with RDMA is 1.4x faster than LCC-

Graph with TCP/IP, due to higher efficiency of RDMA,

and is 41x and 11x faster than GPS and GraphLab re-

spectively. Compared with the 1Gbps Ethernet, LCC-Graph,

when running over the 40Gbps Infiniband, obtains significant

performance improvements, which is not the case for GPS

and GraphLab that fail to observe any significant performance

improvements. The experimental results indicate that LCC-

Graph has significantly higher efficiency when the system is

supported by a high-quality network ecosystem.

Scalability: We conduct experiments to evaluate the scal-

ability of these frameworks in terms of network bandwidth.

Each experiment is repeated by gradually increasing the net-

work bandwidth from 1Gbps to 40Gbps. As illustrated in

Figure 8(b), LCC-Graph, running on RDMA, achieves the

peak performance when the network bandwidth is limited

to 20Gbps. Consider the 1Gbps-based configuration as the

baseline, the peak performance (8.5s) is 7.4x higher than the

baseline performance (63s). When LCC-Graph achieves its

peak performance, the measured actual obtained bandwidth is

∼2.53GB/s. However, a higher network bandwidth does not

contribute to higher performances of GraphLab and GPS.

C. Out-edge Data Block Compression (CoDB)
We also study the CoDB that can help speedup the graph-

computing jobs with a few inter-vertex interations. LCC-Graph

runs SSSP on 24 compute nodes with the Twitter-2010 graph,

ranging the TV (threshold value) from 0 to 0.5. In fact, CoDB

is disabled when TV=0. We regard this case as the baseline. As

shown in Figure 9, the runtime decreases gradually and reaches

a minimum value when TV=0.08. The reason is that a larger

TV value enables more out-edge data blocks to be compressed,

gaining a reduction in communication time. The runtimes

maintain the minimum value when TV ranges from 0.08 to 0.5.

The reason is that the maximally connected component of the

Twitter graph only has ∼3 million vertices while the Twitter

graph has ∼41 million vertices. The ratio of the scheduled

vertices is less than 7.2%, leading to a small proportion of

edges being updated during the execution process. Hence, most

out-edge data blocks can be compressed when TV is larger

than 0.08. Overall, CoDB is able to reduce the runtime of

SSSP by 26%.

D. Comprehensive Evaluation
In order to demonstrate the superior performance of the

LCC-Graph framework to the baseline frameworks, we eval-

uate LCC-Graph comprehensively with different graph algo-

rithms on various graph datasets against GPS and GraphLab.

Each framework runs four graph algorithms on various graph

datasets (as shown in Table 1). Experimental results, as shown

in Figure 10, indicate that the speedup of LCC-Graph is higher

when running on bigger graph datasets. For example, LCC-

Graph is 27.3x, 44.1x and 49.6x faster than GPS respectively

when running PR on the LiveJournal, Twitter and UK-2007-05

graphs. The reason for this is the higher scalability of LCC-

Graph, since more compute nodes required by bigger graph

dataset bring higher speedup. On the contrary, the speedup of

GraphLab is lower when running on bigger graph datasets. The

reason is that the scalability of GraphLab is slightly lower than

GPS. We also notice that the improvement in speed is lower

when executing SSSP compared with other graph algorithms

(PR, CC and CD). This is because SSSP generates a few

interactions among vertices. This restricts the advantage of

low communication costs in LCC-Graph.

In our comprehensive evaluation, LCC-Graph runs 12x-

49.6x and 6.7x-14.5x faster than GPS and GraphLab respec-

tively on various graph algorithms and graph datasets.

VI. RELATED WORK

Existing BSP-based distributed graph-processing frame-

works routinely suffer from high communication costs, which

greatly hinder their system performance. To address this prob-

lem, the existing studies have focused on the communication

efficiency issue of distributed graph-processing frameworks.

The message buffering technique [2], [3] is used by several

BSP-based distributed graph-processing frameworks to amor-

tize the average overhead of each message. This technique
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Fig. 10. LCC-Graph vs. GPS & GraphLab.

can improve the communication efficiency by sending the

message batches, but the improvement is limited, as mentioned

in Section II.

Pregel [2] adopts a combiner to reduce the number of

cross-machine messages. GiraphUC [22] adopts a barrierless

asynchronous parallel (BAP) computation model to reduce

both message staleness and global synchronization. However,

due to poor spatial locality among the destination vertices,

only a relatively small number of messages can be combined.

Furthermore, these solutions introduce extra overheads. Finally,

a combiner may not be useful in many graph algorithms where

the values of the messages are not commutative or combi-

native. Another alternative solution to reduce cross-machine

messages is using advanced graph partitioning strategies [3],

[19], [23], [24] to lower the number of cut-edges across nodes.

These strategies are also useful for LCC-Graph.

Several systems, such as GraphX [25] and PowerGraph

[19], can reduce communication cost by partitioning vertices

instead of edges among subgraphs to evenly distribute edges of

high-degree vertices, but they also incur high communication

cost among partitioned low-degree vertices. However, LCC-

Graph reduces the communication cost by eliminating the high

extra volume of communication, avoiding the data copying and

batch parsing overheads, and by improving the communication

bandwidth utilization.

VII. CONCLUSION
This paper proposes a distributed graph-processing frame-

work, called LCC-Graph, to support large-scale graph-

computing jobs. LCC-Graph is high-performance and highly

scalable while maintaining the advantages of Pregel-like dis-

tributed graph-processing frameworks. In LCC-Graph, the

LCC-BSP computation model is proposed to eliminate the

high communication costs that affect existing distributed

graph-processing frameworks, and reduce the computation

workload of each vertex. Extensive prototype evaluation of

LCC-Graph, driven by real-world datasets, indicates that the

performance of LCC-Graph is notably superior to the existing

distributed graph-processing frameworks. For example, it runs

∼49x and ∼14x faster than GPS and GraphLab respectively.
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