
CATS: A Computation-Aware
Transaction Processing System with

Proactive Unlocking
Bolun Zhu, Yu Hua, Ziyin Long, Xue Liu

Artifact available at: https://github.com/BolunZhu/CATS

IWQoS 2023

Concurrency Control

• Concurrency control: a basic problem for concurrent apps.

2

100$

Read balance->A

A = A - 100

Write A ->balance

BankUser BankUser

Concurrency Control

• Concurrency control: a basic problem for concurrent apps.

3

100$

Bank

Alice

100$
Bob

Bank

Alice

Bob

Concurrency Control

4

Write A ->balanceRead balance->A A = A - 100

Write B ->balanceRead balance->B B = B - 100

Balance = 200
Balance = 200 Balance = 100

Balance = 100

Concurrent opConcurrent operations should be ordered to avoid conflicts

Balance should be 0

Transaction System:

• Concurrency control is a basic problem

• Concurrent programming is hard and error-prone

• Concurrency control with transaction processing system:

• High efficiency

• Ease of use

5

+100$

+100$: 0$

+100$

+100$: 0$->100$ ->200$

Transaction

• A transaction (txn) is

a sequence of operations that is performed atomically

6

WriteRead A = A - 100

Balance = 200 Balance = 100

WriteRead A = A - 100

Balance = 0

Txn A

Txn B

Limitations of Prior Systems

• Most prior systems are designed for simple txns:

• Most ops are read and write ops

• Computations are negligible

• Real-world apps become more and more complex

• Txns contain more and more computations

7

The concurrency control mechanism becomes inefficient

Simple

Simple Simple

Complex

Limitations of Prior Systems

• Two phase locking (2PL)

• Conflict causes blocking

• Optimistic concurrency control (OCC)

• Conflict causes re-execution

8

Read balance->A

A = A + 100

Write A ->balance

1

2

3

1 2 3

1

Compute

1 2 3

3

1

Prior systems are unaware of computation operations

Compute operations are critical

for concurrency control

Become Computation-Aware

• Transaction processing system is a significant infrastructure in
real-world applications.

• Prior systems are unaware of computation operations

• In this work, we ask:

• Can txn processing system become computation-aware?

• How to do this?

9

Our Approach: Proactive Unlocking

10

Reorder

Removing compute operations from the critical path

Challenge #1: Data Dependency Conflict

11

W(A) W(B)

W(A)W(B)

Log A

Log B

Log B

W(A) W(B)Lock A Lock B Unlock A Unock B

W(A)Lock A Unlock A W(B)Lock B Unock B

(b) write-after-log

(c)lock-after-unlock

W(A) R(A)

W(A)R(A)

(a)data dependency conflict

Txn begin Txn Commit Txn End

Incorrect execution results

W(A) R(A)

W(A)R(A)

(a)data dependency conflict

Txn begin Txn Commit Txn End

W(A) W(B)Lock A Lock B Unlock A Unock B

W(A)Lock A Unlock A W(B)Lock B Unock B

(c)lock-after-unlock

Challenge #2: Write-after-log

12

W(A) W(B)

W(A)W(B)

Log A

Log B

Log B

(b) write-after-log

Inconsistent recovery

W(A) W(B)

W(A)W(B)

Log A

Log B

Log B

(b) write-after-log

W(A) R(A)

W(A)R(A)

(a)data dependency conflict

Txn begin Txn Commit Txn End

Challenge #3: Lock-after-unlock

13

W(A) W(B)Lock A Lock B Unlock A Unock B

W(A)Lock A Unlock A W(B)Lock B Unock B

(c)lock-after-unlock

Violates the

atomicity

Design #1: Critical Operations

• We identify two categories of transaction operations

• Critical Operation

• Uncritical Operation

14

C C U C

Reorder

Reorder

Critical Operation

Uncritical Operation

U

Uncritical operations can be removed from the critical path

Design #2: Deferred Execution

15

READ A
B=F(A)
WRITE B

Uncritical
INPUT A
OUTPUT B
FUNC F

B=F(A)
…

f

Input

Output

Deferred Function
1 Lock In/Output

2 Record Function

3 Evaluate Function

Design #3:
Dependency Conflict Avoidance Mechanism

16

READ A
B=F(A)
WRITE B

Uncritical
INPUT A
OUTPUT B
FUNC F

WRITE B

…
WRITE B

WRITE B
B

INPUT LIST

OUTPUT LIST

READ A
B=F(A)
WRITE B

1 Check

3
In-place execution

2
Found

4 Continue

Methodology

17

CPU

DRAM

OS

Tool

Platform

Intel Xeon Gold 2*26 cores

4x16GB DDR4

Ubuntu 18.04
Linux kernel 4.15

RSTM (word-based
transactional memory system)

Test Programs

Compute operations

Hotspot position

Percentage of uncritical operations

Compared Target

ByteEager (2PL-based system)

LLT (OCC-based system)

Evaluation

18

CATS scales linearly as number of computation operations increases

Speedup over 2PL-based system Speedup over OCC-based system

32x speedup

for 32 threads

Summary

• Transaction processing system is a significant infrastructure in real-
world applications.

• Prior systems are unaware of computation operations

• We present CATS that can remove computation operations from the
critical path of concurrency control

• CATS defines critical operations and uncritical operations

• CATS defers the execution of uncritical operations

• CATS maintains data dependencies of critical operations at runtime

• CATS is open-sourced at: https://github.com/BolunZhu/CATS

19See our paper for more details

