
MCTCP: Congestion-Aware and Robust MultiCast 
TCP in Software-Defined Networks 

Tingwei Zhut , Fang Wangt*, Yu Huat , Dan Fengt *, Yong Want, Qingyu Shit, Yanwen Xiet 
tWuhan National Lab for Optoelectronics 

School of Computer, Huazhong University of Science and Technology, Wuhan, China 
+Computer Engineering College, Jingchu University of Technology 

*Corresponding author: {dfeng, wangfang}@hust.edu.cn 

Abstract-Continuously enriched distributed systems in data 
centers generate much network traffic in push-style one-to-many 
group mode, raising new requirements for multicast transport 
in terms of efficiency and robustness. Existing reliable multicast 
solutions, which sufTer from low robustness and inefficiency in 
either host-side protocols or multicast routing, are not suitable 
for data centers. In order to address the problems of inefficiency 
and low robustness, we present a sender-initiated, efficient, 
congestion-aware and robust reliable multicast solution mainly 
for small groups in SDN-based data centers, called MCTCP. The 
main idea behind MCTCP is to manage the multicast groups in 
a centralized manner, and reactively schedule multicast flows to 
active and low-utilized links, by extending TCP as the host-side 
protocol and managing multicast groups in the SDN-controller. 
The multicast spanning trees are calculated and adjusted ac­
cording to the network status to perform a better allocation of 
resources. Our experiments show that, MCTCP can dynamically 
bypass the congested and failing links, achieving high efficiency 
and robustness. As a result, MCTCP outperforms the state-of­
the-art reliable multicast schemes. Moreover, MCTCP improves 
the performance of data replication in HDFS compared with the 
original and TCP-SMO based ones, e.g., achieves 101 % and 50% 
improvements in terms of bandwidth, respectively. 

I. INTRODUCTION 

In recent years, with the development of cloud computing 
technology, applications in data centers have been significantly 
enriched. A large number of different distributed applications 
generate complex network traffic of one-to-one and one-to­
many patterns, causing much pressure on data center network 
resources. More importantly, most of the one-to-many group 
communications in data centers are implemented through 
multiple unicast like TCP, which is inefficient. They generate 
a lot of replicated traffics, which not only waste network 
resources but also decrease the performance of applications. 

A large number of typical one-to-many group communi­
cation scenarios exist in data centers, as a lot of distributed 
systems need to transfer the same data from one node to others 
for the sake of service reliability and performance. Distributed 
file systems adopt a replication mechanism to ensure the 
reliability of data storage, such as HDFS [1] in Hadoop, 
Ceph [2] in Red Hat and GFS [3] in Google. File chunks 
are replicated to several storage nodes, which are chosen by 
certain placement policies. In cooperative computations, the 
executable binaries or shared data are distributed to other 
collaborative servers, such as the DistributedCache in Hadoop 
MapReduce [4] and Broadcast variables in Apache Spark [5]. 

The queries in web search engine are redirected to a set 
of indexing servers to look up the matching documents, say 
Google or Bing. 

These group communication scenarios in data centers have 
the following key characteristics, which raise new require­
ments for multicast solutions. 

• Small groups. The group members are generally small, 
i.e., hundreds or fewer. For instance, distributed file 
systems mainly adopt three replicas, and the number of 
the worker nodes in data analytics applications is often 
from tens to hundreds [6]. 

• Reliability. Unlike the traditional group communication 
scenarios such as IPTV, which allow data loss to some 
extent, most of the group communications in data centers 
require strict reliability. 

• Sender-initiated. Most of the group transmissions are 
push-style, where the sender determines the transmission, 
and the receivers do not know when and where to receive 
data in advance. 

• Efficiency. Compared with the Internet environment, the 
DCN (Data Center Network) has the salient features of 
high bandwidth and low latency features and the applica­
tions in data centers are more performance sensitive and 
critical. Therefore, multicast schemes need to make full 
use of the benefits of DCN to achieve high efficiency. 
Moreover, due to the burst [7] and mixed nature of 
network traffic in data centers, congestion-awareness is 
very important in achieving efficient multicast routing. 

• Robustness. A link failure may cause transmission pause 
in multiple receivers, and therefore, robust is important 
in multicast. 

Previous reliable multicast solutions fail to meet all the 
requirements in aforementioned small groups multicast sce­
narios, mainly for the following reasons. First, the majority 
of previous reliable multicast solutions are receiver-initiated 
application-layer protocols (based on UDP), which suffer from 
high software overhead on end hosts and mismatch to the 
sender-initiated mode. Second, traditional IP multicast routing 
algorithms, such as PIM-SM [8], are not designed to build 
optimal routing trees. They are not aware of link congestion, 
and thus apt to cause significant performance degradation 
in burst and unpredictable traffic environment [7]. Third, 



traditional multicast group management protocols, such as 
Internet Group Management Protocol (IGMP) [9], fail to be 
aware of link failures. A failure in multicast spanning trees 
can suspend transmission and lead to significant performance 
loss or business interruption. 

The emergence of SDN (Software-Defined Networking) 
[10], brings new ideas for solving routing efficiency issues 
of reliable multicast in data centers. A centralized control 
plane called SDN-controller provides global visibility of the 
network, rather than localized switch level visibility in tra­
ditional IP networks. Therefore, multicast routing algorithms 
can leverage topology information and link utilization to build 
optimal (near-optimal) routing trees, and be robust against link 
congestion and failures. 

To meet all the aforementioned requirements, we develop 
an SDN-based sender-initiated, efficient, congestion-aware and 
robust reliable multicast solution, called MCTCP, which is 
mainly designed for small groups. The main idea behind 
MCTCP is to manage the multicast groups in a centralized 
manner, and reactively schedule multicast flows to active and 
low-utilized links. Therefore, the multicast routing can be 
efficient and robust. To eliminate the high overhead on end 
hosts and achieve reliability, we extend TCP as the host-side 
protocol, which is a transport-layer protocol. 

Specifically, MCTCP consists of two modules, including 
the HSP (Host-Side Protocol) and the MGM (Multicast Group 
Manager). The HSP is a sender-initiated protocol, where the 
sender defines the transmission and the receivers need not to 
know the multicast address or subscribe it in advance. By 
notifying the MGM each time establishing or closing a session, 
it is easy for the MGM to keep states of all the sessions. There­
fore, the MGM can calculate and adjust Multicast Spanning 
Trees (MSTs) for each session based on real-time link status 
to achieve congestion-aware and robustness. 

As for the access bottleneck and single point failure prob­
lems which centralized approaches may suffer from, we have 
two considerations. First, the availability of the SDN-controller 
is out of the scope of this paper, and we can use multiple 
controllers to relieve these problems. Second, we can signifi­
cantly relieve the pressure of the SDN-controller by keeping 
long term connections when using MCTCP, which is feasible 
in most of the bandwidth-hungry applications such as HDFS. 

Our design goal is to make MCTCP as flexible and con­
venient as TCP, efficient and robust for one-to-many small 
group communications, even in burst and unpredictable traffic 
environments. To verify the applicability of MCTCP, we also 
implement multicast-based HDFS, which is a version of HDFS 
using MCTCP for data replication. 

This paper makes the following contributions. 
• We propose MCTCP, a transport-layer reliable multicast 

transmission scheme mainly for small groups in SDN­
based data centers, which is efficient on both host-side 
protocol and multicast routing. We design a centralized 
Multicast Group Manager (MGM) to ensure multicast 
routing efficiency and robustness by reactively scheduling 
multicast flows. Therefore, the MSTs can dynamically 

bypass the congested and failing links, making MCTCP 
more suitable for the unpredictable network environment. 

• We implement MCTCP in real systems. Experimental 
results confirm its functionality of congestion-awareness 
and failure-resistance. Experiments under background 
traffic in patterns of two realistic workloads, including the 
web search [11] and the data mining [12], demonstrate 
that MCTCP outperforms the state-of-the-art reliable 
multicast schemes in transmission bandwidth. 

• We implement the multicast version of HDFS us­
ing MCTCP and TCP-SMO [13], called HDFS-M and 
HDFS-T, respectively to improve performance of data 
replication. Compared with HDFS-T and HDFS-O (the 
original pipeline-based HDFS version), HDFS-M de­
creases the per-packet latency by "-' 13%-47% and "-'70%-
83%, and improves the throughput by ,,-,20%-50% and 
,,-,30%-101 %, respectively under web search background 
traffic. 

The rest of paper is organized as follows. Section II presents 
the motivation of this paper. Section III presents the design 
of MCTCP. Section IV describes the implementation details. 
Section V describes our experimental evaluation of MCTCP 
and the performance comparisons among the state-of-the-art 
approaches. Section VI presents the related works. Finally, we 
draw conclusion in Section VII. 

II. MOTIVATIONS 

A large number of small group mode communications exist 
in DCN, which are widely presented in distributed systems. 
These small group communications carry a large amount of 
data, raising new challenges for reliable multicast schemes. 
Applicability and Flexibility: Many group communications 
are generated in distributed systems during runtime. For each 
group communication, the sender knows the information of 
all receivers, while the receivers are not aware of the sender 
until the communication starts. For example, in distributed 
storage systems, the clients are active transmitters and the 
data nodes are passive receivers during data replication. There­
fore, in these scenarios, the sender-initiated multicast schemes 
have better applicability and flexibility than the receiver­
initiated schemes. But most conventional multicast schemes 
are receiver-initiated, which are not suitable for these scenar­
ios. 
Efficiency: High efficiency is required in data center networks. 
But existing reliable multicast schemes cannot meet the ef­
ficiency requirements for most of the applications for two 
reasons. First, the software overhead on host side protocols 
of multicast becomes prominent in the high bandwidth, low 
latency network environment of data centers. The majority 
of existing reliable multicast solutions are application-layer 
schemes, which are UDP-based and implemented in user 
space, thus resulting in poor efficiency. Second, current data 
centers are built with high link density, and the network 
traffic is bursty and unpredictable [7] . Since existing reliable 
multicast schemes are based on distributed routing algorithms, 
which cannot make full use of network resources to achieve 



Fig. 1: Illustration of MCTCP. 

optimal routing efficiency, they are extremely vulnerable to 
network congestion, and easy to cause significant performance 
degradation. 
Robustness: With the increasing size of data centers, failures 
frequently occur [12] [14]. Traditional multicast management 
protocols are not aware of link failures, which generally 
consume 10-60 seconds (depending on the query interval) to 
detect. Any link failure in multicast trees can lead to significant 
performance loss. 

To address the challenges above, we design MCTCP to 
achieve straightforward deployment, reliability, efficiency and 
TCP-friendliness by extending TCP as the host-side protocol. 
By leveraging the centralized control and global view of SDN, 
MCTCP can calculate and adjust the MST of each group based 
on the real-time link status to achieve efficient routing and 
robustness. 

III. MCTCP DESIGN 

MCTCP consists of two modules, i.e., the HSP (Host-Side 
Protocol) and the MGM (Multicast Group Manager). The HSP 
is an extension of TCP, leveraging the three-way handshake 
connection mechanism, cumulative acknowledge mechanism, 
data retransmission mechanism and congestion control mech­
anism to achieve reliable multipoint data delivery. The MGM, 
located in the SDN-controller, is responsible for calculating, 
adjusting and maintaining the MSTs for each multicast session. 
It keeps monitoring the network status (e.g. link congestion 
and link failures) and creates maximal possibility for MCTCP 
to avoid network congestion and to be robust against link 
failures. 

The schematic of MCTCP is shown in Fig. 1. The sender 
establishes connection with multiple receivers explicitly before 
data transmission. First, the sender requests to the MGM for 
calculating the MST. Second, the MGM calculates and installs 
the MST. Third, the sender starts three-way handshake with 
receivers, and begins data transmission after that. Fourth, the 
MGM will adjust the MST once link congestion or failures 
are detected. Fifth, the sender notifies the MGM after data 
transmission finishes. 

A. Host-Side Protocol 

1) Session Establishment: The sender requests to MGM 
for calculating MST when establishing a new session. Since 

Senders MGM Receivers Senders MGM Receivers 

(a) Out-Band Scheme (b) In-Band Scheme 

Fig. 2: The Procedure of MCTCP Session Establishment with 
three receivers. 

the receivers do not obtain the multicast address in advance, 
the first handshake must be realized by using unicast address. 
We put the multicast address in the SYN packet (in the TCP 
options field). After receiving the SYN packet, the receivers 
get the specific multicast address, and join the group Gust put 
the multicast address into the interested list, but not send IGMP 
messages), so that they can receive the multicast messages. 

There are two alternative schemes, the out-band and the in­
band schemes. For the out-band scheme, the sender requests to 
the MGM before three-way handshake. After calculating the 
MST, the MGM notifies the sender to start three-way hand­
shake. For the in-band scheme, the SYN packet is reused to 
request MST for calculation, and redirected to the MGM. After 
receiving the SYN packet and calculating MST, the MGM 
dispatches the SYN packet to all the receivers in unicast. Fig. 
2 illustrates the procedure of connection establishment. 

The out-band scheme suffers from time overhead of an extra 
RTT to controller. Hence, this scheme is suitable for the large 
amount data transmission scenes, in which the overhead of 
session establishment is negligible. The in-band scheme has 
no extra time overhead, but brings much pressure on the SDN 
controller. This scheme is more suitable for extremely small 
membership and delay-sensitive scenes. 

2) Data Transmission: When a session is established, data 
transmission begins. 
Packet Acknowledgement. The sender maintains a sliding 
window and processes the acknowledgement from receivers. 
The send window advancement is decided by the slowest 
receiver. As MCTCP is mainly designed for small group 
scenarios, the ACK-implosion problem existed in traditional 
large member reliable multicast could be ignored. 
Packet Retransmission. The sender manages a timer for 
each session, and will retransmit the packets in multicast 
if the timer expires or packets loss is detected. Since the 
efficient and robust multicast forwarding achieved by MGM 
can significantly reduce the packet loss, the emergence of 
retransmission in MCTCP will be largely decreased. 
Congestion Control. We use existing congestion mechanisms 
in TCP directly, so that we can make full use of the existing 
rich and mature congestion algorithms, evolving along with 
TCP. Since the send window advancement is decided by the 



Multicast Group Manager 

Fig. 3: The Multicast Group Manager. 

slowest receiver, the congestion status of the whole session 
will be determined by the most congested receivers. 
Node failure. If no acknowledgement is received from a 
certain receiver in a threshold time during data transmission, 
we consider the receiver fails. The failing receiver, which may 
encounter crash or network failure, should be cleaned out 
from the multicast session in order to ensure the transmission 
of the rest receivers. Therefore, the applications should be 
responsible for fault recovery. 

3) Session Close: After data transmission is completed, 
the sender closes the multicast session initiatively, and then 
notifies the MGM. 

B. Multicast Group Manager 

MeTep uses a logically centralized approach to manage 
multicast groups. The MGM located in SDN controller man­
ages the multicast sessions and MSTs. By keeping the global 
view of the network topology and monitoring the link status 
in real-time, the MGM can adjust the MSTs in case of link 
congestion or failures . Specifically, the MGM consists of three 
sub-modules, including the session manager, the link monitor 
and the routing manager, as shown in Fig. 3. 

1) Session Manager: The session manager is responsible 
for maintaining the states of all groups. When establishing 
or closing a multicast session, the sender informs the session 
manager. Hence, the session manager can keep track of all the 
active multicast sessions. If a multicast session is closed, the 
MST will not be cleared immediately, but just be marked in­
active. Therefore, a session with the same sender and receivers 
can reuse the MST. The session manager periodically cleans 
up the inactive MSTs. 

2) Link Monitor: Link Monitor is responsible for monitor­
ing network link status, and estimating the weight of each link 
periodically. 

The primary challenge here is to estimate weight of each 
link at low overhead. We focus on the full-duplex network 
where all the links have the same bandwidth B. Assume 
we measure M bytes transferred over a link within interval 
6.t , and then the measured traffic rate R is M I 6.t, and the 
measured weight is Wm = R I B. If Wm<l, it means the 
traffic rate has not reached the link capacity. In this case, 
the measured rate indicates the real load of the link, and the 
weight = Wm. If Wm = 1, it means the traffic rate reaches 
the roof of the link, but the real load may be heavier than the 

measured one. Observing that when the rate reaches the link 
capacity, more flows could incur heavier load. Therefore, in 
this case, we need to estimate the link weight based on the 
number of flows. To this end, we introduce a parameter F, 
which represents the rate of a single flow. Hence, n flows can 
reach the maximum traffic rate n . F without the limitation of 
link capacity, and the corresponding weight = n . FI B . In 
practice, the measured rate R may not reach the link capacity 
B precisely, but can only be approximate to B. Suppose 
R = ex· B, if ex is larger than a threshold 'TJ, such as 95%, we 
consider it has been reaching the link capacity. We summarize 
the equation for weight calculation as follow. 

. ht { R I B wetg = n.FI B 
R < 'TJ· B 
R ? 'TJ' B 

(1) 

As Eq. 1 shows, we need to measure the per-link rate R, 
the flow number of each link n and the single flow rate F in 
the network. To measure R, we simply poll the port status of 
all the switches, such as using the 'getyort_stats' function 
in OpenFlow. To measure n, we keep the state of all the 
flows , by recording a flow when initiated and removing it 
when finished. We can prevent polling the flow tables from 
switches by enabling the 'Flow Removed' message when a 
flow expires in the OpenFlow-based SDN networking. The F 
actually means how much load a single flow can introduce. 
It is a network parameter which can be configured statically 
based on experience or can be easily estimated during runtime. 

3) Routing Manager: The routing manager is responsible 
for calculating and adjusting MSTs. When establishing a 
new multicast session, the routing manager calculates the 
minimum cost MST based on the current link utilization. 
When a link overloads or a failure occurs, the adjustment 
for all MSTs over the link will be triggered. We divide the 
routing manager into two parts, the routing calculation and 
the routing adjustment. The MST should be calculated quickly 
during session establishment. In the case of link congestion, 
the MST should be adjusted in the best-effort way. When the 
link fails, all the relevant MSTs should be quickly updated. 
Routing calculation. The members of a group are assigned 
by the sender, and no dynamically join/leave is allowed in 
MeTep once the session begins. We use minimum-cost path 
heuristic algorithm (MPH) [15] for routing calculation. The 
MPH algorithm inputs a set of sender/receiver nodes and all­
pair shortest paths which are calculated by Dijkstra algorithm, 
and outputs a minimum cost MST. In order to speed the MST 
calculation, we calculate the shortest paths which end with the 
edge switches in advance, called GSP (Global Shortest Paths). 
Routing Adjustment. When the link monitor detects link 
overloads, i.e., the link weight is larger than a preset threshold, 
the routing adjustment will be triggered. In routing adjustment, 
the GSP will be recalculated using Dijkstra algorithm, and the 
relevant MSTs will be recalculated using MPH algorithm. 

We compare the total cost of the new calculated MST with 
the current one to decide whether to install the new MST. 
Suppose we have updated the group to the new MST, and then 
the group will generate new load on the new links. Therefore, 



Algorithm 1 Multicast Routing Adjustment. 

1: IIUpdate the link weight, and find out the overloaded 
links 

2: for l in L do 
3: l.weight = l.rate < B?l.ratel B : l.flow * FI B ; 
4: if l.weight > Wthr then 
5: C.append(l) ; IIStore the overloaded links in C 
6: end if 
7: end for 
8: for 9 in G do 
9: if g.link in C then 

10: n = g.newM stO ; I I Calculate the new MST 
11 : I I Check whether to update 
12: if checkMst(n.L,g.L) then 
13: for l in {n.L - g.L} do 
14: l.weight+ = F I B ; 
15: end for 
16: for l in {g.L - n.L} do 
17: l.weight - = F I B ; 
18: end for 
19: g.updateO; I I Update the MST 
20: end if 
21 : end if 
22: end for 

we should update the weight of the new links, i.e. , an addition 
of FI B to each. If the reduction of the total cost between the 
new MST and the current one is no less than a reduction 
threshold, we think it is worth updating, and the new MST 
will be installed to switches. Specifically, consider an MST 
M(V, L), where V and L denote the set of nodes and links, 
respectively. Each link l E L is associated with a weight w(l) . 
Let C denotes the cost of an MST, which is the sum of all link 
weight in the MST, and Cthr denotes the reduction thresh­
old. For the current MST M (Veun L eur), the cost Ceur = 
'L,l ELcur wU). For the new MST M(Vnew , Lnew ), the cost 
Cnew = 'L,I ELnewnLcuT w(l) + 'L,l ELneW - LCUT(w(l) + FI B) . 

If Ceur - Cnew ;? Cthr, the new MST will be installed. By 
default, we let the Cthr = F I B. 

To reduce the overhead of routing adjustment, we calculate 
the GSP only once during each adjustment cycle. Here we 
consider the situation where there are multiple groups need 
to be adjusted. Consider that when the MST of a group has 
been adjusted, the weight of the associated links will change. 
Therefore, we need to adjust the weight of the changing 
links. For example, the links set of a group G1's MST is 
Leur : {h, l2 , b} before adjustment, and are changed to 
Lnew : {h , b, l4} after adjustment. Then the traffic which on 
link l2 will switch to link l4 , and the weight of l2 and l4 will 
change. We correct the weight of l2 and l4 by l2 = l2 - F I B , 
and l4 = l4 + F I B , respectively. As a result, other groups 
which wish to adjust their MST to l2 or l4 could take the 
effect of group G1 into account. The pseudocode of Routing 
Adjustment is shown in Algorithm 1 and 2. 

Algorithm 2 checkMST(Lnew , L eur) 

1: I I Calculate the Leur 
2: for l in L eur do 
3: Ceur+ = l.weight ; 
4: end for 
5: I I Calculate the Lnew 
6: for l in {Leur n Lnew } do 
7: Cnew+ = l.weight ; 
8: end for 
9: for l in {Lnew - Leur} do 

10: Cnew+ = l.weight + F I B ; 
11: end for 
12: if Ceur - Cnew ;? Cthr then 
13: return TRUE ; 
14: end if 
15: return FALSE; 

IV. IMPLEMENTATION DETAILS 

We implement MCTCP on a Linux platform, the HSP as 
a kernel-level module, and the MGM as an application on 
Ryu [16], a popular open source SDN controller. In order 
to achieve straightforward deployment, the HSP adopts the 
same semantics as TCP, and provides common socket APIs. 
Therefore, the application programmers can use MCTCP as 
easy as TCP in programming. To verify the applicability of 
MCTCP, we apply MCTCP on HDFS to optimize the data 
replication mechanism. 

A. Prototype Implementation 

We add a new transport-layer protocol by assigning a new 
protocol number (e.g. 106) to MCTCP when implementing the 
HSP prototype, in order to avoid modification in the kernel 
source code. Therefore, the HSP works as a kernel module 
which can be loaded and unloaded as needed. We implement 
the MGM module on Ryu. The MGM only processes the 
MCTCP traffic (e.g. with protocol number 106), and a general 
routing module processes the non-MCTCP traffic. For the 
MCTCP traffic, we use the load-based algorithm for routing 
calculation, always seeking for minimum cost, since we can 
adjust the MSTs if the load changes. For the non-MCTCP 
traffic, we use the distance-based algorithm, and the routing 
will not change unless link fails. 

B. Application Integration 

HDFS is one of the most widely deployed distributed file 
system in data centers, which acts as the default file system in 
Hadoop. Its data replication process is a typical one-to-many 
data transmission, during which the client gets the list of DNs 
(Data Nodes) from an NN (Name Node), and then delivers 
the data chunks to them. By default, the replication factor in 
HDFS is three, so we assume the replication factor is three. 

As shown in Fig. 4(a), the original HDFS employs a 
pipeline-based replication method. The data transmission unit 
is a packet (usually 64KB). For each packet, the client first 
transfers it to DNO; then the DNO stores and passes it to DNl; 



Data Packets Data Packets Data Packets 

ACKs ACKs 

(a) Pipeline-based data replication 

0"·Q9 J~N~ 
ACKs 

(b) Multicast-based data replication 

Fig. 4: Illustration of Pipeline-based and Multicast-based data 
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Fig. 5: Network topology used in evaluation. 

finally the DNI stores and transfers it to DN2. After the DN2 
receives the packet, it returns an acknowledgment to DNl; then 
the DNI returns an acknowledgment to DNO; finally the DNO 
returns an acknowledgment to the Client. Therefore, the whole 
process can be regarded as a six-stage pipeline. We denote the 
original HDFS as HDFS-O. HDFS-O has 2 . n stages when 
configured as n replicas, resulting in long delay in packet 
transmission. In addition, HDFS-O delivers data in unicast, 
which will generate a large number of duplicated packets into 
the network and reduce the overall transmission performance. 

We implement multicast-based data replication on HDFS 
using MCTCP, which is denoted as HDFS-M. As shown 
in Fig. 4(b), the client divides the data into packets, and 
then delivers them to three data nodes DNO, DNl, DN2 in 
multicast. For each packet, the client transfers it to DNO, DNl, 
DN2 simultaneously using MCTCP, and then all the data nodes 
return acknowledgements to the client directly. Therefore, 
HDFS-M's data replication procedure can be regarded as a 
two-stage pipeline. Compared with HDFS-O, HDFS-M has 
shorter stages (two stages to six stages), so that results in lower 
latency. Meanwhile, since HDFS-M delivers data in multicast, 
the redundant packets in network are reduced greatly. 

In the similar way, we implement another multicast-based 
HDFS using TCP-SMO, which is the state-of-the-art transport­
layer reliable multicast scheme, called HDFS-T. Since TCP­
SMO is a receiver-initiated solution, we have to use additional 
mechanism to inform a DN to subscribe a specific multicast 
group before writing data to the DN. 

V. EVALUATION 

We build a test platform on Mininet [17]. The hardware 
consists of one server running Ubuntu 12.04.5 LTS operating 
system, with Intel (R) Xeon (R) E5-2620 @ 2.00GHz CPU, 
32GB RAM. We install Mininet 2.2.0 and Openvswitch 2.1.0, 
RYU 3.17 on it. The network consists of 16 hosts intercon-
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Fig. 6: Throughput comparison among NORM, openPGM, 
TCP-SMO and MCTCP. From 20s to 35s, a TCP flow is 
injected using iperf. 

nected using a fat-tree of twenty 4-port switches, as shown in 
Fig. 5. 

We perform three evaluations, including the basic evalua­
tion, the real-word workload evaluation and the application­
based evaluation, and we also discuss the complexity of the 
Controller. 
Basic Evaluation: We compare the performance of NORM 
[18], openPGM [19], TCP-SMO [13] and MCTCP, and verify 
the congestion-awareness, robustness and TCP-friendliness 
of MCTCP. NORM and openPGM (an implementation of 
PGM) are two popular open-source application-layer reliable 
multicast schemes, and TCP-SMO is a transport-layer reliable 
multicast scheme. Here we only make a comparison among 
the comprehensive reliable multicast schemes (all the previous 
SDN-based schemes are focused on routing strategies). 
Real-world Workload Evaluation: We evaluate the perfor­
mance of MCTCP and TCP-SMO under background traffic in 
the patterns of two realistic workloads, the web search work­
load [11] and the data mining workload [12] from production 
data centers. 
Application-based Evaluation: We evaluate the performance 
of HDFS-M, HDFS-T and HDFS-O under the background 
traffic in the patterns of web search workload. 
Complexity of the Controller: We discuss the capability of 
the SDN controller, such as the running time of the algorithm, 
computation and network overhead of the controller. 

A. Basic Evaluation 

The purpose of the basic evaluation is to evaluate the 
performance of MCTCP, and to see the behavior in case of 
link congestion and link fai lures, how MCTCP performs when 
co-existing with standard TCP. 

First, we evaluate the throughput of NORM, openPGM, 
TCP-SMO and MCTCP, with the congestion control enabled, 
transmission rate at 500Mbps. In this test, we use the first 
four nodes in Fig. 5, the node HI sends data to the rest three 
nodes. At time 20s, we start a TCP flow using iperf and make 
it conflict with the MST of the multicast group to simulate 
congestion. The iperf lasts 15s. Fig. 6 depicts the throughput 
of the four schemes. The TCP-N, TCP-P, TCP-T and TCP-M 
indicate the injected TCP flow in NORM, openPGM, TCP­
SMO and MCTCP test, respectively. We have the following 
observations: 
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Fig. 7: Throughput of MCTCP when a link failure occurs and 
co-existing with TCP. The link 811 -+ 821 fails at t=20s. A 
TCP flow is started from time 44s to 74s. 

When no link congestion occurs (during time 0-20s and 35-
60s), MCTCP achieves 60% and 22% better performance than 
NORM and openPGM, and is analogous to TCP-SMO. When 
link congestion occurs (during time 20-35s), MCTCP exhibits 
nearly no throughput degradation, while NORM, openPGM 
and TCP-SMO suffer from throughput degradation by 17%, 
17% and 33%, respectively. That means MCTCP achieves 
up to 90%, 44% and 45% better performance than NORM, 
openPGM and TCP-SMO, respectively when congestion hap­
pens. 

MCTCP outperforms the alternative schemes mainly be­
cause of two reasons. First, MCTCP is a transport-layer pro­
tocol, which can process data transmission, packet acknowl­
edgement and data re-transmission more efficiently than the 
application-layer protocol. Therefore, MCTCP outperforms 
NORM and openPGM even in no link congestion scenes. 
Second, MCTCP can detect link congestion in real-time, 
and adjust the MST to bypass congested links immediately 
once the link congestion is detected. Therefore, when link 
congestion occurs, MCTCP updates the MST to minimize 
performance loss. In the alternative schemes, however, once 
established, the MSTs are scarcely changed, leading to signif­
icant performance degradation when congestion occurs. 

Second, we evaluate the results of MCTCP when dealing 
with link failures and sharing links with TCP. The three 
alternative schemes are based on IGMP, so they leverage the 
mechanisms of IGMP to deal with link failures. For IGMP, a 
querier is responsible for sending out IGMP group member­
ship queries on a timed interval to retrieve IGMP membership 
reports from active members, and to allow updating of the 
group membership tables. Hence, the MSTs will not be 
updated during the query interval even if a link failure occurs. 
The link failure recovery time of NORM, openPGM and TCP­
SMO depends on the query interval, which is typically lOs-
60s. Therefore, we do not evaluate the results of the three 
alternative schemes in dealing with link failures. 

Like the previous experiment, we observe that the MST is 
{811 -+ 821,821 -+ 812} after the transmission begins. At 
time 20s, we shutdown the link of 811 -+ 821, and then start 
a TCP flow between H2 and H3 using iperf during time 44s-
74s. TCP and MCTCP both run "reno" congestion control 
algorithm. Fig. 7 depicts the results in this experiment. We 
have the following observations from this figure. First, the 

link failure has only a slight impact on MCTCP throughput. 
This is because the MST will be updated to bypass the 
failing link when a link failure is detected, and the lost 
multicast packets will be retransmitted quickly. Second, during 
the period from time 44s to 74s, as no alternative links for 
adjustment, MCTCP has to share the link with TCP. The 
congestion control mechanism on the sender makes MCTCP 
TCP-friendly. 

B. Real-world Workload Evaluation 

In this experiment, we try to find out how MCTCP performs 
in practice network environment. We assume MCTCP shares 
the network with the background traffic, which are according 
to the patterns of two real-world workloads, the web search 
and the data mining. We generate the background traffic using 
a client/server model. All the hosts open socket sinks for 
incoming traffic and all the hosts send data to a server based 
on exponential distribution. Each client randomly selects a 
receiver each time. The flow sizes are in according with 
the CDFs of realistic workloads mentioned above, which are 
similar to [20]. 

We evaluate the performance of MCTCP and TCP-SMO 
under the background traffic in the two workload patterns, 
while varying the network loads from 0.1 to 0.8. We start four 
multicast groups, each with a sender and three receivers. For 
each group, the members at least span 3 racks, and the racks 
and group members are randomly chosen. Different multicast 
groups do not share common group members. We run ECMP 
during this evaluation. The MGM monitors the network at 2 
seconds polling rate. 

Fig. 8 shows the bandwidth of MCTCP and TCP-SMO 
under background traffic of web search and data mining 
workloads respectively. We make the following two observa­
tions. First, when the load is less than 0.5, under both work­
loads, MCTCP outperforms TCP-SMO. Specifically, MCTCP 
achieves bandwidth improvements by ",20%-57% under the 
web search workload and", 17%-49% under the data mining 
workload. Second, when the load is no less than 0.5, MCTCP 
is comparable with TCP-SMO and has a narrow win in most 
cases under both workloads. 

MCTCP is able to find the less congested links during 
runtime, and adjusts the MSTs to improve the performance 
of multicast groups. When the load is less than 0.5, the traffic 
does not saturate all links. Due to the unload-balanced nature 
of the two workloads, MCTCP can always find the lower 
cost MST to keep the multicast group in the less congested 
state. Therefore, MCTCP can outperform TCP-SMO. When 
the load is no less than 0.5, all the links are almost saturated 
by the background traffic, resulting in no obvious space for 
MST adjustment. Given the average traffic load in DCNs is 
moderate, which generally at 30% [7], MCTCP can perform 
well in realistic data centers environment. 

C. Application-based Evaluation 

We carry out performance comparison among HDFS-O, 
HDFS-T and HDFS-M under background traffic in patterns 
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Fig. 8: Average multicast throughput of MCTCP and TCP-SMO under two background traffic in patterns of web search and 
data mining. 
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Fig. 9: Performance comparison among HDFS-M, HDFS-T 
and HDFS-O. 

of the web search workload. In HDFS, for the common case, 
the replication factor is default three, with one replica on a 
node in the local rack, another on a node in a remote rack, 
and the last on a different node in the same remote rack. 
However, in many cases, three copies could be distributed in 
different racks for the sake of load balance or data protection. 
In order to fully demonstrate the impact of the network on 
HDFS data replication, we configure all replicas on remote 
nodes. That is, we start a name node and three data nodes on 
four different hosts, and perform tests on the name node host. 
All data nodes store data on Ramdisk. We compare HDFS-
0, HDFS-T and HDFS-M under different additional network 
loads, varying from 0 to 0.4. When load is 0, there is no 
background traffic. 

We measure two metrics, the per-packet latency and the 
overall throughput, with the packet size 64KB, data size 
500MB. Fig. 9 depicts the results, from which we have three 
clear observations. First, the multicast-based data replication 
schemes outperform the pipeline-based scheme, especially in 
per-packet latency. The latency of pipeline-based scheme is 
typically about 3 times the multicast-based schemes. Second, 
HDFS-M is almost analogous to HDFS-T without background 
traffic, and improves the bandwidth by ,,-,20%-50%, and 
decreases the per-packet latency by "-' 13%-47% under web 
search background traffic. Third, compared with HDFS-O, 
HDFS-M achieves ,,-,30%-101% better bandwidth and "-'70%-
83% lower per-packet latency. 

HDFS-M outperforms HDFS-O and HDFS-T mainly due 
to two reasons. First, compared with HDFS-O, HDFS-M 
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Fig. 10: Calculation times for different receiver numbers. 

has shorter transmission paths and generates much fewer 
redundant network packets. So the latency can be significantly 
reduced and the probability of being affected by the back­
ground traffic is smaller. In HDFS-O, each packet is processed 
serially by all the three data nodes. For each packet, the 
completion time includes multiple processing and transmission 
time. Moreover, when the network is congested, multiple 
redundant unicast traffics will incur heavier congestion in 
network, leading to significant performance degradation. Sec­
ond, HDFS-M can adjust the MSTs to the most efficient one 
timely based on the network utilization. Therefore, HDFS-M 
can choose the least congested links to minimize performance 
loss. Although HDFS-T has the same short transmission path 
as HDFS-M, it is unable to bypass the congested links, thus 
results in more performance degradation due to background 
traffic. 

D. Complexity of the Controller 

The MST can be calculated immediately when a group 
arrives, as the GSP which needed in MST calculation will 
always be calculated in advance, i.e., when the controller 
initiation or at the beginning of each adjustment period. 
Therefore, the calculation time of a group is independent of 
the topology scale and the total number of active groups, but 
only related to the receiver numbers. Fig. 10 depicts the results 
of MST calculation time for various receivers in k = 8 and 
k = 16 Fat-tree topology. There are 32 edge switches in k = 8 
Fat-tree topology. When the receiver number is larger than 
32, the MST will span all pods, thus leading to saturation 
on calculation time. It is worth noting that when generating 



TABLE I: Calculation times in different topologies. 

Link Stats(ms) 

3S.41 

154.254 

TABLE II: Adjustment times for various groups 9 in different 
topologies. 

g=10000(ms) 

51S9.126 

5453.479 

TABLE III: CPU usage and network overhead in SDN con­
troller for different groups g. 

Topology 
CPU Netowork 

g=100(%) g=1000(%) g=100(KB/s) g=1000(KB/s) 

k=S 1.20 4.70 54.S 55.2 

k-16 3.10 5.S0 292 293 

a group, we first calculate the MST, and then install it to the 
corresponding switches. The install time which depends on the 
controller platform implementation is out of the scope of this 
paper. 

During an adjustment period, the controller first 
checks the current status of all links, in which we use 
'OFPMP_PORT_STATS' interface to get the port 
statistics of each switch. If link congestion is detected, we 
will re-calculate the GSP using Dijkstra algorithm. Table I 
shows the link stats, GSP calculation and a group generation 
time under k = 8 and k = 16 Fat-tree topology, respectively. 
We believe the link stats time is limited by the single-thread 
implementation of Ryu, and it can accelerate the process to 
more acceptable range by using multi-thread. By default, we 
will calculate the full GSP in each adjustment period, so that 
the controller can adjust a large number of groups in a single 
period. In the case of only a small number of active groups, 
we choose to not calculate the full GSP, but only the shortest 
paths for MST calculation on demand . 

As can be seen from the Algorithm 1, the time complexity of 
multicast adjustment is O(ILI + IGI), where the ILl is number 
of links and the IGI is the number of groups which need to 
be adjusted. Table II shows the adjustment time of various 
group numbers under k = 8 and k = 16 Fat-tree topology. 
The results turn out that the controller can adjust thousands 
of groups within one second. 

We examine the CPU usage and network overhead of the 
SDN controller for different groups in k = 8 and k = 16 
Fat-tree topology, respectively. As shown in Table III, the 
computation and network overhead are negligible. 

VI. R ELATE D WORK 

Reliable Multicast: As a traditional network technology, 
reliable multicast has been studied for decades, during which 
a large number of reliable multicast solutions have been 

TABLE IV: Comparison of reliable multicast approaches. 'CA' 
represents Congestion-Awareness. 

Approaches I Initial Model I Layer I CA I Robustness I .. 
PGM [21] Receiver Application No Low 

NORM [IS] Receiver Application No Low 

TCP-SMO [13] Receiver Transport No Low 

RDCM [14] Receiver Application No High 

SCE [2S] Sender Transport No Low 

TCP-XM [29] Sender Application No Low 

MCTCP Sender Transport Yes High 

proposed. These proposals can be divided into two categories, 
the receiver-initiated and the sender-initiated. 

Most of the previous reliable multicast solutions are 
receiver-initiated. In this mode, each receiver needs to obtain 
the correct multicast address in advance, and subscribes or 
unsubscribes it freely, like typical researches PGM [21] [19] 
[22], ARM [23], NORM [18], TCP-SMO [13], SRM [24], 
RMTP [25], TMTP [26], RDCM [14] etc. The receiver­
initiated mode is more suitable for large group scenes. The 
sender does not maintain information for any receivers, and 
thus bandwidth of the reliable multicast will not reduce badly 
as the number of receivers increases. On the contrary, the 
sender-initiated mode is mainly designed for medium or small 
group scenes, typical including MfTCP [27], SCE [28], TCP­
XM [29] and so on. 

Most of the existing reliable multicast solutions are 
application-layer protocols, like PGM and NORM, which 
suffer from high software overhead on end hosts in the 
high bandwidth, low latency network environment of data 
centers. RDCM [14] focuses on reliable multicast in data 
centers, leveraging the rich path diversity available in data 
center networks to build backup overlays, and recovers lost 
packets in a peer-to-peer way among receivers. TCP-SMO 
and SCE are transport-layer protocols, which have high per­
formance on end hosts like MCTCP. But they are based 
on traditional multicast management protocols and routing 
algorithms like IGMP and PIM-SM, which are not aware of 
link failures and congestion, leading to low routing efficiency 
and robustness. MlTCP is network-equipment protocol, which 
requires assistance from network devices. Blast [6] focuses on 
accelerating high-performance data analytics applications by 
optical multicast. Kim [30] focuses on scheduling multicast 
traffic with deadlines. As far as we are aware, all the existing 
reliable multicast schemes are not congestion-aware. Table IV 
summarizes reliable multicast approaches similar to MCTCP. 

SDN-based Multicast: SDN technology provides a logically 
centralized approach to achieve IP multicast. Avalanche [31] 
and OFM [32] propose SDN-based multicast system, using 
the SDN-controller for multicast routing and management 
to improve efficiency and security. Similarly, CastFlow [33] 
calculates all possible routes from sources to group members 
in advance to speed up the processing of events in multicast 
groups. Ge [34] proposes an OpenFlow-based dynamic MST 
algorithm to optimize the performance of multicast trans-



nusslOns, enabling adjustable multicast routing when source 
and group members are unchanged. Shen [35] proposes an 
approximate algorithm, called Recover Aware Edge Reduction 
Algorithm (RAERA) to achieve a new reliable multicast tree 
for SDN, named Recover-aware Steiner Tree (RST). 

However, all of the SDN-based multicast researches are 
focused on multicast routing only, but not concerning about the 
multicast protocol design. Moreover, they are not congestion­
aware. 

VII . CONCLUSION 

In order to meet the requirements of data center multicast, 
we propose MCTCP, an SDN-based reliable multicast data 
transmission solution, mainly for small groups in data centers. 
It is a sender-initiated transport-layer solution which extends 
TCP as the host-side portocol. The MSTs are maintained 
by the MGM in a centralized way. Therefore, the MGM 
can leverage real-time network states to reactively multicast 
flows to active and low-utilized links. For each group, the 
MST is calculated during session establishment and adjusted 
dynamically in case of link congestion or failures to achieve 
optimal routing efficiency and robustness. Taken together, 
MCTCP is efficient in both end hosts and multicast routing. 
In our experiments, MCTCP outperforms the existing reliable 
multicast solutions, especially in the case of co-existing with 
background traffic. Moreover, we implement multicast-based 
data replication on HDFS using MCTCP. Experimental re­
sults show that the multicast-based data replication has better 
performance than the original pipeline-based HDFS, and the 
multicast-based scheme built with MCTCP performs better. 
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