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Concurrency Control

• Concurrency control: a basic problem for concurrent apps.
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Concurrency Control
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Transaction System:

• Concurrency control is a basic problem

• Concurrent programming is hard and error-prone

• Concurrency control with transaction processing system:

• High efficiency

• Ease of use 
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Transaction

• A transaction (txn) is 

a sequence of operations that is performed atomically
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Limitations of Prior Systems

• Most prior systems are designed for simple txns:

• Most ops are read and write ops

• Computations are negligible

• Real-world apps become more and more complex

• Txns contain more and more computations
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Limitations of Prior Systems

• Two phase locking (2PL)

• Conflict causes blocking

• Optimistic concurrency control (OCC)

• Conflict causes re-execution
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Become Computation-Aware

• Transaction processing system is a significant infrastructure in 
real-world applications.

• Prior systems are unaware of computation operations

• In this work, we ask:

• Can txn processing system become computation-aware?

• How to do this?
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Our Approach: Proactive Unlocking
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Reorder

Removing compute operations from the critical path



Challenge #1: Data Dependency Conflict
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Challenge #2: Write-after-log
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Challenge #3: Lock-after-unlock
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Design #1: Critical Operations

• We identify two categories of transaction operations

• Critical Operation

• Uncritical Operation
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Design #2: Deferred Execution
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Design #3: 
Dependency Conflict Avoidance Mechanism
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Methodology
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Evaluation

18

CATS scales linearly as number of computation operations increases 

Speedup over 2PL-based system Speedup over OCC-based system

32x speedup 

for 32 threads



Summary

• Transaction processing system is a significant infrastructure in real-
world applications.

• Prior systems are unaware of computation operations

• We present CATS that can remove computation operations from the 
critical path of concurrency control

• CATS defines critical operations and uncritical operations

• CATS defers the execution of uncritical operations

• CATS maintains data dependencies of critical operations at runtime

• CATS is open-sourced at: https://github.com/BolunZhu/CATS

19See our paper for more details


