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Abstract—With the increasing complexity of network applica-
tions and high demands for QoS, transaction processing systems
have received more attentions due to salient features of simplicity
and atomicity. Computation operations play an important role in
transaction processing systems. However, conventional QoS-based
mechanisms become inefficient due to the limited concurrent
support upon computation operations, thus causing high time
consumption in the critical path of concurrency control. In order
to efficiently offer concurrent computations, we propose CATS, a
Computation Aware Transaction processing System, to mitigate
performance impacts caused by computation operations. CATS
further leverages program semantics to defer the execution of
transaction operations in the commit phase to alleviate unnec-
essary conflicts caused by computations. Extensive evaluation
results demonstrate that CATS significantly outperforms state-
of-the-art designs, including 2PL and OCC based transaction
processing systems on high-contended and computation-intensive
workloads. We have released the open-source codes in GitHub
for public use.

I. INTRODUCTION

QoS-based transaction processing systems via high-speed

networks become the important infrastructure of distributed

systems that are able to support many real-world applications,

such as cloud computing [1], blockchain [2], [3], data an-

alytics [4] and social networks [5]. In practice, due to the

existence of network communication delays, data changes may

not be immediately observed by processes. When multiple

processes concurrently access data, the data versions may be

inconsistent, which exacerbates the QoS in the distributed

systems. To mitigate or even avoid such inconsistency, trans-

action processing systems are widely used in many distributed

systems due to their high efficiency and ease of use.

A transaction (txn) is a powerful abstraction to guarantee

that a sequence of operations is performed atomically. The

operations within a transaction follow the “all-or-nothing”

semantic, which are either executed all at once or not. The

states of partially executed transactions are not allowed. By

using transactions, the correctness of applications can be

guaranteed due to the atomic property [6], [7]. Applications

only need to annotate their operations as transactions, and put

them into a transaction processing system, without the need of

handling concurrency control. The correct parallel executions

of transactions are guaranteed by the underlying concurrency

control mechanism of transaction processing systems. For

example, MySQL-InnoDB [8] and Postgres [9] use two phase

locking (2PL) to serialize transactions.

Traditional transaction processing systems are designed for

simplicity, in which each transaction only contains several read

and write operations [10]. Most optimized designs focus on

read and write operations [11] since computations become

a small portion of transaction operations. However, when

the complexity of transactional applications (e.g. HTAP [4])

increases, the system performance becomes heavily impacted

by intensive computations. For example, the real-time ana-

lytical workloads decrease transactional throughput by 89%

on TiDB [11], a state-of-the-art HTAP system. The decreased

performance comes from the observations that more tasks have

to be completed by limited computation resources, and the

concurrency control mechanism becomes inefficient.

Conventional concurrency control mechanisms, such as

two-phase-locking [12] and optimistic concurrency control

(OCC) [13], fail to meet the needs that transactions per-

form intensive computations on source data. Prior intensive

computations, such as data analysis, data compression, and

data encryption/decryption, were considered to be read-only

and can usually be performed outside the transaction without

concurrency control [14], [15]. However, applications making

decisions on real-time analysis may be both contended and

compute-intensive [4]. In the conventional 2PL, executing

these contended and compute-intensive transactions signifi-

cantly blocks other transactions, since computations lengthen

the duration of locks. Moreover, the scenario of OCC becomes

worse and generally considered to be unsuitable for high

contended workloads due to more aborts and wasted resources

[16]. Hence, we need to rethink the design of concurrency

control mechanisms especially when for computation-intensive

applications.

In order to address this problem and improve QoS, an

intuitive approach is to unlock some data before performing

time-consuming computations, called Proactive Unlocking.

For example, before carrying out the partial computational

operations in 2PL, some data can be unlocked earlier by

moving some unlock operations to a point immediately after

the transaction can commit. However, this approach cannot

correctly work in case of system crashes. We assume that txn

T has already released some locks and still contains some

un-executed tasks. Once aborted, T cannot roll back to an

uncommitted state since other txns may read T’s unlocked

data and consider that T has committed (also known as read-

uncommitted).Hence, strict 2PL [12] requires that locks need

to be held until the end of a transaction.979-8-3503-9973-8/23/$31.00 ©2023 IEEE
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In this paper, we aim to explore the design space of

proactive unlocking and pay special attention to the impact

of compute operations within transactions. Our observation is

that some operations can not be placed after unlocking. We

call these operations “critical” whereas others are called “un-

critical”. The results of the critical operations are used by lock

operations to protect correct addresses. Therefore, the critical

operations must precede the lock operations. Moving critical

operations behind some unlock operations causes acquiring

locks after releasing locks, which violates 2PL.

In order to avoid unnecessary blocking caused by compu-

tational operations without violating 2PL, we propose CATS,

a Computation Aware Transaction Processing System, which

includes three components: (1) To classify critical and un-

critical operations, we leverage a critical-operation identi-

fication algorithm via the static data dependency analysis.

(2) To address the inaccuracy of static analysis, we actively

overlook the memory dependency in the dependency analysis

and propose a dependency-conflict avoidance mechanism to

detect the memory dependency at runtime. (3) To speed up

transactions’ uncritical operations, we use the computation-

aware concurrency control protocol. By moving some unlock

operations before uncritical operations, uncritical computa-

tional operations can be removed from the critical path of

contended transactions.

We have released the open-source codes in GitHub for

public use at https://github.com/BolunZhu/CATS.

II. BACKGROUND AND MOTIVATION

In this paper, we focus on transaction processing sys-

tems and explore how to speed up these systems on highly

contentious and computation-intensive workloads. For conve-

nience, we first describe a baseline system using two-phase

locking as its concurrency control protocol.

Baseline System: In the baseline system, the application

interacts with the system through basic transaction inter-

faces, including TX begin(), TX end(), TX read() and

TX write(). The transaction process includes two phases,

i.e., the execution phase and the commit phase. In the execu-

tion phase, operations in the transaction logic (including read,

write, and compute operations) are executed in the program

order. During the execution phase, transactions acquire locks

before each read and write operation. If the locking is success-

ful, the address of data will be recorded in the transaction’s

read-write set. Otherwise, the transaction (acquirer) introduces

the conflicts with the other transaction (owner). To resolve

the conflict, one txn needs to be aborted, according to the

deadlock-prevention mechanism [16]. The aborted txn will

release all locks of data in the read-write set. If not aborting

but completing all operations, this txn is considered ready to

commit and will enter the commit phase. During the commit

phase, the txn flushes the logs to the persistent media, then

writes data back and releases locks.

Two-Phase Locking: Two-Phase locking (2PL) [12] is a

widely used concurrency control protocol due to ease of use.

2PL requires transaction execution to be separated into two
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Fig. 1: Benefits of basic 2PL compared with strict 2PL.
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Fig. 2: Violating strict 2PL incurs the read uncommitted issue.

phases, i.e., the growing phase and the shrinking phase. In the

growing phase, each transaction continuously acquires locks

as needed. In the shrinking phase, the transaction begins to

release the locks, and no locks can be acquired in this phase.

We choose 2PL as a baseline concurrency control protocol

because 2PL is more suitable for highly contended workloads

and exploits the weak assumption that a transaction is con-
currently executed with an unknown set of other transactions.

Strict 2PL vs. Basic 2PL: According to the requirements for

releasing locks, 2PL can be further divided into strict 2PL and

basic 2PL. The strict 2PL requires that the lock is not released

until the end of the transaction, while the basic 2PL does not.

The advantage of basic 2PL is the relaxed execution order,

which allows earlier unlocking. As shown in Fig 1, T1 im-

mediately unlocks data X after performing the 3rd operation.

While its strict 2PL version (T2) holds the lock until the 5th

operation, leading to a longer duration of blocking.

The disadvantage of the basic 2PL is that when considering

crash and recovery, it incurs the read uncommitted issue. As

illustrated in Fig 2, the read uncommitted issue occurs when

(1) the system crashes right after transaction T1 unlocking

the data X and (2) other transactions have already read the

unlocked data X. In this scenario, the modification of X
is not committed but observed by other transactions, which

breaks the semantics of transactions— uncommitted data are

not allowed to be observed.

To relax the requirements of strict 2PL and avoid the

read uncommitted issue, many different concurrency control
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mechanisms are proposed. Transaction chopping [17] and its

improvements [18], [19] permit uncommitted data to be read

without concurrent conflicts by performing program analysis

of the workload before execution, which relaxes the assump-

tion of 2PL (there is an unknown set of concurrent transac-

tions). Instead, Bamboo [20] speculatively releases locks as

early as possible and fixes the read uncommitted issue with

cascading aborts at runtime. They all need global knowledge

of the workload, whether before executions (program analysis

in Transaction chopping) or at runtime (dependency graph in

Bamboo), which significantly limits their applicability.

Our CATS Approach: In contrast to these approaches, we

seek a computation-aware transaction processing system that

can release locks as early as possible and avoid the read

uncommitted issue. To this end, we rely on deferred exe-
cution–delaying some transaction operations to the commit

phase when these operations are time-consuming. Prior work

[21] proposed a similar idea called lazy evaluation in deter-

ministic databases, which requires a pre-defined total order

of transactions. DRP [22] uses deferred execution to avoid

the rank mismatch problem when using the runtime pipelin-

ing technique without global prior knowledge of concurrent

transactions. Though the benefits of deferred execution have

been discussed in existing works, there remain some unsolved

challenges, preventing deferred execution from being deployed

in general transaction processing systems.

Challenge 1: Data dependency conflicts. If the deferred ex-

ecution breaks the original data dependency of the transaction

as shown in Fig 3(a), the execution results of transactions will

not be the same as the baseline system. Therefore, the data

dependency must be maintained during reordering.

Challenge 2: Write-after-log. As shown in Fig 3(b), data

writes after logging cannot be recovered after the system

crashes, thus violating durability. Because some values to log

come from the results of deferred execution, we cannot log

them in advance. To address this problem, a computation-

aware transaction processing system needs to re-compute the

results of the deferred execution.

Challenge 3: Lock-after-unlock. When a deferred execution

accesses the data that has not been accessed in the execu-

tion phase, the transaction must acquire the lock. However,

acquiring locks after releasing some locks violates 2PL. As

shown in Fig 3(c), before acquiring the lock B, the writes to

A are able to be read by other transactions, leading to the read

TX_begin()

v=TX_read(x)
TX_write(y,f(v))

TX_end()

TX_begin()

r_set=TX_raddr(x)
w_set=TX_waddr(y)
TX_uncritical(f,r_set,w_set)

TX_end()

BEGIN lock y=f(x) END unlockBEGIN lock y=f(x) END unlock

BEGIN lock logging END unlock y=f(x) unlockBEGIN lock logging END unlock y=f(x) unlock

Growing phase Shrinking phase

Transaction Processing

Baseline Transaction Processing
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Identify 

transform

processing

1

2

3
Transaction Code

Fig. 4: System Overview.

uncommitted issue. To resolve the read uncommitted issue, the

system cannot release the locks before the commit phase.

In summary, to be computation-aware, transaction process-

ing systems need to maintain the original data dependency

(C1), re-compute the results of the deferred execution (C2)

and acquire the lock only in the execution phase(C3). CATS

achieves these requirements by using the following schemes.

(1) We detect data dependency conflicts before execution via

the critical-operation identification algorithm and dependency-

conflict avoidance mechanism at runtime. (2) We pack multiple

operations into a function, lock the function’s dependent data

and record the functions and read-write sets in logs. During

recovery, the system can use the functions to re-compute the

results and write them to the persisted media. (3) We select

only uncritical operations for deferred execution. The accessed

data of uncritical operations are deterministic. Hence, we

acquire locks in the execution phase and complete uncritical

operations in the commit phase.

III. SYSTEM DESIGN

A. Design Overview

CATS aims to shorten the growing phase in 2PL so that

some data can be unlocked earlier. Our approach moves the

execution of some instructions from the growing phase to the

shrinking phase, e.g. the execution of y = f(x) in Fig 4.

We build CATS as an extension of the transaction processing

system that uses two-phase-locking for concurrency control,

which we denote as the baseline system. Transactions in

the baseline system can perform three types of operations:

read, write, and computation, according to their behaviors

toward the data protected by the system. Read/write within

transactions is called transaction read/write.

Initially, we analyze the transaction code used in the base-

line system via the critical-operation identification algorithm

as described in Section III-B1, which identifies critical and

uncritical instructions within the transaction. Critical instruc-

tions are executed as normal while the executions of uncritical

instructions will be deferred. We explain the details of critical

instructions in Section III-B1.

Moreover, the original transaction is transformed to a new

version with annotations for uncritical instructions. The execu-

tion of annotated instructions will be moved from the growing
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void update(node_t * head, key_t key){
TX_begin(){

node = TX_read(head);
k = TX_read(node->key);
If(g(k)==key){
    res=f(k);
    TX_write(node->value,res);
}

} TX_end()
}
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Fig. 5: An example of a dynamic transaction with the second

address indexing and conditional update.

phase to the shrinking phase. In the transformation, each

continuous sequence of uncritical instructions will be extracted

into a new function, which we refer to as an uncritical function.

We annotate the function and its read-write set using three

newly added interface functions, TX uncritical, TX raddr,

and TX waddr. Specifically, TX uncritical receives a

function and its read-write set as parameters and logs them

for the following execution. TX raddr and TX waddr are

used to pass the addresses to TX uncritical as a read-write

set.

After that, transactions are processed in the execution phase

and the commit phase: in the execution phase, the system

executes critical instructions in the program order and skips

uncritical functions by using locking and logging; in the

commit phase, the current transaction needs to release locks

that are not used in any read-write sets of uncritical functions,

and then execute the skipped uncritical functions in order.

Once an uncritical function completes, we check if it is safe

to release locks in the read-write set. Note that only when the

transaction has already obtained all locks as needed, which

indicates it is ready to commit, can it enter the commit phase.

Otherwise, the current transaction needs to be aborted.

B. Identify critical instructions

We first introduce the concept of critical instructions and

then present an algorithm to identify critical instructions.
1) Critical Instructions: The concept of critical instructions

comes from our observation that: only partial instructions of a

transaction are necessary to determine whether the transaction

can commit. Specifically, to be committed, a transaction must

not conflict with other transactions. To guarantee this, a

transaction needs to calculate its read-write set in the execution

phase and acquire locks according to the read-write set in the

commit phase. To calculate the read-write set of a transaction,

traditional approaches execute the whole transaction, while

we observe that executing a subset of instructions within the

transaction, which we called critical instructions, is enough.

For static transactions whose read-write sets are known in

advance, there is no critical instruction. However, for dynamic

transactions, some instructions may be critical, such as the

second address indexing, whose operand cannot be known

before execution.

Traditional transaction processing systems regard all in-

structions as critical ones and execute the whole transaction

to confirm its read-write set since they are unable to iden-

tify critical instructions. Only when we can identify critical

instructions, can the system release locks earlier.

To efficiently identify critical instructions, we consider the

read-write set of the transaction as shown in Fig 5(a). The

Transaction in Fig 5(a) conditionally updates a node according

to its computation results of g(k) and f(k). g(k) and f(k)
are pure functions that only contain arithmetic instructions

and never access global data. Before executions, the read

set contains head and node->key, but the address of node-

>key is unknown, which is the execution result of Line 1 and

depends on the states of the system. It is difficult to confirm

whether node->value exists in the write set since TX write
(Line 5) is control dependent on Line 3, let alone what the

address of node->value is.

The lesson we learned from this example is that there are

two types of dependencies that determine the read-write set of

a transaction. Specifically, the first dependency is the control

dependency of read and write in a transaction, which deter-

mines whether the accessed address exists in the read-write

set. The second one is the data dependency of the addresses

of read and write operations in a transaction, which determines

the actual address in the read-write set. For simplicity, we refer

to the second type of dependency as the address dependency.

While traditional data and control dependencies have been

well studied in existing works [23], the address dependency, as

a special subset of data dependency, has gained little attention

since it is not only related to program semantics, but also

concurrency control.

To distinguish address dependency from data dependency,

we define two relationships for transaction read and write:

Address dependency: For a transaction read or write i, if the
memory address comes from a variable that is defined by

another instruction j, we call i is address dependent on j.

Value dependency: For a transaction read or write i, if the
value for read or write comes from a variable that is defined

by another instruction j, we call i is value dependent on j.

As shown in Fig 5(a), the transaction write in Line 5

uses1 two variables node->value (defined in Line 1) and res
(defined in Line 4). According to our definitions, the Line 5 is

address dependent on Line 1 and value dependent on Line 4.

The execution of Line 1 (address dependency) determines the

write set while line 4 (value dependency) only determines the

actual value to write. Therefore, Line 1 is a critical instruction,

while Line 4 is not.

The instructions that are address or control dependent by

transaction read and write are critical instructions. We refer

to these instructions as directly critical instructions, to dis-

tinguish them from indirectly critical instructions. Indirectly
critical instructions are those instructions that are data or

control dependent by directly critical instructions. Though

indirectly critical instructions may not directly determine the

read-write set, they are necessary for the correct execution of

1The use and define come from compiler community [24]. Use-def chains
created by dataflow analysis are widely used for many compiler optimizations,
such as constant propagation and common subexpression elimination [25].
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directly critical instructions. We further present the definition

of critical instructions.

Definition 1: Instruction i is directly critical if there exists
a transaction read or write j satisfying that j is control
dependent on i or address dependent on i.
Definition 2: Instruction i is indirectly critical if there exists
a critical instruction j satisfying that j is control dependent
on i or data dependent on i.

Instruction i is critical if i is a directly critical instruction

or indirectly critical instruction.

2) Critical-operation Identification Algorithm:
We now present our algorithm to illustrate the critical

instructions based on our previous definitions. As shown in

Algorithm 1, we receive Sall (the set of instructions in a trans-

action) as the input, which returns Scritical (the set of critical

instructions) and Suncritical (the set of uncritical instructions)

as the output. Specifically, this algorithm is executed in three

steps: First, Srw is obtained by finding all transaction reads

and writes from Sall; Second, Sdirect is obtained by filtering

instructions from Sall, which are address or control dependent

on instructions in Srw; Third, Sindirect is obtained by selecting

the instructions from Sall that are data or control dependent

on instructions in Sdirect. The Scritical is the combination of

Sdirect and Sindirect, and the other instructions (other than

Scritical) are Suncritical.

Algorithm 1: Identify Critical Instructions

Input: Sall = the set of instructions in a transaction
Output: Scritical, Suncritical

// Step 1: get the set of read or write instructions
1 for instruction i in Sall do
2 if i is a transaction read or write then
3 Srw.insert(i)

// Step 2: obtain the set of directly critical instructions
4 for instruction i in Srw do
5 for variable v that i uses do
6 if v is used as memory address then
7 instruction j = v.define()

// i is address dependent on j
8 Sdirect.insert(j)
9 for instruction j in Sall do

10 if i is control dependent on j then
11 Sdirect.insert(j)

// Step 3: obtain the set of indirectly critical instructions
12 for instruction i in Sdirect do
13 for instruction j in Sall do
14 if i is control dependent or data dependent on j then
15 Sindirect.insert(j)
16 Scritical = Sdirect ∪ Sindirect

17 Suncritical = Sall \ Sindirect

18 return Scritical, Suncritical

The evaluation results in Fig 5 are shown in Table I.

Scritical = {1, 2, 3} indicates that the transaction can deter-

mine the read-write set after executing instructions in Lines 1,

2, and 3. We hence unlock the data head and node->key in

this case, after executing critical instructions in Lines 1 to 3.

Our algorithm exploits static data and control dependency

tracking. However, in practice, static dependency tracking is

TABLE I: Execution results of Algorithm 1.

Srw Sdirect Sindirect Scritical Suncritical

{1,2,5} {1,3} {1,2} {1,2,3} {4,5}

inaccurate due to variable addresses, loops, etc. In the static

data dependency analysis, different variables might refer to the

same address, which is called memory dependency. Currently,

there is no practical algorithm that can calculate the memory

dependency accurately. Thus, the result of our algorithm using

inaccurate memory dependency is also inaccurate. Since it is

hard to accurately identify critical instructions, we allow some

critical instructions to be regarded to be uncritical, and provide

a dependency-conflict avoidance mechanism to fix.

Specifically, our algorithm overlooks the uses that have

multiple definitions in Line 9, thus avoiding some complex

data dependency tracks. The cost is that some data depen-

dency conflicts may occur. As some critical instructions may

be considered to be uncritical, and their executions will be

wrongly deferred, which will be discussed in Section III-D.

C. Transform transactions

Identifying Uncritical Sequences. After identifying critical

instructions, the instructions within a transaction are separated

into several sequences of critical and uncritical instructions,

called critical and uncritical sequences. In principle, each

uncritical sequence can be annotated to defer its execution.

However, eagerly deferring all uncritical sequences may de-

grade system performance. This is because not all uncritical

sequences can benefit from this design. Since deferring un-

critical sequences adds some overheads, such as logging and

function calls, only those uncritical sequences whose execution

time is longer than that of logging its read-write set can bring

performance improvements.

Since statically computing the execution time of a sequence

of instructions is hard, our current implementation requires

manual efforts to decide which uncritical sequences to be

annotated, which has been widely used in the community [20],

[26]. In our real implementations, most uncritical sequences

are the last writes of a memory address and computations

for values. The uncritical sequences that contain expensive

computations are more suitable to be annotated.

Annotating Uncritical Sequences. We use function-level

annotations as the basic unit of uncritical sequences. This is

because adjacent instructions usually have dependencies, and

putting them in the same function can reduce annotation over-

heads. When a sequence of uncritical instructions is selected,

it is extracted into a new wrapper function, which receives a

read set and a write set as parameters and returns void. Each

wrapper function has the same type, which avoids passing

different types of function pointers as parameters.

To annotate an uncritical sequence, we need to calculate

its read-write set. The read-write set of an uncritical sequence

includes all addresses to be accessed. We assume that the read-

write sets of all uncritical sequences are correctly annotated

for correctness. We further insert all addresses into the read-

write set using TX raddr and TX waddr. Although the
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1  void update(node_t* head, key_t key){
2    TX_begin();
3    node_t* node=TX_read(head);
4    key_t   k=TX_read(node->key);
5    if(g(k)==key){
6      val_t res=f(k);
7      TX_write(node->value,res);
   // f(k) is wrapped into new_f
   // Record new_f as a deffered funtion
8      TX_uncritical(new_f,
9                    TX_raddr(k),
10                    TX_waddr(node->value));
11    }
12    TX_end();
13 }
14  void new_f(void* r_set, void* w_set){
15    key_t   k=TX_get(r_set,0);
16    node_t* node->value=tx_get(w_set,0);
17    val_t   res=f(k);
18    TX_write(node->value,res);
19   }

Fig. 6: Transforming transaction. f(k) and its associated

TX write are annotated as uncritical instructions using

TX uncritical.

actual addresses in the read-write set are unknown before

execution, we can annotate the read-write set with high-

level language variables. Our annotation functions only require

these addresses to be known just before annotating them. After

that, we move the uncritical sequence to a wrapper function

and pass the function using TX uncritical.

Fig 6 shows an example of transforming the transaction in

Fig 5. After identifying critical instructions, we find Lines 6-7

in the source code are uncritical instructions. Therefore, we

extract these two lines into a wrapper function new f , which

receives read and write sets as parameters. We replace these

two lines with a TX uncritical in their original location and

pass the wrapper function new f and its read-write set as

parameters. The use of TX raddr and TX waddr is similar

to a stack push while TX get is similar to a stack pop. The

system pushes a function pointer and its read-write set in the

thread-local space and pops them in the latter execution. The

execution of some instructions can be deferred after obtaining

all locks, thus allowing some locks to be unlocked earlier.

Some addresses come from local variables in the stack and

have limited life cycles. When the system dereferences these

local variables’ addresses in the commit phase, these local

variables may have been freed, which causes program errors.

We allow local variables not to be passed by TX raddr and

TX waddr but never check this special case because passing

the reference of local variables as parameters is a common

programming bug. How to avoid this bug is beyond the scope

of this work.

D. Dependency Conflict Avoidance Mechanism

We discuss data dependency conflicts and introduce our

dependency-conflict avoidance mechanism.

...

Fnptr RS WS

Executed area Un-executed area

Transaction local space

f1 f2 f3 f4 f5 f6 f7

An entry

64bits 32bits 32bits

...

...

f_list:

r_list:

w_list:

f5(...){
TX_get()
TX_read()
TX_write()
...
}

Deferred function

64bits

Write Set

Read Set

Address to write

Fig. 7: Data structures to record un-executed functions.

Data Dependency Conflicts. In general, only uncritical in-

structions are deferred. However, due to the inaccurate depen-

dency tracking, some critical instructions may be regarded as

uncritical and wrongly deferred, which results in two types of

dependency conflicts:

(i) instruction i depends on j, but j is deferred after i.
(ii) instruction i depends on j, i and j are both deferred,

but j is reordered after i.
For the first type, we check the function pointer list before

each transaction read and write. If the address to be read or

written exists in the read-write set of an annotated function,

there is a dependency conflict. Thus, the annotated function

needs to be executed before reading or writing to maintain

original data dependency. After execution, to avoid an anno-

tated function being executed twice, the list head needs to

move to the last unexecuted function pointer.

For the second type of dependency conflict, we store the

function pointers of the annotated functions in a list in the

FIFO manner. Moreover, the executions of the annotated

functions always start from head to tail, thus preventing the

reorder among functions.

E. Extending baseline system

Data Structures. As shown in Fig 7, we use three double

linked lists, i.e., f list, r list, and w list, to respectively

store those annotated functions and their read-write sets. Each

node in f list contains a function pointer, including a r list
pointer and a w list pointer. The r list and a w list pointers

point to the beginning of the read and write set. In r list and

w list, each node contains a 64-bit address. We use 264−1 to

indicate the end of a function’s read-write set. Moreover, each

list contains a head pointer and a tail pointer to respectively

record the first and last un-executed nodes. When a function is

executed, the head pointer will move to the next un-executed

node.

To accurately identify the address of the last read/write,

we use a hash table cnt tab to maintain a reference counter.

The address x is passed by TX raddr or TX waddr, and

the counter of x will increase by one. When the annotated

function f is executed, the counters of addresses in f ’s read-

write set will decrease by one. Moreover, if f is executed

in the commit phase, we will check whether a counter is

zero after decreasing the counter. If the counter is zero, f
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is the last function that accesses this address, and we then

unlock this address. The system can unlock data after its last

access without waiting for the whole transaction. In cnt tab,
when two addresses a and b are hashed into the same counter,

one may not be unlocked, since our design only unlocks data

whose counter is equal to zero. We avoid this issue by using

the same hash function in the lock-entry hash table. The data

structure described above is allocated in transaction local space

without centralized synchronization.

Annotation Functions. We add four annotation func-

tions to the baseline system: TX uncritical, TX raddr,

TX waddr and TX get. TX uncritical receives a function

pointer of a wrapper function and two pointers. The last two

pointers are obtained through the return value of TX raddr
and TX waddr. When a TX uncritical is called, the input

parameters will be inserted into the tail of f list.
TX raddr and TX waddr receive a 64bit address as input

and return a r list or w list pointer. When a TX raddr
is called, the transaction will read and lock the address. If

failing, the transaction will abort and roll back. If successful,

the system will insert the address into the tail of r list and

increase the corresponding counter in cnt tab. TX waddr is

similar to TX raddr except for the need for writing locks.

TX get is used in the wrapper functions to pop the

addresses from r list and w list. TX get receives a r list
or w list pointer and an index to obtain the index’s address

in the list.

Transaction Processing. TX read: Before reading an ad-

dress, the transaction will acquire the read-lock of the address.

If the address has already been write-locked, we check whether

this address exists in the write set of an annotated function via

scanning the w list from the tail to the head. Assuming the

address is found in the write set of a function, the transaction

needs to execute functions in f list from the head to the

function. Only after functions that have the same address

in their write set are executed, can the transaction read the

address.

TX write: Before writing an address, the transaction will

acquire the write-lock of the address. If the address has been

locked, it checks whether this address is in the read or write

sets of an annotated function by scanning both w list and

r list from the tail to the head. If the address exists, the

transaction executes the functions in f list from the first to

the last function that accesses the address.

The difference between TX read and TX write is that

TX write needs to check both read and write sets. This is

because the transaction read only maintains read-after-write

dependency while write should maintain write-after-read and

write-after-write dependencies.

TX end: When the transaction is ready to be committed,

we first unlock the addresses whose counters in cnt tab are

zero, which indicates the addresses will not be accessed again.

We further execute the annotated functions in f list one by

one. After each function is executed, the counters of addresses

in the read-write set decrease, and the lock of the address

whose counter is equal to zero is released. We clear all

local data structures of transactions to prepare for the next

transactions.

Logging. Logging is important for durable transactions. A

durable transaction can persist its updates if the transac-

tion is committed and recovers these updates from crashes.

Without logging, the system possibly loses some committed

updates when crashes occur. In general, a durable transaction

system needs to guarantee ACID, which means Atomicity,

Consistency, Isolation, and Durability. For durability, we store

data updates to several log files in the persistent media, such

as hard disks and SSDs, and recover from crashes by using

these files.

On the other hand, for transactions that are not durable,

logging is unnecessary, which can be exploited to decrease

system overheads and improve performance. Some transaction

systems (e.g. software transactional memory [27], [28] and

in-memory databases [15], [29]) only guarantee ACI without

Durability. In these systems, no modifications are required

compared to baseline systems. Therefore, we only discuss

how to adapt our design to durable transaction systems in this

section.

In durable transaction systems, logging must be performed

before unlocking any data. For baseline systems, logging

contains all transaction writes. However, in our design, some

transaction writes are represented as a function and dependent

data. As a result, these functions and data dependencies

need to be persisted to log files as well. Specifically, at the

beginning of TX end, the data structure in Fig 7 needs to be

flushed to the log file. After logging these transaction writes

and dependencies, the system can commit the transaction

as described in TX end. Each time completing a deferred

function, we add a record in the log.

Limitations of Recovery. Deferred execution regards some

data as the combination of their dependent data and the

function to execute. For recovery, both dependent data and

the function need to be persisted. The key challenge is how

to persist and recover a function. A function contains a set of

instructions and the associated runtime context.

Unfortunately, the runtime context, such as register, stack,

and global data, becomes vulnerable to being destroyed dur-

ing a system restart. To recover functions from crashes,

one approach is checkpointing, which requires each memory

read/write to be persisted, leading to high logging overheads.

Another approach leverages the function be pure, which means

the execution of the function does not depend on the runtime

context. Therefore a function pointer is enough for correct

recovery. The main drawback of this approach is that most

deferred functions are non-pure. The execution of a non-

pure function depends on the runtime context. Deferring the

execution of a non-pure function possibly leads to a differ-

ent execution result if some relevant runtime contexts have

changed.

CATS leverages the latter approach (pure function) to pro-

vide durable transactions. Hence, the durable transactions in

CATS are defined below:

• Data dependencies of deferred execution cannot contain
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any local variables, since these data are allocated in the

stack, which is runtime context.

• Data dependencies of deferred execution cannot contain

any data that will be modified by other processes, e.g.

CPU clocks.

• Deferred functions cannot contain explicit calls to

TX abort. Otherwise, a committed transaction may call

TX abort, leading to read-uncommitted-data.

IV. PERFORMANCE EVALUATION

A. Configurations

Experimental Setup and Baselines. Our experiments are

conducted on a 52-core Intel machine with 2 NUMA nodes.

Each NUMA node contains 26 cores (Xeon Gold 6230R

2.20GHz) and 187GB memory.

We implemented CATS on top of RSTM [28], an open-

sourced word-based transactional memory system. Although

our design is not limited to transactional memory, we choose

it as a case in point since ACID databases contain logging

and recovery operations that are hard to support recoverable

deferred execution as discussed in Section III-E. We collect

transaction throughputs by running each workload for at least

60 seconds and calculate the speedup of CATS compared with

the baseline by dividing the throughput.

We evaluated our work with two open-sourced implemen-

tations of OCC [13] and 2PL [12] in the same configurations:

• ByteEager [30]: An implementation of 2PL. We acquire

locks before reading and writing the data. The writes are

performed in place and an undo log is used to roll back

when an abort occurs. It is worth noting that the undo

log is allocated in memory and only used for rollback

without persistent operations.

• LLT [27]: An implementation of OCC. The write op-

erations are buffered in the write log, and the locks of

all relevant data are acquired in the commit phase for

updates.

B. Workloads and setup

Our design focuses on transactional workloads, which is

computation-intensive (e.g. complex data analysis) and highly
contentious (e.g. multiple txns compete for a hotspot). The

rationality is that more and more real-world applications

require performing complex analysis over recently changed

data in an all-or-nothing manner [4]. Ideal transaction systems

and their concurrency control protocols are supposed to scale

with the computation in transactions, which recently becomes

more important.

We comprehensively examined existing real-world transac-

tional workloads that are widely used and found none of them

met our requirements. Database workloads contain either low

contentions (e.g. TPC-E [31]) or few uncritical operations (e.g.

TPC-C [10] and smallbank [32]). For example, the new-order

transaction in TPC-C contains a read-modify-write hotspot at

the beginning and most of the remaining operations have no

data dependency upon the hotspot. We defer the executions of

these operations to mitigate concurrency conflicts. However,
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Fig. 8: The throughput speedup of our design over ByteEa-

ger and LLT when the number of computation operations

increases.
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Fig. 9: The throughput speedup of our design over ByteEager

when the number of computation operations increases.

these operations are simple computations and consume several

CPU clocks, which is cost-efficient in our design. Moreover,

the widely used transactional memory workload STAMP [33],

which contains several transactional applications, does not

exhibit the characteristics that our design targets: intruder
and labyrinth contain few computation operations. kmeans
and genome contain lots of computation operations but they

are outside the transaction. yada and vacation contain some

computation operations within the transaction, but the eval-

uation results of these operations are immediately used by

others, which means these operations are critical and cannot

be deferred. Hence, we do not expect speedups on these

transactional workloads.

We use several synthetic workloads similar to Bamboo [20]

to evaluate our design.

C. Synthetic workloads

Varying the number of computation operations. We design

a high contention workload that contains a read-modify-write

hotspot at the beginning, a for-loop at the middle, and a write

at the end. The write address at the end has a data dependency

upon the read at the beginning and is calculated through the

for-loop, supporting the rationality for putting these opera-

tions in a transaction. We vary the number of computation

operations in a transaction by changing the amounts of for-

loop iterations. Within each iteration, we perform an arithmetic

addition as the computation operation.

Fig 8a shows the throughput speedup of CATS over By-

teEager when the number of computation operations changes.

With the increase of computational operations, the speedup

increases until reaching the theoretical upper limit (i.e. the
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Fig. 10: The throughputs of CATS, ByteEager and LLT as the

hotspot position changes.

number of threads). The results demonstrate that CATS can

completely mitigate the impact of uncritical computational

operations within txns. We report similar results for LLT

in Fig 8b. The throughput speedup of CATS over LLT is

slightly higher than ByterEager. The main reason is that OCC

performs worse than 2PL in this highly contentious workload.

Specifically, compared to 2PL, which detects contentions

immediately and aborts if failing to lock, OCC does not

acquire the lock of the hotspot until completing the expensive

computations, which makes OCC easier to abort and waste

computation resources.

Fig 9 shows the minimal number of computational opera-

tions to benefit from CATS. When the number of computation

operations is larger than 60, 70, 110, and 150, our work obtains

higher throughput under 4, 8, 16, and 32 threads respectively.

These results demonstrate that our work outperforms prior

schemes on computation-intensive workloads.

Varying hotspot positions. We put a read-modify-write

hotspot between two for-loops and vary the hotspot positions

by changing the number of computational operations within

the first for-loop. The total number of computation operations

within these two for-loops is fixed at 200.

Fig 10 shows the throughput among LLT, ByteEager, and

our work using different numbers of threads when the hotspot

position changes. Since recording the read-set and write-set

for correct deferred execution incurs additional overheads, the

throughput of CATS is slightly lower than LLT and ByteEager

, as shown in Fig 10a. As the number of threads increases,

these overheads are negligible compared to the performance

gains from reducing conflicts. As shown in Figures 10b, 10c,

and 10d, CATS outperforms both ByteEager and LLT in most

cases except for the hotspot position is equal to 1.0. When the

hotspot is at the end of the txn, all computational operations

0.0 0.2 0.4 0.6 0.8 1.0
23.0

23.2

23.4

23.6

23.8

24.0

Th
ro
ug
hp
ut

(th
ou
sa
nd
tx
ns
/s
ec
)

Hotspot position

LLT
ByteEager
CATS

(a) 1 thread

0.0 0.2 0.4 0.6 0.8 1.0
0

60

120

180

240

300

Th
ro
ug
hp
ut

(th
ou
sa
nd
tx
ns
/s
ec
)

Hotspot position

LLT
ByteEager
CATS

(b) 32 threads

Fig. 11: The throughput of CATS, ByteEager and LLT when

the percentage of uncritical operations changes.

become critical and cannot be reordered by CATS, leading to

the same behavior as ByterEager.

Varying the percentage of critical operations. To further

understand the impact of the proportion of critical operations

on our design, we add a read-modify-write hotspot at the

beginning based on the second workload. There is a data

dependency between the newly inserted hotspot and the old

hotspot. According to our design, the computational operations

between these two hotspots are critical, which cannot be

optimized by CATS. We change the percentage of critical

operations by fixing the first hotspot at the beginning and

moving the second hotspot from the beginning to the end of

the txn. The closer the second hotspot is to the end of the txn

(i.e. the closer hotspot position is 1.0), the more the percentage

of critical operations.

Fig 11 shows the throughputs among LLT, ByteEager and

CATS by using different numbers of threads, when the per-

centage of critical operations changes.

As shown in the Fig 11a, the throughput of CATS increases

by using 1 thread when the percentage of critical operations

increases, and finally becomes equal to ByterEager and LLT.

This is because when the second hotspot position is close

to 0.0, most operations are uncritical and will be reordered

by CATS. Such reordering incurs additional overhead but

cannot reduce concurrency conflicts in the single-threaded

case, leading to a slightly lower throughput compared to other

works.

For the multi-threaded case, the additional overhead can be

ignored and concurrency conflicts become the main bottleneck.

Fig 11b shows that CATS obtains significant performance

improvement compared with LLT and ByteEager in the multi-

thread cases when the percentage of uncritical operations is

high (the hotspot position is close to 0.0). When all operations

are critical, the throughput of CATS is the same as LLT and

ByteEager since there are no uncritical operations to reorder.

In summary, in the multi-thread cases, CATS obtains higher

throughput than LLT and ByteEager when the percentage

of uncritical operations is high. The performance of CATS

is similar to LLT and ByteEager when the proportion of

uncritical operations is low.
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V. RELATED WORK

Deferred execution. Lazy evaluation [21] and early write

visibility [34] propose to execute some transactional operations

after transactions are committed in deterministic databases.

However, these schemes rely on a pre-generated total order

to avoid concurrent conflicts which limits their applicability.

Inspired by lazy evaluation, DRP [22] introduces deferred

execution to avoid the rank mismatch issue inherent with

runtime pipelining [19]. Unfortunately, none of these deferred

execution approaches can handle transactions with complex

logic such as conditional updates and the second address

indexing. Instead, CATS can leverage deferred execution to

speed up these transactions and fix data dependency conflicts

at runtime.

Transaction execution reordering. There are various ap-

proaches to speed up traditional transactions by changing the

execution orders of transactions. QURO [35] and Chiller [36]

focus on reordering queries within transactions and executing

the queries with high conflict rate. Both QURO and Chiller

decide the order of locking and unlocking in advance, while we

dynamically decide it at runtime in general cases. Transaction

chopping [17] and improved designs (e.g., IC3 [18] and Run-

time Pipelining [19]) require static program analysis before

the execution to split transactions into small pieces. Instead

of acquiring global knowledge of transactions, Bamboo [20]

speculatively releases locks and allows cascading aborts. To

cope with cascading aborts, Bamboo maintains a centralized

data structure to track dependent transactions. In contrast,

CATS only reorders inter-transaction operations and thus re-

quires no global knowledge and no significant modifications

to the transaction system.

VI. CONCLUSION

In order to efficiently mitigate concurrency conflicts, this

paper presents CATS, a computation-aware transaction pro-

cessing system that reorders the operations within transactions.

CATS leverages the critical-operation identification algorithm

to efficiently partition the operations within a transaction into

critical and uncritical ones. These uncritical operations are

placed after unlocking to alleviate potential conflicts among

transactions. Our experimental results demonstrate that CATS

significantly outperforms conventional OCC and 2PL-based

schemes for computation-intensive workloads.

ACKNOWLEDGMENT

This work was supported in part by National Natural Sci-

ence Foundation of China (NSFC) under Grant No. 62125202

and U22B2022.

REFERENCES

[1] D. Kossmann, T. Kraska, and S. Loesing, “An evaluation of alternative
architectures for transaction processing in the cloud,” SIGMOD, 2010.

[2] Y. Sokolik and O. Rottenstreich, “Age-aware fairness in blockchain
transaction ordering,” IWQoS, 2020.

[3] J. Zhang, Y. Cheng, X. Deng, B. Wang, J. Xie, Y. Yang, and M. Zhang,
“Preventing spread of spam transactions in blockchain by reputation,”
IWQoS, 2020.

[4] J. Chen, Y. Ding, Y. Liu, F. Li, L. Zhang, M. Zhang, K. Wei, L. Cao,
D. Zou, Y. Liu, L. Zhang, R. Shi, W. Ding, K. Wu, S. Luo, J. Sun,
and Y. Liang, “ByteHTAP: bytedance’s HTAP system with high data
freshness and strong data consistency,” VLDB, 2022.

[5] G. J. Chen, J. L. Wiener, S. Iyer, A. Jaiswal, R. Lei, N. Simha,
W. Wang, K. Wilfong, T. Williamson, and S. Yilmaz, “Realtime Data
Processing at Facebook,” SIGMOD, 2016.

[6] J. Gray, “The transaction concept: Virtues and limitations,” VLDB, 1981.
[7] T. Haerder and A. Reuter, “Principles of transaction-oriented database

recovery,” CSUR, 1983.
[8] ORACLE, “Mysql,” http://www.mysql.com, 2022.
[9] The PostgreSQL Global Development Group, “Postgresql,” http://www.

postgresql.org, 2022.
[10] The Transaction Processing Council. TPC-C Benchmark V5.11.

http://www.tpc.org/tpcc/
[11] G. Kang, L. Wang, W. Gao, F. Tang, and J. Zhan, “OLxPBench: Real-

time, Semantically Consistent, and Domain-specific are Essential in
Benchmarking, Designing, and Implementing HTAP Systems,” ICDE,
2022.

[12] K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L. Traiger, “The notions of
consistency and predicate locks in a database system,” Commun. ACM,
1976.

[13] H. T. Kung and J. T. Robinson, “On optimistic methods for concurrency
control,” TODS, 1981.

[14] S. Tu, W. Zheng, E. Kohler, B. Liskov, and S. Madden, “Speedy
transactions in multicore in-memory databases,” SOSP, 2013.

[15] Z. Wang, H. Qian, J. Li, and H. Chen, “Using restricted transactional
memory to build a scalable in-memory database,” EuroSys, 2014.

[16] X. Yu, G. Bezerra, A. Pavlo, S. Devadas, and M. Stonebraker, “Staring
into the abyss: An evaluation of concurrency control with one thousand
cores,” VLDB, 2014.

[17] D. Shasha, F. Llirbat, E. Simon, and P. Valduriez, “Transaction chopping:
Algorithms and performance studies,” TODS, 1995.

[18] Z. Wang, S. Mu, Y. Cui, H. Yi, H. Chen, and J. Li, “Scaling Multicore
Databases via Constrained Parallel Execution,” SIGMOD, 2016.

[19] C. Xie, C. Su, C. Littley, L. Alvisi, M. Kapritsos, and Y. Wang, “High-
performance ACID via modular concurrency control,” SOSP, 2015.

[20] Z. Guo, K. Wu, C. Yan, and X. Yu, “Releasing Locks As Early As
You Can: Reducing Contention of Hotspots by Violating Two-Phase
Locking,” SIGMOD, 2021.

[21] J. M. Faleiro, A. Thomson, and D. J. Abadi, “Lazy evaluation of
transactions in database systems,” SIGMOD, 2014.

[22] S. Mu, S. Angel, and D. Shasha, “Deferred Runtime Pipelining for
contentious multicore software transactions,” EuroSys, 2019.

[23] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck,
“An efficient method of computing static single assignment form,”
POPL, 1989.

[24] H. D. Pande, W. A. Landi, and B. G. Ryder, “Interprocedural def-use
associations for c systems with single level pointers,” TSE, 1994.

[25] C. Lattner and V. Adve, “Llvm: A compilation framework for lifelong
program analysis & transformation,” CGO, 2004.

[26] Y. Wu and K.-L. Tan, “Scalable in-memory transaction processing with
htm,” USENIX ATC, 2016.

[27] D. Dice, O. Shalev, and N. Shavit, “Transactional locking II,” DISC,
2006.

[28] Rochester Synchronization Group. “Rochester Software Transactional
Memory.” https://www.cs.rochester.edu/research/synchronization/rstm/.

[29] X. Wei, J. Shi, Y. Chen, R. Chen, and H. Chen, “Fast in-memory
transaction processing using RDMA and HTM,” SOSP, 2015.

[30] P. Felber, C. Fetzer, and T. Riegel, “Dynamic performance tuning of
word-based software transactional memory,” PPoPP, 2008.

[31] The Transaction Processing Council. TPC-E Benchmark V1.14.
http://www.tpc.org/tpce/

[32] The H-Store Team. SmallBank Benchmark. https://hstore.cs.brown.edu/
documentation/deployment/benchmarks/smallbank/

[33] C. C. Minh, J. Chung, C. Kozyrakis, and K. Olukotun, “Stamp: Stanford
transactional applications for multi-processing,” IISWC, 2008.

[34] J. M. Faleiro, D. J. Abadi, and J. M. Hellerstein, “High performance
transactions via early write visibility,” VLDB, 2017.

[35] C. Yan and A. Cheung, “Leveraging lock contention to improve OLTP
application performance,” VLDB, 2016.

[36] E. Zamanian, J. Shun, C. Binnig, and T. Kraska, “Chiller: Contention-
centric Transaction Execution and Data Partitioning for Modern Net-
works,” SIGMOD, 2020.

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on December 29,2023 at 07:42:22 UTC from IEEE Xplore.  Restrictions apply. 


		2023-07-25T08:50:39-0400
	Preflight Ticket Signature




