
MCTCP: Congestion-Aware and Robust MultiCast
TCP in Software-Defined Networks

Tingwei Zhut , Fang Wangt*, Yu Huat , Dan Fengt *, Yong Want, Qingyu Shit, Yanwen Xiet
tWuhan National Lab for Optoelectronics

School of Computer, Huazhong University of Science and Technology, Wuhan, China
+Computer Engineering College, Jingchu University of Technology

*Corresponding author: {dfeng, wangfang}@hust.edu.cn

Abstract-Continuously enriched distributed systems in data
centers generate much network traffic in push-style one-to-many
group mode, raising new requirements for multicast transport
in terms of efficiency and robustness. Existing reliable multicast
solutions, which sufTer from low robustness and inefficiency in
either host-side protocols or multicast routing, are not suitable
for data centers. In order to address the problems of inefficiency
and low robustness, we present a sender-initiated, efficient,
congestion-aware and robust reliable multicast solution mainly
for small groups in SDN-based data centers, called MCTCP. The
main idea behind MCTCP is to manage the multicast groups in
a centralized manner, and reactively schedule multicast flows to
active and low-utilized links, by extending TCP as the host-side
protocol and managing multicast groups in the SDN-controller.
The multicast spanning trees are calculated and adjusted ac­
cording to the network status to perform a better allocation of
resources. Our experiments show that, MCTCP can dynamically
bypass the congested and failing links, achieving high efficiency
and robustness. As a result, MCTCP outperforms the state-of­
the-art reliable multicast schemes. Moreover, MCTCP improves
the performance of data replication in HDFS compared with the
original and TCP-SMO based ones, e.g., achieves 101 % and 50%
improvements in terms of bandwidth, respectively.

I. INTRODUCTION

In recent years, with the development of cloud computing
technology, applications in data centers have been significantly
enriched. A large number of different distributed applications
generate complex network traffic of one-to-one and one-to­
many patterns, causing much pressure on data center network
resources. More importantly, most of the one-to-many group
communications in data centers are implemented through
multiple unicast like TCP, which is inefficient. They generate
a lot of replicated traffics, which not only waste network
resources but also decrease the performance of applications.

A large number of typical one-to-many group communi­
cation scenarios exist in data centers, as a lot of distributed
systems need to transfer the same data from one node to others
for the sake of service reliability and performance. Distributed
file systems adopt a replication mechanism to ensure the
reliability of data storage, such as HDFS [1] in Hadoop,
Ceph [2] in Red Hat and GFS [3] in Google. File chunks
are replicated to several storage nodes, which are chosen by
certain placement policies. In cooperative computations, the
executable binaries or shared data are distributed to other
collaborative servers, such as the DistributedCache in Hadoop
MapReduce [4] and Broadcast variables in Apache Spark [5].

The queries in web search engine are redirected to a set
of indexing servers to look up the matching documents, say
Google or Bing.

These group communication scenarios in data centers have
the following key characteristics, which raise new require­
ments for multicast solutions.

• Small groups. The group members are generally small,
i.e., hundreds or fewer. For instance, distributed file
systems mainly adopt three replicas, and the number of
the worker nodes in data analytics applications is often
from tens to hundreds [6].

• Reliability. Unlike the traditional group communication
scenarios such as IPTV, which allow data loss to some
extent, most of the group communications in data centers
require strict reliability.

• Sender-initiated. Most of the group transmissions are
push-style, where the sender determines the transmission,
and the receivers do not know when and where to receive
data in advance.

• Efficiency. Compared with the Internet environment, the
DCN (Data Center Network) has the salient features of
high bandwidth and low latency features and the applica­
tions in data centers are more performance sensitive and
critical. Therefore, multicast schemes need to make full
use of the benefits of DCN to achieve high efficiency.
Moreover, due to the burst [7] and mixed nature of
network traffic in data centers, congestion-awareness is
very important in achieving efficient multicast routing.

• Robustness. A link failure may cause transmission pause
in multiple receivers, and therefore, robust is important
in multicast.

Previous reliable multicast solutions fail to meet all the
requirements in aforementioned small groups multicast sce­
narios, mainly for the following reasons. First, the majority
of previous reliable multicast solutions are receiver-initiated
application-layer protocols (based on UDP), which suffer from
high software overhead on end hosts and mismatch to the
sender-initiated mode. Second, traditional IP multicast routing
algorithms, such as PIM-SM [8], are not designed to build
optimal routing trees. They are not aware of link congestion,
and thus apt to cause significant performance degradation
in burst and unpredictable traffic environment [7]. Third,

traditional multicast group management protocols, such as
Internet Group Management Protocol (IGMP) [9], fail to be
aware of link failures. A failure in multicast spanning trees
can suspend transmission and lead to significant performance
loss or business interruption.

The emergence of SDN (Software-Defined Networking)
[10], brings new ideas for solving routing efficiency issues
of reliable multicast in data centers. A centralized control
plane called SDN-controller provides global visibility of the
network, rather than localized switch level visibility in tra­
ditional IP networks. Therefore, multicast routing algorithms
can leverage topology information and link utilization to build
optimal (near-optimal) routing trees, and be robust against link
congestion and failures.

To meet all the aforementioned requirements, we develop
an SDN-based sender-initiated, efficient, congestion-aware and
robust reliable multicast solution, called MCTCP, which is
mainly designed for small groups. The main idea behind
MCTCP is to manage the multicast groups in a centralized
manner, and reactively schedule multicast flows to active and
low-utilized links. Therefore, the multicast routing can be
efficient and robust. To eliminate the high overhead on end
hosts and achieve reliability, we extend TCP as the host-side
protocol, which is a transport-layer protocol.

Specifically, MCTCP consists of two modules, including
the HSP (Host-Side Protocol) and the MGM (Multicast Group
Manager). The HSP is a sender-initiated protocol, where the
sender defines the transmission and the receivers need not to
know the multicast address or subscribe it in advance. By
notifying the MGM each time establishing or closing a session,
it is easy for the MGM to keep states of all the sessions. There­
fore, the MGM can calculate and adjust Multicast Spanning
Trees (MSTs) for each session based on real-time link status
to achieve congestion-aware and robustness.

As for the access bottleneck and single point failure prob­
lems which centralized approaches may suffer from, we have
two considerations. First, the availability of the SDN-controller
is out of the scope of this paper, and we can use multiple
controllers to relieve these problems. Second, we can signifi­
cantly relieve the pressure of the SDN-controller by keeping
long term connections when using MCTCP, which is feasible
in most of the bandwidth-hungry applications such as HDFS.

Our design goal is to make MCTCP as flexible and con­
venient as TCP, efficient and robust for one-to-many small
group communications, even in burst and unpredictable traffic
environments. To verify the applicability of MCTCP, we also
implement multicast-based HDFS, which is a version of HDFS
using MCTCP for data replication.

This paper makes the following contributions.
• We propose MCTCP, a transport-layer reliable multicast

transmission scheme mainly for small groups in SDN­
based data centers, which is efficient on both host-side
protocol and multicast routing. We design a centralized
Multicast Group Manager (MGM) to ensure multicast
routing efficiency and robustness by reactively scheduling
multicast flows. Therefore, the MSTs can dynamically

bypass the congested and failing links, making MCTCP
more suitable for the unpredictable network environment.

• We implement MCTCP in real systems. Experimental
results confirm its functionality of congestion-awareness
and failure-resistance. Experiments under background
traffic in patterns of two realistic workloads, including the
web search [11] and the data mining [12], demonstrate
that MCTCP outperforms the state-of-the-art reliable
multicast schemes in transmission bandwidth.

• We implement the multicast version of HDFS us­
ing MCTCP and TCP-SMO [13], called HDFS-M and
HDFS-T, respectively to improve performance of data
replication. Compared with HDFS-T and HDFS-O (the
original pipeline-based HDFS version), HDFS-M de­
creases the per-packet latency by "-' 13%-47% and "-'70%-
83%, and improves the throughput by ,,-,20%-50% and
,,-,30%-101 %, respectively under web search background
traffic.

The rest of paper is organized as follows. Section II presents
the motivation of this paper. Section III presents the design
of MCTCP. Section IV describes the implementation details.
Section V describes our experimental evaluation of MCTCP
and the performance comparisons among the state-of-the-art
approaches. Section VI presents the related works. Finally, we
draw conclusion in Section VII.

II. MOTIVATIONS

A large number of small group mode communications exist
in DCN, which are widely presented in distributed systems.
These small group communications carry a large amount of
data, raising new challenges for reliable multicast schemes.
Applicability and Flexibility: Many group communications
are generated in distributed systems during runtime. For each
group communication, the sender knows the information of
all receivers, while the receivers are not aware of the sender
until the communication starts. For example, in distributed
storage systems, the clients are active transmitters and the
data nodes are passive receivers during data replication. There­
fore, in these scenarios, the sender-initiated multicast schemes
have better applicability and flexibility than the receiver­
initiated schemes. But most conventional multicast schemes
are receiver-initiated, which are not suitable for these scenar­
ios.
Efficiency: High efficiency is required in data center networks.
But existing reliable multicast schemes cannot meet the ef­
ficiency requirements for most of the applications for two
reasons. First, the software overhead on host side protocols
of multicast becomes prominent in the high bandwidth, low
latency network environment of data centers. The majority
of existing reliable multicast solutions are application-layer
schemes, which are UDP-based and implemented in user
space, thus resulting in poor efficiency. Second, current data
centers are built with high link density, and the network
traffic is bursty and unpredictable [7] . Since existing reliable
multicast schemes are based on distributed routing algorithms,
which cannot make full use of network resources to achieve

Fig. 1: Illustration of MCTCP.

optimal routing efficiency, they are extremely vulnerable to
network congestion, and easy to cause significant performance
degradation.
Robustness: With the increasing size of data centers, failures
frequently occur [12] [14]. Traditional multicast management
protocols are not aware of link failures, which generally
consume 10-60 seconds (depending on the query interval) to
detect. Any link failure in multicast trees can lead to significant
performance loss.

To address the challenges above, we design MCTCP to
achieve straightforward deployment, reliability, efficiency and
TCP-friendliness by extending TCP as the host-side protocol.
By leveraging the centralized control and global view of SDN,
MCTCP can calculate and adjust the MST of each group based
on the real-time link status to achieve efficient routing and
robustness.

III. MCTCP DESIGN

MCTCP consists of two modules, i.e., the HSP (Host-Side
Protocol) and the MGM (Multicast Group Manager). The HSP
is an extension of TCP, leveraging the three-way handshake
connection mechanism, cumulative acknowledge mechanism,
data retransmission mechanism and congestion control mech­
anism to achieve reliable multipoint data delivery. The MGM,
located in the SDN-controller, is responsible for calculating,
adjusting and maintaining the MSTs for each multicast session.
It keeps monitoring the network status (e.g. link congestion
and link failures) and creates maximal possibility for MCTCP
to avoid network congestion and to be robust against link
failures.

The schematic of MCTCP is shown in Fig. 1. The sender
establishes connection with multiple receivers explicitly before
data transmission. First, the sender requests to the MGM for
calculating the MST. Second, the MGM calculates and installs
the MST. Third, the sender starts three-way handshake with
receivers, and begins data transmission after that. Fourth, the
MGM will adjust the MST once link congestion or failures
are detected. Fifth, the sender notifies the MGM after data
transmission finishes.

A. Host-Side Protocol

1) Session Establishment: The sender requests to MGM
for calculating MST when establishing a new session. Since

Senders MGM Receivers Senders MGM Receivers

(a) Out-Band Scheme (b) In-Band Scheme

Fig. 2: The Procedure of MCTCP Session Establishment with
three receivers.

the receivers do not obtain the multicast address in advance,
the first handshake must be realized by using unicast address.
We put the multicast address in the SYN packet (in the TCP
options field). After receiving the SYN packet, the receivers
get the specific multicast address, and join the group Gust put
the multicast address into the interested list, but not send IGMP
messages), so that they can receive the multicast messages.

There are two alternative schemes, the out-band and the in­
band schemes. For the out-band scheme, the sender requests to
the MGM before three-way handshake. After calculating the
MST, the MGM notifies the sender to start three-way hand­
shake. For the in-band scheme, the SYN packet is reused to
request MST for calculation, and redirected to the MGM. After
receiving the SYN packet and calculating MST, the MGM
dispatches the SYN packet to all the receivers in unicast. Fig.
2 illustrates the procedure of connection establishment.

The out-band scheme suffers from time overhead of an extra
RTT to controller. Hence, this scheme is suitable for the large
amount data transmission scenes, in which the overhead of
session establishment is negligible. The in-band scheme has
no extra time overhead, but brings much pressure on the SDN
controller. This scheme is more suitable for extremely small
membership and delay-sensitive scenes.

2) Data Transmission: When a session is established, data
transmission begins.
Packet Acknowledgement. The sender maintains a sliding
window and processes the acknowledgement from receivers.
The send window advancement is decided by the slowest
receiver. As MCTCP is mainly designed for small group
scenarios, the ACK-implosion problem existed in traditional
large member reliable multicast could be ignored.
Packet Retransmission. The sender manages a timer for
each session, and will retransmit the packets in multicast
if the timer expires or packets loss is detected. Since the
efficient and robust multicast forwarding achieved by MGM
can significantly reduce the packet loss, the emergence of
retransmission in MCTCP will be largely decreased.
Congestion Control. We use existing congestion mechanisms
in TCP directly, so that we can make full use of the existing
rich and mature congestion algorithms, evolving along with
TCP. Since the send window advancement is decided by the

Multicast Group Manager

Fig. 3: The Multicast Group Manager.

slowest receiver, the congestion status of the whole session
will be determined by the most congested receivers.
Node failure. If no acknowledgement is received from a
certain receiver in a threshold time during data transmission,
we consider the receiver fails. The failing receiver, which may
encounter crash or network failure, should be cleaned out
from the multicast session in order to ensure the transmission
of the rest receivers. Therefore, the applications should be
responsible for fault recovery.

3) Session Close: After data transmission is completed,
the sender closes the multicast session initiatively, and then
notifies the MGM.

B. Multicast Group Manager

MeTep uses a logically centralized approach to manage
multicast groups. The MGM located in SDN controller man­
ages the multicast sessions and MSTs. By keeping the global
view of the network topology and monitoring the link status
in real-time, the MGM can adjust the MSTs in case of link
congestion or failures . Specifically, the MGM consists of three
sub-modules, including the session manager, the link monitor
and the routing manager, as shown in Fig. 3.

1) Session Manager: The session manager is responsible
for maintaining the states of all groups. When establishing
or closing a multicast session, the sender informs the session
manager. Hence, the session manager can keep track of all the
active multicast sessions. If a multicast session is closed, the
MST will not be cleared immediately, but just be marked in­
active. Therefore, a session with the same sender and receivers
can reuse the MST. The session manager periodically cleans
up the inactive MSTs.

2) Link Monitor: Link Monitor is responsible for monitor­
ing network link status, and estimating the weight of each link
periodically.

The primary challenge here is to estimate weight of each
link at low overhead. We focus on the full-duplex network
where all the links have the same bandwidth B. Assume
we measure M bytes transferred over a link within interval
6.t , and then the measured traffic rate R is M I 6.t, and the
measured weight is Wm = R I B. If Wm<l, it means the
traffic rate has not reached the link capacity. In this case,
the measured rate indicates the real load of the link, and the
weight = Wm. If Wm = 1, it means the traffic rate reaches
the roof of the link, but the real load may be heavier than the

measured one. Observing that when the rate reaches the link
capacity, more flows could incur heavier load. Therefore, in
this case, we need to estimate the link weight based on the
number of flows. To this end, we introduce a parameter F,
which represents the rate of a single flow. Hence, n flows can
reach the maximum traffic rate n . F without the limitation of
link capacity, and the corresponding weight = n . FI B . In
practice, the measured rate R may not reach the link capacity
B precisely, but can only be approximate to B. Suppose
R = ex· B, if ex is larger than a threshold 'TJ, such as 95%, we
consider it has been reaching the link capacity. We summarize
the equation for weight calculation as follow.

. ht { R I B wetg = n.FI B
R < 'TJ· B
R ? 'TJ' B

(1)

As Eq. 1 shows, we need to measure the per-link rate R,
the flow number of each link n and the single flow rate F in
the network. To measure R, we simply poll the port status of
all the switches, such as using the 'getyort_stats' function
in OpenFlow. To measure n, we keep the state of all the
flows , by recording a flow when initiated and removing it
when finished. We can prevent polling the flow tables from
switches by enabling the 'Flow Removed' message when a
flow expires in the OpenFlow-based SDN networking. The F
actually means how much load a single flow can introduce.
It is a network parameter which can be configured statically
based on experience or can be easily estimated during runtime.

3) Routing Manager: The routing manager is responsible
for calculating and adjusting MSTs. When establishing a
new multicast session, the routing manager calculates the
minimum cost MST based on the current link utilization.
When a link overloads or a failure occurs, the adjustment
for all MSTs over the link will be triggered. We divide the
routing manager into two parts, the routing calculation and
the routing adjustment. The MST should be calculated quickly
during session establishment. In the case of link congestion,
the MST should be adjusted in the best-effort way. When the
link fails, all the relevant MSTs should be quickly updated.
Routing calculation. The members of a group are assigned
by the sender, and no dynamically join/leave is allowed in
MeTep once the session begins. We use minimum-cost path
heuristic algorithm (MPH) [15] for routing calculation. The
MPH algorithm inputs a set of sender/receiver nodes and all­
pair shortest paths which are calculated by Dijkstra algorithm,
and outputs a minimum cost MST. In order to speed the MST
calculation, we calculate the shortest paths which end with the
edge switches in advance, called GSP (Global Shortest Paths).
Routing Adjustment. When the link monitor detects link
overloads, i.e., the link weight is larger than a preset threshold,
the routing adjustment will be triggered. In routing adjustment,
the GSP will be recalculated using Dijkstra algorithm, and the
relevant MSTs will be recalculated using MPH algorithm.

We compare the total cost of the new calculated MST with
the current one to decide whether to install the new MST.
Suppose we have updated the group to the new MST, and then
the group will generate new load on the new links. Therefore,

Algorithm 1 Multicast Routing Adjustment.

1: IIUpdate the link weight, and find out the overloaded
links

2: for l in L do
3: l.weight = l.rate < B?l.ratel B : l.flow * FI B ;
4: if l.weight > Wthr then
5: C.append(l) ; IIStore the overloaded links in C
6: end if
7: end for
8: for 9 in G do
9: if g.link in C then

10: n = g.newM stO ; I I Calculate the new MST
11 : I I Check whether to update
12: if checkMst(n.L,g.L) then
13: for l in {n.L - g.L} do
14: l.weight+ = F I B ;
15: end for
16: for l in {g.L - n.L} do
17: l.weight - = F I B ;
18: end for
19: g.updateO; I I Update the MST
20: end if
21 : end if
22: end for

we should update the weight of the new links, i.e. , an addition
of FI B to each. If the reduction of the total cost between the
new MST and the current one is no less than a reduction
threshold, we think it is worth updating, and the new MST
will be installed to switches. Specifically, consider an MST
M(V, L), where V and L denote the set of nodes and links,
respectively. Each link l E L is associated with a weight w(l) .
Let C denotes the cost of an MST, which is the sum of all link
weight in the MST, and Cthr denotes the reduction thresh­
old. For the current MST M (Veun L eur), the cost Ceur =
'L,l ELcur wU). For the new MST M(Vnew , Lnew), the cost
Cnew = 'L,I ELnewnLcuT w(l) + 'L,l ELneW - LCUT(w(l) + FI B) .

If Ceur - Cnew ;? Cthr, the new MST will be installed. By
default, we let the Cthr = F I B.

To reduce the overhead of routing adjustment, we calculate
the GSP only once during each adjustment cycle. Here we
consider the situation where there are multiple groups need
to be adjusted. Consider that when the MST of a group has
been adjusted, the weight of the associated links will change.
Therefore, we need to adjust the weight of the changing
links. For example, the links set of a group G1's MST is
Leur : {h, l2 , b} before adjustment, and are changed to
Lnew : {h , b, l4} after adjustment. Then the traffic which on
link l2 will switch to link l4 , and the weight of l2 and l4 will
change. We correct the weight of l2 and l4 by l2 = l2 - F I B ,
and l4 = l4 + F I B , respectively. As a result, other groups
which wish to adjust their MST to l2 or l4 could take the
effect of group G1 into account. The pseudocode of Routing
Adjustment is shown in Algorithm 1 and 2.

Algorithm 2 checkMST(Lnew , L eur)

1: I I Calculate the Leur
2: for l in L eur do
3: Ceur+ = l.weight ;
4: end for
5: I I Calculate the Lnew
6: for l in {Leur n Lnew } do
7: Cnew+ = l.weight ;
8: end for
9: for l in {Lnew - Leur} do

10: Cnew+ = l.weight + F I B ;
11: end for
12: if Ceur - Cnew ;? Cthr then
13: return TRUE ;
14: end if
15: return FALSE;

IV. IMPLEMENTATION DETAILS

We implement MCTCP on a Linux platform, the HSP as
a kernel-level module, and the MGM as an application on
Ryu [16], a popular open source SDN controller. In order
to achieve straightforward deployment, the HSP adopts the
same semantics as TCP, and provides common socket APIs.
Therefore, the application programmers can use MCTCP as
easy as TCP in programming. To verify the applicability of
MCTCP, we apply MCTCP on HDFS to optimize the data
replication mechanism.

A. Prototype Implementation

We add a new transport-layer protocol by assigning a new
protocol number (e.g. 106) to MCTCP when implementing the
HSP prototype, in order to avoid modification in the kernel
source code. Therefore, the HSP works as a kernel module
which can be loaded and unloaded as needed. We implement
the MGM module on Ryu. The MGM only processes the
MCTCP traffic (e.g. with protocol number 106), and a general
routing module processes the non-MCTCP traffic. For the
MCTCP traffic, we use the load-based algorithm for routing
calculation, always seeking for minimum cost, since we can
adjust the MSTs if the load changes. For the non-MCTCP
traffic, we use the distance-based algorithm, and the routing
will not change unless link fails.

B. Application Integration

HDFS is one of the most widely deployed distributed file
system in data centers, which acts as the default file system in
Hadoop. Its data replication process is a typical one-to-many
data transmission, during which the client gets the list of DNs
(Data Nodes) from an NN (Name Node), and then delivers
the data chunks to them. By default, the replication factor in
HDFS is three, so we assume the replication factor is three.

As shown in Fig. 4(a), the original HDFS employs a
pipeline-based replication method. The data transmission unit
is a packet (usually 64KB). For each packet, the client first
transfers it to DNO; then the DNO stores and passes it to DNl;

Data Packets Data Packets Data Packets

ACKs ACKs

(a) Pipeline-based data replication

0"·Q9 J~N~
ACKs

(b) Multicast-based data replication

Fig. 4: Illustration of Pipeline-based and Multicast-based data
replication.

® Switch

Fig. 5: Network topology used in evaluation.

finally the DNI stores and transfers it to DN2. After the DN2
receives the packet, it returns an acknowledgment to DNl; then
the DNI returns an acknowledgment to DNO; finally the DNO
returns an acknowledgment to the Client. Therefore, the whole
process can be regarded as a six-stage pipeline. We denote the
original HDFS as HDFS-O. HDFS-O has 2 . n stages when
configured as n replicas, resulting in long delay in packet
transmission. In addition, HDFS-O delivers data in unicast,
which will generate a large number of duplicated packets into
the network and reduce the overall transmission performance.

We implement multicast-based data replication on HDFS
using MCTCP, which is denoted as HDFS-M. As shown
in Fig. 4(b), the client divides the data into packets, and
then delivers them to three data nodes DNO, DNl, DN2 in
multicast. For each packet, the client transfers it to DNO, DNl,
DN2 simultaneously using MCTCP, and then all the data nodes
return acknowledgements to the client directly. Therefore,
HDFS-M's data replication procedure can be regarded as a
two-stage pipeline. Compared with HDFS-O, HDFS-M has
shorter stages (two stages to six stages), so that results in lower
latency. Meanwhile, since HDFS-M delivers data in multicast,
the redundant packets in network are reduced greatly.

In the similar way, we implement another multicast-based
HDFS using TCP-SMO, which is the state-of-the-art transport­
layer reliable multicast scheme, called HDFS-T. Since TCP­
SMO is a receiver-initiated solution, we have to use additional
mechanism to inform a DN to subscribe a specific multicast
group before writing data to the DN.

V. EVALUATION

We build a test platform on Mininet [17]. The hardware
consists of one server running Ubuntu 12.04.5 LTS operating
system, with Intel (R) Xeon (R) E5-2620 @ 2.00GHz CPU,
32GB RAM. We install Mininet 2.2.0 and Openvswitch 2.1.0,
RYU 3.17 on it. The network consists of 16 hosts intercon-

60 r-rv ,~ '""
...... A ...c\o.. y.,. ~ r "'-,.-~ Y ' ...,

50

1 . .".

y-l NORM
_ opeoPGM
- TCP-SMQ
_ MCTCP
~TCP-N

~TCP-P

--TCP-T
___ TCP_M

10 20 Time (8)30 40 50 60

Fig. 6: Throughput comparison among NORM, openPGM,
TCP-SMO and MCTCP. From 20s to 35s, a TCP flow is
injected using iperf.

nected using a fat-tree of twenty 4-port switches, as shown in
Fig. 5.

We perform three evaluations, including the basic evalua­
tion, the real-word workload evaluation and the application­
based evaluation, and we also discuss the complexity of the
Controller.
Basic Evaluation: We compare the performance of NORM
[18], openPGM [19], TCP-SMO [13] and MCTCP, and verify
the congestion-awareness, robustness and TCP-friendliness
of MCTCP. NORM and openPGM (an implementation of
PGM) are two popular open-source application-layer reliable
multicast schemes, and TCP-SMO is a transport-layer reliable
multicast scheme. Here we only make a comparison among
the comprehensive reliable multicast schemes (all the previous
SDN-based schemes are focused on routing strategies).
Real-world Workload Evaluation: We evaluate the perfor­
mance of MCTCP and TCP-SMO under background traffic in
the patterns of two realistic workloads, the web search work­
load [11] and the data mining workload [12] from production
data centers.
Application-based Evaluation: We evaluate the performance
of HDFS-M, HDFS-T and HDFS-O under the background
traffic in the patterns of web search workload.
Complexity of the Controller: We discuss the capability of
the SDN controller, such as the running time of the algorithm,
computation and network overhead of the controller.

A. Basic Evaluation

The purpose of the basic evaluation is to evaluate the
performance of MCTCP, and to see the behavior in case of
link congestion and link fai lures, how MCTCP performs when
co-existing with standard TCP.

First, we evaluate the throughput of NORM, openPGM,
TCP-SMO and MCTCP, with the congestion control enabled,
transmission rate at 500Mbps. In this test, we use the first
four nodes in Fig. 5, the node HI sends data to the rest three
nodes. At time 20s, we start a TCP flow using iperf and make
it conflict with the MST of the multicast group to simulate
congestion. The iperf lasts 15s. Fig. 6 depicts the throughput
of the four schemes. The TCP-N, TCP-P, TCP-T and TCP-M
indicate the injected TCP flow in NORM, openPGM, TCP­
SMO and MCTCP test, respectively. We have the following
observations:

55

50

45

~ 40

~ 35
~ 30

8. 25

~ 20

e 15
~ 10

5

'\
link fails at t=20s

20

1=~gcpl -~ r ~~ ...

....,

40 Time (s) 60 80 100

Fig. 7: Throughput of MCTCP when a link failure occurs and
co-existing with TCP. The link 811 -+ 821 fails at t=20s. A
TCP flow is started from time 44s to 74s.

When no link congestion occurs (during time 0-20s and 35-
60s), MCTCP achieves 60% and 22% better performance than
NORM and openPGM, and is analogous to TCP-SMO. When
link congestion occurs (during time 20-35s), MCTCP exhibits
nearly no throughput degradation, while NORM, openPGM
and TCP-SMO suffer from throughput degradation by 17%,
17% and 33%, respectively. That means MCTCP achieves
up to 90%, 44% and 45% better performance than NORM,
openPGM and TCP-SMO, respectively when congestion hap­
pens.

MCTCP outperforms the alternative schemes mainly be­
cause of two reasons. First, MCTCP is a transport-layer pro­
tocol, which can process data transmission, packet acknowl­
edgement and data re-transmission more efficiently than the
application-layer protocol. Therefore, MCTCP outperforms
NORM and openPGM even in no link congestion scenes.
Second, MCTCP can detect link congestion in real-time,
and adjust the MST to bypass congested links immediately
once the link congestion is detected. Therefore, when link
congestion occurs, MCTCP updates the MST to minimize
performance loss. In the alternative schemes, however, once
established, the MSTs are scarcely changed, leading to signif­
icant performance degradation when congestion occurs.

Second, we evaluate the results of MCTCP when dealing
with link failures and sharing links with TCP. The three
alternative schemes are based on IGMP, so they leverage the
mechanisms of IGMP to deal with link failures. For IGMP, a
querier is responsible for sending out IGMP group member­
ship queries on a timed interval to retrieve IGMP membership
reports from active members, and to allow updating of the
group membership tables. Hence, the MSTs will not be
updated during the query interval even if a link failure occurs.
The link failure recovery time of NORM, openPGM and TCP­
SMO depends on the query interval, which is typically lOs-
60s. Therefore, we do not evaluate the results of the three
alternative schemes in dealing with link failures.

Like the previous experiment, we observe that the MST is
{811 -+ 821,821 -+ 812} after the transmission begins. At
time 20s, we shutdown the link of 811 -+ 821, and then start
a TCP flow between H2 and H3 using iperf during time 44s-
74s. TCP and MCTCP both run "reno" congestion control
algorithm. Fig. 7 depicts the results in this experiment. We
have the following observations from this figure. First, the

link failure has only a slight impact on MCTCP throughput.
This is because the MST will be updated to bypass the
failing link when a link failure is detected, and the lost
multicast packets will be retransmitted quickly. Second, during
the period from time 44s to 74s, as no alternative links for
adjustment, MCTCP has to share the link with TCP. The
congestion control mechanism on the sender makes MCTCP
TCP-friendly.

B. Real-world Workload Evaluation

In this experiment, we try to find out how MCTCP performs
in practice network environment. We assume MCTCP shares
the network with the background traffic, which are according
to the patterns of two real-world workloads, the web search
and the data mining. We generate the background traffic using
a client/server model. All the hosts open socket sinks for
incoming traffic and all the hosts send data to a server based
on exponential distribution. Each client randomly selects a
receiver each time. The flow sizes are in according with
the CDFs of realistic workloads mentioned above, which are
similar to [20].

We evaluate the performance of MCTCP and TCP-SMO
under the background traffic in the two workload patterns,
while varying the network loads from 0.1 to 0.8. We start four
multicast groups, each with a sender and three receivers. For
each group, the members at least span 3 racks, and the racks
and group members are randomly chosen. Different multicast
groups do not share common group members. We run ECMP
during this evaluation. The MGM monitors the network at 2
seconds polling rate.

Fig. 8 shows the bandwidth of MCTCP and TCP-SMO
under background traffic of web search and data mining
workloads respectively. We make the following two observa­
tions. First, when the load is less than 0.5, under both work­
loads, MCTCP outperforms TCP-SMO. Specifically, MCTCP
achieves bandwidth improvements by ",20%-57% under the
web search workload and", 17%-49% under the data mining
workload. Second, when the load is no less than 0.5, MCTCP
is comparable with TCP-SMO and has a narrow win in most
cases under both workloads.

MCTCP is able to find the less congested links during
runtime, and adjusts the MSTs to improve the performance
of multicast groups. When the load is less than 0.5, the traffic
does not saturate all links. Due to the unload-balanced nature
of the two workloads, MCTCP can always find the lower
cost MST to keep the multicast group in the less congested
state. Therefore, MCTCP can outperform TCP-SMO. When
the load is no less than 0.5, all the links are almost saturated
by the background traffic, resulting in no obvious space for
MST adjustment. Given the average traffic load in DCNs is
moderate, which generally at 30% [7], MCTCP can perform
well in realistic data centers environment.

C. Application-based Evaluation

We carry out performance comparison among HDFS-O,
HDFS-T and HDFS-M under background traffic in patterns

16,-----------;::::::;;:;:======:;-----1
14

~ 12

ca 10
6
:; 8
Co

-§, 6

" ~ 4
f-

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Load

(a) With background traffic in web search patterns

16..,------------=====,,-----,
14

~ 12

ca 10
6
:; 8
Co
-§, 6
6
.l3 4
f-

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Load

(b) With background traffic in data mining patterns

Fig. 8: Average multicast throughput of MCTCP and TCP-SMO under two background traffic in patterns of web search and
data mining.

50J--,r-~~~~;:=.~~~~-~---:~--: 140
45

40

~ 35

~ 30

:; 25

~ 20

-g 15

'" ~ 10

0.0 0.1 0.2 Load 0.3 0.4

120

100_

e
80 ~

" 60 ~

40

20

Fig. 9: Performance comparison among HDFS-M, HDFS-T
and HDFS-O.

of the web search workload. In HDFS, for the common case,
the replication factor is default three, with one replica on a
node in the local rack, another on a node in a remote rack,
and the last on a different node in the same remote rack.
However, in many cases, three copies could be distributed in
different racks for the sake of load balance or data protection.
In order to fully demonstrate the impact of the network on
HDFS data replication, we configure all replicas on remote
nodes. That is, we start a name node and three data nodes on
four different hosts, and perform tests on the name node host.
All data nodes store data on Ramdisk. We compare HDFS-
0, HDFS-T and HDFS-M under different additional network
loads, varying from 0 to 0.4. When load is 0, there is no
background traffic.

We measure two metrics, the per-packet latency and the
overall throughput, with the packet size 64KB, data size
500MB. Fig. 9 depicts the results, from which we have three
clear observations. First, the multicast-based data replication
schemes outperform the pipeline-based scheme, especially in
per-packet latency. The latency of pipeline-based scheme is
typically about 3 times the multicast-based schemes. Second,
HDFS-M is almost analogous to HDFS-T without background
traffic, and improves the bandwidth by ,,-,20%-50%, and
decreases the per-packet latency by "-' 13%-47% under web
search background traffic. Third, compared with HDFS-O,
HDFS-M achieves ,,-,30%-101% better bandwidth and "-'70%-
83% lower per-packet latency.

HDFS-M outperforms HDFS-O and HDFS-T mainly due
to two reasons. First, compared with HDFS-O, HDFS-M

4.0

3.5
VI .s 3.0

~ 2.5

i= 2.0
c
,g 1.5
co a 1.0

J 0.5

0.0

Receiver Number

Fig. 10: Calculation times for different receiver numbers.

has shorter transmission paths and generates much fewer
redundant network packets. So the latency can be significantly
reduced and the probability of being affected by the back­
ground traffic is smaller. In HDFS-O, each packet is processed
serially by all the three data nodes. For each packet, the
completion time includes multiple processing and transmission
time. Moreover, when the network is congested, multiple
redundant unicast traffics will incur heavier congestion in
network, leading to significant performance degradation. Sec­
ond, HDFS-M can adjust the MSTs to the most efficient one
timely based on the network utilization. Therefore, HDFS-M
can choose the least congested links to minimize performance
loss. Although HDFS-T has the same short transmission path
as HDFS-M, it is unable to bypass the congested links, thus
results in more performance degradation due to background
traffic.

D. Complexity of the Controller

The MST can be calculated immediately when a group
arrives, as the GSP which needed in MST calculation will
always be calculated in advance, i.e., when the controller
initiation or at the beginning of each adjustment period.
Therefore, the calculation time of a group is independent of
the topology scale and the total number of active groups, but
only related to the receiver numbers. Fig. 10 depicts the results
of MST calculation time for various receivers in k = 8 and
k = 16 Fat-tree topology. There are 32 edge switches in k = 8
Fat-tree topology. When the receiver number is larger than
32, the MST will span all pods, thus leading to saturation
on calculation time. It is worth noting that when generating

TABLE I: Calculation times in different topologies.

Link Stats(ms)

3S.41

154.254

TABLE II: Adjustment times for various groups 9 in different
topologies.

g=10000(ms)

51S9.126

5453.479

TABLE III: CPU usage and network overhead in SDN con­
troller for different groups g.

Topology
CPU Netowork

g=100(%) g=1000(%) g=100(KB/s) g=1000(KB/s)

k=S 1.20 4.70 54.S 55.2

k-16 3.10 5.S0 292 293

a group, we first calculate the MST, and then install it to the
corresponding switches. The install time which depends on the
controller platform implementation is out of the scope of this
paper.

During an adjustment period, the controller first
checks the current status of all links, in which we use
'OFPMP_PORT_STATS' interface to get the port
statistics of each switch. If link congestion is detected, we
will re-calculate the GSP using Dijkstra algorithm. Table I
shows the link stats, GSP calculation and a group generation
time under k = 8 and k = 16 Fat-tree topology, respectively.
We believe the link stats time is limited by the single-thread
implementation of Ryu, and it can accelerate the process to
more acceptable range by using multi-thread. By default, we
will calculate the full GSP in each adjustment period, so that
the controller can adjust a large number of groups in a single
period. In the case of only a small number of active groups,
we choose to not calculate the full GSP, but only the shortest
paths for MST calculation on demand .

As can be seen from the Algorithm 1, the time complexity of
multicast adjustment is O(ILI + IGI), where the ILl is number
of links and the IGI is the number of groups which need to
be adjusted. Table II shows the adjustment time of various
group numbers under k = 8 and k = 16 Fat-tree topology.
The results turn out that the controller can adjust thousands
of groups within one second.

We examine the CPU usage and network overhead of the
SDN controller for different groups in k = 8 and k = 16
Fat-tree topology, respectively. As shown in Table III, the
computation and network overhead are negligible.

VI. R ELATE D WORK

Reliable Multicast: As a traditional network technology,
reliable multicast has been studied for decades, during which
a large number of reliable multicast solutions have been

TABLE IV: Comparison of reliable multicast approaches. 'CA'
represents Congestion-Awareness.

Approaches I Initial Model I Layer I CA I Robustness I ..
PGM [21] Receiver Application No Low

NORM [IS] Receiver Application No Low

TCP-SMO [13] Receiver Transport No Low

RDCM [14] Receiver Application No High

SCE [2S] Sender Transport No Low

TCP-XM [29] Sender Application No Low

MCTCP Sender Transport Yes High

proposed. These proposals can be divided into two categories,
the receiver-initiated and the sender-initiated.

Most of the previous reliable multicast solutions are
receiver-initiated. In this mode, each receiver needs to obtain
the correct multicast address in advance, and subscribes or
unsubscribes it freely, like typical researches PGM [21] [19]
[22], ARM [23], NORM [18], TCP-SMO [13], SRM [24],
RMTP [25], TMTP [26], RDCM [14] etc. The receiver­
initiated mode is more suitable for large group scenes. The
sender does not maintain information for any receivers, and
thus bandwidth of the reliable multicast will not reduce badly
as the number of receivers increases. On the contrary, the
sender-initiated mode is mainly designed for medium or small
group scenes, typical including MfTCP [27], SCE [28], TCP­
XM [29] and so on.

Most of the existing reliable multicast solutions are
application-layer protocols, like PGM and NORM, which
suffer from high software overhead on end hosts in the
high bandwidth, low latency network environment of data
centers. RDCM [14] focuses on reliable multicast in data
centers, leveraging the rich path diversity available in data
center networks to build backup overlays, and recovers lost
packets in a peer-to-peer way among receivers. TCP-SMO
and SCE are transport-layer protocols, which have high per­
formance on end hosts like MCTCP. But they are based
on traditional multicast management protocols and routing
algorithms like IGMP and PIM-SM, which are not aware of
link failures and congestion, leading to low routing efficiency
and robustness. MlTCP is network-equipment protocol, which
requires assistance from network devices. Blast [6] focuses on
accelerating high-performance data analytics applications by
optical multicast. Kim [30] focuses on scheduling multicast
traffic with deadlines. As far as we are aware, all the existing
reliable multicast schemes are not congestion-aware. Table IV
summarizes reliable multicast approaches similar to MCTCP.

SDN-based Multicast: SDN technology provides a logically
centralized approach to achieve IP multicast. Avalanche [31]
and OFM [32] propose SDN-based multicast system, using
the SDN-controller for multicast routing and management
to improve efficiency and security. Similarly, CastFlow [33]
calculates all possible routes from sources to group members
in advance to speed up the processing of events in multicast
groups. Ge [34] proposes an OpenFlow-based dynamic MST
algorithm to optimize the performance of multicast trans-

nusslOns, enabling adjustable multicast routing when source
and group members are unchanged. Shen [35] proposes an
approximate algorithm, called Recover Aware Edge Reduction
Algorithm (RAERA) to achieve a new reliable multicast tree
for SDN, named Recover-aware Steiner Tree (RST).

However, all of the SDN-based multicast researches are
focused on multicast routing only, but not concerning about the
multicast protocol design. Moreover, they are not congestion­
aware.

VII . CONCLUSION

In order to meet the requirements of data center multicast,
we propose MCTCP, an SDN-based reliable multicast data
transmission solution, mainly for small groups in data centers.
It is a sender-initiated transport-layer solution which extends
TCP as the host-side portocol. The MSTs are maintained
by the MGM in a centralized way. Therefore, the MGM
can leverage real-time network states to reactively multicast
flows to active and low-utilized links. For each group, the
MST is calculated during session establishment and adjusted
dynamically in case of link congestion or failures to achieve
optimal routing efficiency and robustness. Taken together,
MCTCP is efficient in both end hosts and multicast routing.
In our experiments, MCTCP outperforms the existing reliable
multicast solutions, especially in the case of co-existing with
background traffic. Moreover, we implement multicast-based
data replication on HDFS using MCTCP. Experimental re­
sults show that the multicast-based data replication has better
performance than the original pipeline-based HDFS, and the
multicast-based scheme built with MCTCP performs better.

ACKNOWLEDGMENT

This work is supported in part by the National High Tech­
nology Research and Development Program (863 Program)
of China under Grant No.2013AA013203; National Basic
Research 973 Program of China under Grant 2011 CB30230 1;
Key Laboratory of Information Storage System, Ministry of
Education, China. This work is also supported by NSFC
61173043 and State Key Laboratory of Computer Architec­
ture, NO.CARCH201505.

R EFERENCES

[I] K. Shvachko, H. Kuang, s. Radia, and R. Chansler, "The hadoop
distributed file system," in MSST. May 2010. pp. 1- 10.

[2] S. A. Weil , S. A. Brandt, E. L. Miller, D. D. E. Long, and C. Maltzahn,
"Ceph: A scalable, high-performance distributed file system," ser. OSDI.
Berkeley, CA, USA: USENIX Association, 2006, pp. 307- 320.

[3] S. Ghemawat, H. Gobioff, and S.-T. Leung, "The google file system,"
SIGOPS Oper. Syst. Rev., vol. 37, no. 5, pp. 29-43, oct 2003.

[4] "Hadoop," https://hadoop.apache.org.
[5] "Spark," http://spark.apache.org.
[6] Y. Xia, T. E. Ng, and X. S. Sun, "Blast: Accelerating high-performance

data analytics applications by optical multicast," in INFO COM, Hong
Kong, China, 2015.

[7] T. Benson, A. AkeUa, and D. A. Maltz, "Network traffic characteristics
of data centers in the wild," in IMC. New York, USA: ACM, 2010,
pp. 267- 280.

[8] D. Estrin, D. Farinacci, A. Helmy, D. Thaler, S. Deering, M. Handley,
V. Jacobson, C. Liu, P. Sharma, and L. Wei , "Protocol independent
mUlticast-sparse mode (pim-sm): Protocol specification," June 1997,
rFC2117.

[9] B. Cain, D. S. E. Deering, B. Fenner, I. Kouvelas, and A. Thyagarajan,
" Internet Group Management Protocol, Version 3," IETF RFC 3376,
Oct. 2015.

[10] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, "Openflow: Enabling innovation
in campus networks," SIGCOMM, vol. 38, no. 2, pp. 69- 74, 2008.

[11] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel , B. Prab­
hakar, S. Sengupta, and M. Sridharan, "Data center tcp (dctcp)," in
SIGCOMM. New York, USA: ACM, 2010, pp. 63- 74.

[12] A. Greenberg, J. R. Hamilton, N. Jain , S. Kandula, C. Kim, P. Lahiri ,
D. A. Maltz, P. Patel, and S. Sengupta, "VI2: A scalable and flexible
data center network," in SIGCOMM. New York, USA: ACM, 2009,
pp. 51- 62.

[13] S. Liang and D. Cheriton, "Tcp-smo: extending tcp to support medium­
scale multicast applications," in INFO COM, 2002, pp. 1356-1365.

[14] D. Li, M. Xu, M. chen Zhao, C. Guo, Y. Zhang, and M.-y' Wu, "Rdcm:
Reliable data center multicast," in INFO COM, April 201l , pp. 56-60.

[15] H. Takahashi and A. Matsuyama, "An approximate solution for the
steiner problem in graphs," Math.Japonica , vol. 24, no. 6, pp. 573- 577,
1980.

[16] "Ryu," http://osrg.github.io/ryu.
[17] N. Handigol, B. HeUer, V. Jeyakumar, B. Lantz, and N. McKeown,

"Reproducible network experiments using container-based emulation,"
in CoNEXT. New York, NY, USA: ACM, 2012, pp. 253- 264.

[18] B. Adamson, C. Bormann, M. Handley, and J. Macker, "Nack-oriented
reliable multicast (norm) transport protocol ," November 2009, rfc5740.

[19] "openpgm," http://code.google.com/p/openpgm.
[20] w. Bai, K. Chen, H. Wang, L. Chen, D. Han, and C. Tian, "Information­

agnostic flow scheduling for commodity data centers," in NSDI. Oak­
land, CA: USENIX Association, May 2015, pp. 455-468.

[21] T. Speakman, J. Crowcroft, J. Gemmell, D. Farinacci, and S. Lin, "Pgm
reliable transport protocol specification," December 2001, rFC3208.

[22] L. Rizzo, "Pgmcc: A tcp-friendly single-rate multicast congestion con­
trol scheme," ser. SIGCOMM. New York, NY, USA: ACM, 2000, pp.
17- 28.

[23] L. Lehman, S. Garland, and D. Tennenhouse, "Active reliable multicast,"
in INFO COM, vol. 2, Mar 1998, pp. 581- 589.

[24] S. Floyd, V. Jacobson, c.-G. Liu, S. McCanne, and L. Zhang, "A
reliable multicast framework for light-weight sessions and application
level framing," IEEEIACM Transactions on Networking, vol. 5, no. 6,
pp. 784-803, 1997.

[25] S. Paul , K. K. Sabnani, J. C. H. Lin, and S. Bhattacharyya, "Reliable
multicast transport protocol (rmtp)," Selected Areas in Communications,
IEEE Journal on, vol. 15, no. 3, pp. 407-421, 1997.

[26] R. Yavatkar, J. Griffoen, and M. Sudan, "A reliable dissemination
protocol for interactive collaborative applications," in MULTIMEDIA.
New York, USA: ACM, 1995, pp. 333- 344.

[27] V. Visoottiviseth, T. Mogami, N. Demizu, Y. Kadobayashi , and S. Ya­
maguchi, "Mltcp: The multicast-extension to transmission control pro­
tocol," in ICACT, Muju, Korea, Feb. 2001.

[28] R. Talpade and M. Ammar, "Single connection emulation (sce): an
architecture for providing a reliable multicast transport service," in
Distributed Computing Systems, May 1995, pp. 144- 151.

[29] K. Jeacle and J. Crow croft, "Tcp-xm: unicast-enabled reliable multicast,"
in ICCCN, Oct 2005, pp. 145- 150.

[30] K. S. Kim, C. ping Li , and E. Modiano, "Scheduling multicast traffic
with deadlines in wireless networks," in INFO COM, April 2014, pp.
2193- 2201.

[31] A. Iyer, P. Kumar, and V. Mann, "Avalanche: Data center multicast using
software defined networking," in COMSNETS, Jan 2014, pp. 1- 8.

[32] Y. Yang, Z. Qin, X. Li , and S. Chen, "Ofm: A novel multicast mechanism
based on openflow," Advances in Information Sciences and Service
Sciences, vol. 4, no. 9, pp. 278- 286, 2012.

[33] C. A. C. Marcondes, T. Santos, A. P. Godoy, C. C. Viel, and C. A. C.
Teixeira, "Castflow: Clean-slate multicast approach using in-advance
path processing in programmable networks." in ISCC. IEEE, 2012,
pp. 94- 101.

[34] J. Ge, H. Shen, E. Yuepeng, Y. Wu, and J. You, "An openflow-based
dynamic path adjustment algorithm for multicast spanning trees," in
Security and Privacy in Computing and Communications (TrustCom) ,
July 2013, pp. 1478- 1483.

[35] S.-H. Shen, L.-H. Huang, D.-N. Yang, and w.-T. Chen, "Reliable
multicast routing for software-defined networks," in INFO COM, Hong
Kong, China, 2015.

