
Li PF, Hua Y, and Cao Q. An Enhanced Physical-Locality Deduplication System for Space Efficiency. JOURNAL OF

COMPUTER SCIENCE AND TECHNOLOGY

An Enhanced Physical-Locality Deduplication System for Space
Efficiency

Peng-Fei Li1 (���), Yu Hua1,∗ (��), Distinguished Member, CCF, Senior Member, ACM, IEEE,
Qin Cao1 (��)

1Wuhan National Laboratory for Optoelectronics, School of Computer Science and Technology, Huazhong University of
Science and Technology, Wuhan 430074, China

E-mail: {cspfli, csyhua, qincao}@hust.edu.cn

Abstract Many data have been generated from various embedded devices, applications and systems, and require cost-

efficient storage service. Data deduplication removes duplicate chunks and becomes an important technique for storage

systems to improve the space efficiency. However, the stored unique chunks are heavily fragmented, which decreases the

restore performance and incurs high overheads for garbage collections. Existing schemes fail to achieve an efficient
trade-off among deduplication, restore and garbage collection performance, due to failing to explore and exploit
the physical locality of different chunks. In this paper, we trace the storage patterns of the fragmented chunks
in backup systems, and propose a high-performance deduplication system, called HiDeStore. The main insight
is to enhance the physical-locality for the new backup versions during the deduplication phase, which identifies
and stores hot chunks in the active containers. The chunks not appearing in new backups become cold and are
gathered together in the archival containers. Moreover, we remove the expired data with the isolated container
deletion scheme, avoiding the high overheads for the expired data detection. Compared with state-of-the-art
schemes, HiDeStore respectively improves the deduplication and restore performance by up to 1.4× and 1.6×,
without decreasing the deduplication ratios and incurring high garbage collection overheads.

Keywords deduplication system, data reduction, space efficiency, physical-locality

1 Introduction

The widely used applications, such as IoT embed-

dings, artificial intelligence and cloud computing [1–3],

generate a large amount of data and require large-

scale storage systems. Backup systems [4–6] store var-

ious versions of data for software compatibility and

rollback, e.g., different versions of Linux kernels and

system snapshots. However, the data contain much re-

dundancy due to the similarity among different backup

versions. Data deduplication becomes an efficient tech-

nique for different storage systems [7–11] to eliminate du-

plicate data and save space [12,13].

The deduplication systems improve the storage ef-

ficiency via eliminating duplicate data, following the

workflow of chunking, fingerprinting, indexing and fur-

ther storage managements [12–14]. To detect duplicate

data, we divide the data streams into 4-8KB chunks

and leverage a cryptographic hash function to calculate

fingerprints for the chunks, e.g., SHA-1 and MD5. It

has been proved that a hash collision of the used cryp-

tographic hash function is much smaller than that of a

hardware error [12], hence unique chunks have different

fingerprints and are stored in typical 4MB containers on

the persistent storage mediums, such as HDD or SSD.

The chunk references of the original data streams are

stored in the recipes for data restoring.

Regular Paper

The preliminary version was published in the Proceedings of the 21st annual ACM/IFIP Middleware Conference (Middleware 2020),
pages: 341-355, as “Improving the Restore Performance via Physical-Locality Middleware for Backup Systems” [15].

This work was supported in part by National Natural Science Foundation of China (NSFC) under Grant No. 62125202 and
U22B2022.

∗Corresponding Author

�Institute of Computing Technology, Chinese Academy of Sciences 2022

2 J. Comput. Sci. & Technol.

However, the deduplication systems deliver low

restore performance after multiple data versions are

stored, due to the severe chunk fragmentation prob-

lem [16–18]. Specifically, the identified duplicate chunks

are pointed to existing containers, while unique chunks

are stored in new containers. As a result, the chunks

of a data stream are stored in different containers, in-

curring lots of expensive I/Os to read data in the per-

sistent storage to restore the original data. The data

chunks are severely scattered when more versions are

stored. Moreover, it becomes hard to remove the ex-

pired versions, since the chunks of different versions are

physically scattered and interleaved together, which re-

sults in expensive efforts to detect the expired chunks

and conduct garbage collections.

To improve the restore performance, some designs

leverage caching-based schemes to reduce the number of

container reading, e.g., some chunks [18–20] and contain-

ers [16,17,21] are cached in the memory for future reading.

The main insight is to exploit the cache-friendly local-

ity of the backup stream, i.e., the chunks are stored

in the same order as they first appear in the stream.

Therefore, the obtained containers have a high prob-

ability to contain the subsequent chunks of the same

data stream. However, caching-based schemes become

inefficient when a large number of backup versions are

stored, since the chunks are scattered into more differ-

ent containers and show poor locality for caching. Un-

like the caching-based schemes, some schemes rewrite

the duplicate chunks to enhance the physical locality of

the data stream [16,17,22,23], i.e., these schemes rewrite

some chunks into the same containers. In this way,

fewer containers are read to restore the original data.

Although the chunk fragmentation problem is allevi-

ated, the deduplication ratio decreases due to the ex-

istence of duplicate chunks. Even if the deduplication

ratio decreases by 1%, 40GB extra space is consumed

for 4TB unique data to store the rewritten data, which

significantly decreases the storage efficiency.

To remove the expired data, existing schemes lever-

age the reference management approaches to detect the

expired chunks, and such schemes need to carefully

maintain the reference counters to prevent errors, e.g.,

the removed chunks are referred by the non-expired

backup versions. Moreover, the sparse containers oc-

cur after the expired backups are removed, incurring

expensive overheads for garbage collections.

Unlike existing schemes, we propose to enhance the

physical locality of the backups for better deduplica-

tion, restore, and expired data deletion performance.

We explore and exploit the behaviors of the fragmented

chunks via a heuristic experiment, which traces the

storage path and reference patterns of different chunks

among various backup versions. We observe that high

redundancy arises between adjacent backup versions,

and the chunks not appearing in current backup ver-

sion have a low probability to appear in the subsequent

backup versions. Moreover, in the backup systems, the

newer backup versions are more likely to be restored

than the older versions [21,23,24], which implies that the

high restore performance of the newer backup versions

is more important than that of the older versions.

Based on the observations, we propose an efficient

deduplication scheme with high restore performance

and deduplication ratios, called HiDeStore�. The main

insight is to classify the hot and cold chunks during the

deduplication phase, and respectively store hot and cold

chunks in active and archival containers to enhance the

physical locality. The hot chunks are referred by sub-

sequent backup versions, while the cold chunks have a

low probability to appear in the new backup versions.

Based on the high physical locality of different chunks,

HiDeStore reads hot chunks to restore the new backups,

while directly removing cold chunks for expired version

deletions.

Specifically, the workflow of HiDeStore consists of

three steps. (1) Hot and cold chunks are classified via

the double-hash based fingerprint cache. (2) The con-

tents of different chunks are filtered and respectively

stored in active and archival containers. (3) The recipes

are updated for restoring the original data. We con-

struct a recipe chain to reduce the updating overheads,

�The source code of HiDeStore is available at https://github.com/iotlpf/HiDeStore, Jan. 2023.

Peng-Fei Li et al.: High Physical-Locality Deduplication System 3

and further optimize the process of recipe searching by

periodically eliminating the dependency among recipes.

Compared with state-of-the-art deduplication schemes,

HiDeStore reduces the index lookup overheads by 38%

and improves the restore performance by up to 1.6×.

By leveraging the isolated container deletion algorithm,

HiDeStore becomes efficient to remove the expired ver-

sions without expensive garbage collection efforts, since

the expired chunks are gathered together in archival

containers.

This paper has made significant improvements over

the preliminary version [15] at the following key points.

� Tracing of the storage patterns of different

chunks. We conduct heuristic experiments on multi-

ple workloads to analyze the storage patterns of chunks

in backup systems. The obtained observations moti-

vate us to construct the efficient deduplication system

via enhancing the physical locality for different chunks.

� High deduplication performance with high dedu-

plication ratios. We explore the workload characteris-

tics in backup systems and only cache fingerprints of

hot chunks for index searching, which avoids frequently

accessing the disks and achieves high deduplication per-

formance.

� High restore performance for new backup ver-

sions. Our proposed HiDeStore filters and stores cold

and hot chunks in different containers to enhance the

physical locality, which achieves high restore perfor-

mance for new backup versions, since HiDeStore reads

fewer containers than existing schemes.

� Low overheads to remove expired backups. We

analyze the processes of removing expired data in ex-

isting schemes and observe that existing schemes incur

high overheads in expired data detection and garbage

collections. For high data deletion performance, we

present the isolated container deletion algorithm to en-

able HiDeStore to detect and remove expired containers

with low overheads.

� We add a widely used dataset, i.e., Boost [4,16,19],

to confirm our observations in the backup systems, and

obtain the same observation with other datasets, i.e.,

the adjacent versions are the most similar. Based on

the obtained observations, HiDeStore efficiently identi-

fies and stores different chunks for high physical locality.

� We conduct comprehensive evaluations on five

widely used datasets to show the strengths of HiDeStore

over existing schemes in terms of redundant data dedu-

plication, original data restoring, and expired data dele-

tion.

2 Background

2.1 Workflow of a Deduplication System

The chunk-based deduplication becomes an efficient

technique for backup systems to improve the space uti-

lization efficiency [7–11]. In this paper, we focus on the

in-line deduplication [13,14,16,17,19,21,25,26], i.e., the data

is deduplicated once it is stored.

The workflow of a deduplication system is shown in

Fig. 1. Step 1, the coming data stream is divided into

multiple chunks (e.g., on average 4-8KB [13]) via vari-

ous chunking algorithms, such as TTTD chunking [27],

Rabin-based CDC [9], and FastCDC [28]. Step 2, 20-byte

fingerprints are calculated for the obtained chunks via a

secure hash function, e.g., SHA-1 [12]. It is worth noting

that the probability of a hash collision is much smaller

than that of a hardware error [12]. Step 3, the chunks

with identical fingerprints are duplicate. Some finger-

prints are maintained in the fingerprint cache to accel-

erate the index searching [13,14,29,30]. Step 4, when the

coming fingerprints miss in the cache, the fingerprints

are further searched in the whole fingerprint table on

disks to achieve high deduplication ratios. Step 5, the

unique chunks are stored into typical 4MB containers.

The references (i.e., the fingerprints, chunk sizes and

container IDs) of all chunks are recorded in a recipe [13]

for the data recovery. The data are restored from sys-

tem crashes or version rollbacks [17,18]. Step 6, to re-

store the original data, we read the recipe and obtain

the recorded chunk references. Step 7, chunks are read

according to the recipe and the original data are assem-

bled in a chunk-by-chunk manner.

2.2 Fingerprint Access Bottleneck

In the deduplication phase, we search existing fin-

gerprints to identify whether the coming chunks are

4 J. Comput. Sci. & Technol.

Containers

Store

Update

Prefetch

Read

DRAM HDD

Chunks

Search
Step 1

Step 2
Step 3

Step 4

Step 7

Step 6

Step 5

Data Streams
Fingerprint

cache

Restore
cache

Recipes

Hash
Engine

Fingerprint
Index Table

Fig.1. Workflow of a deduplication system.

duplicate. However, the number of fingerprints propor-

tionally increases with the stored data and the finger-

print table possibly overflows the limited memory, e.g.,

indexing 4TB unique chunks requires at least 20GB to

store the fingerprints. As a result, the fingerprint access

bottleneck occurs when the fingerprint table on disks is

frequently accessed, which significantly decreases the

deduplication performance [13,14].

Existing deduplication systems leverage various ap-

proaches to improve the hit ratio of the fingerprint

cache and avoid expensive I/Os on the disk. Specifi-

cally, some schemes [13,14,25,26] make full use of the lo-

cality characteristic, i.e., the chunks among different

backup streams appear in approximately the same or-

der with a high probability. Thus, the chunks following

the searched chunks are prefetched into the fingerprint

cache during one disk access, which significantly im-

proves the hit ratio. Moreover, only partial indexes

are stored according to the sampling approaches to re-

duce the memory consumption [14,31]. For the work-

loads that have little or no locality, the similarity-based

approaches are proposed [29,30] for better prefetching.

However, we have to make a trade-off between dedu-

plication ratios and throughput, since the efficiency of

existing schemes depends on the locality and similar-

ity of the workloads. Moreover, these schemes overlook

the chunk storage management during the deduplica-

tion phase, and incur the severe chunk fragmentation

problem over time, as shown in Subsection 2.3.

2.3 Chunk Fragmentation Problem

The restore phase reads chunks from different con-

tainers according to the recipe, and assembles the orig-

inal data chunk by chunk. However, The restore per-

formance suffers from the chunk fragmentation prob-

lem [6,16–19,22], i.e., the chunks of the same data stream

are scattered into various containers, incurring frequent

disk accesses during the recovery phase. The main rea-

son is that the identified duplicate chunks are not stored

together with unique chunks when a data stream is pro-

cessed.

Fig. 2 illustrates how the chunk fragmentation prob-

lem arises with the assumption that each container con-

tains at most three chunks. During the deduplication

phase, the unique chunks are stored in containers when

the chunks arrive. The chunks belonging to the first

data stream are stored in containers 1, 2 and 3. For

the second data stream, the identified duplicate chunks

(e.g., chunks A,C,D,E, F,G,H) are not stored, while

the unique chunks (e.g., chunks I, J,K,L) are stored in

containers 4 and 5. As a result, we need to access five

containers to restore the second backup stream. The

same deduplication mechanism is applied to the third

data stream, and we need to access six different con-

tainers to restore the third data stream. Such chunk

fragmentation problem is exacerbated over time when

more backup versions are stored.

Some schemes are motivated from the observation

that the order to read chunks is the same as that to

store the chunks, and propose caching-based schemes

to improve the restore performance. Hence, we cache a

sequence of chunks in one disk access to speed up the

chunk reading. For example, if container 1 is cached

when chunk A is read, chunk C will hit the cache since

chunk C has already been contained in container 1,

avoiding re-accessing the disk. Moreover, some schemes

propose a look-ahead window to assemble the chunks

belonging to the same container [18,19], which avoids

Peng-Fei Li et al.: High Physical-Locality Deduplication System 5

6

Version 1

Version 2

Version 3

54321 1' 2'

A

B

C

A

B

C

A

C

A

C

D

E

F

D

E

F

E

F

E

F

G

H

G

H

I

J

K

I

J

K

LL M

N

M

N

Sparse Containers

 A B C D B E F A G H E

 A I C E J E F K G H L

 A I C M J F K G N L A

Containers

Fig.2. Chunk fragmentation problem [15]. The order of versions is determined by the generation time.

the frequent accesses to the same container. However,

the chunk fragmentation problem is exacerbated when

more backup versions are stored, since the chunks are

scattered into a large number of containers and exhibit

poor physical locality.

A more promising way to improve the restore per-

formance is to enhance the physical locality of the

backup streams by rewriting some duplicate chunks.

For example, we only need to read four containers when

the chunks of the third backup stream are stored to-

gether, rather than reading six containers in Fig. 2.

Various rewriting schemes leverage different approaches

to determine which chunks to be rewritten, such as

Content-Based Rewriting algorithm (CBR) [17], chunk

Fragmentation Level (CFL) [23], and Capping-based

schemes [18,22]. Moreover, Fu et al. [16] exploit the his-

toric information to rewrite the chunks. However, these

rewriting schemes decrease the deduplication ratios due

to the existence of duplicate chunks, and the duplicate

chunks consume much available space. For example,

40GB extra space is consumed for 4TB unique data to

store the rewritten data even if the deduplication ratio

decreases by 1%.

2.4 Garbage Collections

Physical fragmented chunks often result in high

overheads for garbage collections when expired versions

are removed, due to the time-consuming phase of iden-

tifying the chunks that are only referred by the expired

backups. Moreover, the chunks of different versions are

interleaved together, requiring many garbage collection

efforts to reclaim the space for the deleted chunks. As

shown in Fig. 2, only chunksB andD are removed when

backup version 1 is removed, since only chunks B andD

are not referred by other versions. However, identifying

chunks B and D becomes a bottleneck due to the com-

plicated reference management for chunks. Moreover,

removing fragmented chunks results in sparse contain-

ers, such as containers 1’ and 2’ in Fig. 2, and these

sparse containers waste much storage space.

In order to remove the expired backups, existing

approaches leverage offline and inline algorithms for

backup deletions [16,32,33], e.g., all fingerprints of chunks

are traversed when the system is idle, and additional

metadata for the chunk references is maintained during

the deduplication phase. However, these approaches in-

cur high time and space overheads, due to the needs of

managing the metadata of chunk references. Further-

more, extra efforts are consumed on merging the sparse

containers after the expired backups are removed.

3 Observations on Fragmented Chunks

To gain more insights about the fragmented chunks,

we conduct a heuristic experiment on five widely used

datasets, including Linux Kernel, Gcc, Fslhomes, Ma-

cos, and Boost [4,16,19,22,30]. More details about the used

workloads are shown in Section 5. The heuristic exper-

iment aims to obtain the patterns of chunk references

among different backup versions, where the chunk ref-

erence points to the container that contains the corre-

sponding chunk.

We conduct the heuristic experiment based on a

widely used deduplication platform, called Destor [4].

Specifically, we assign an infinite buffer to store the

metadata of chunks, including fingerprints, chunk size

and a version tag, where the version tag indicates the

most recent backup version containing the chunk. For

example, the version tags of all chunks are set to V 1

6 J. Comput. Sci. & Technol.

0

350

700

1050

1400

1750

2100

1 2 3 4 5 6 7 8 9 10

N
um

be
r o

f C
hu

nk
s

Backup Version

V1 V2 V3 V4
V5 V6 V7 V8

(a)

100

1000

10000

100000

1 2 3 4 5 6 7 8 9 10

N
um

be
r o

f C
hu

nk
s (

lo
gN

)

Bckup Version

V1 V2 V3 V4
V5 V6 V7 V8

(b)

1000

10000

100000

1000000

10000000

1 2 3 4 5 6 7 8 9 10

N
um

be
r o

f C
hu

nk
s (

lo
gN

)

Backup Version

V1 V2 V3 V4
V5 V6 V7 V8

(c)

3000

30000

300000

3000000

30000000

1 2 3 4 5 6 7 8 9 10

N
um

be
r o

f C
hu

nk
s (

lo
gN

)

Backup Version

V1 V2 V3 V4
V5 V6 V7 V8

(d)

0

20000

40000

60000

80000

1 2 3 4 5 6 7 8 9 10

N
um

be
r o

f C
hu

nk
s

Backup Version

V1 V2 V3 V4
V5 V6 V7 V8

(e)

Fig.3. Chunk distributions of different workloads. (a) Linux Kernel. (b) Gcc. (c) Fslhomes. (d) Macos. (e) Boost.

when the first backup version is deduplicated. When

the chunks of the second backup version have matches

within the buffer, we modify the version tags of these

chunks to V 2 to indicate that these chunks are recently

contained in the backup version 2. At the same time,

the unique chunks in the second backup version are

stored in the buffer with the version tag V 2. The

remaining chunks (i.e., not appearing in the second

backup version) in the buffer keep the version tag V 1,

indicating that these chunks are recently contained in

the backup version 1. The heuristic experiment pro-

cesses all data in the same way. After all backup ver-

sions are processed, the version tags indicate the newest

backup versions containing the chunks.

To figure out the reference patterns of different

backup versions, we count the numbers of various ver-

sion tags after each backup version is processed, and

the results are shown in Fig. 3. As shown in Fig. 3(a),

there are 1,557 V 1 chunks after the first backup ver-

sion is deduplicated. The number of V 1 chunks de-

creases to 734 after the second backup version is pro-

cessed and almost no longer decreases in subsequent

backup versions. Such results indicate that these 734

chunks are not contained by the subsequent backup

versions, which incurs chunk fragmentation issues over

time, since 823 V 2 chunks are interleaved together with

734 V 1 chunks. We have the same observations on other

chunks and workloads, as shown in Fig. 3(b), Fig. 3(c),

and Fig. 3(e). The observation on Macos is a little

different, as shown in Fig. 3(d). For example, the V 1

chunks not only decrease in the second backup version,

but also decrease in the third backup version. However,

V 1 chunks hardly decrease after these subsequent two

backup versions are processed.

From the experimental results in Fig. 3, we have two

important observations. First, the adjacent backup ver-

sions are the most similar. Second, the chunks not ap-

pearing in the current backup version have a low proba-

bility to appear in subsequent backup versions [15]. The

real-world applications also offer insights to prove these

observations [21,23,24], e.g., a new version of software is

upgraded from the old versions. The new version con-

tains most contents of the old versions for software com-

patibility, and develops some new functions for better

usage. Moreover, the system snapshots are generated

along with time, and a new snapshot is generated from

the old ones.

The obtained observations motivate us to store the

chunks of new backup versions closely to enhance the

physical locality for high restore performance, e.g., all

Peng-Fei Li et al.: High Physical-Locality Deduplication System 7

Update
Prefetch

Update

HDDSearch Active Containers
(Hot Chunks)

Archival Containers
(Cold Chunks)

Filter

Read

Read

Data Streams

Hash Engine

Fingerprint Cache

Restore Cache

DRAM

ChunksStep 1

Step 2 Step 3

Step 9

Step 4 Step 5

Step 6

Step 7

Step 8

Recipes

Fig.4. System overview of HiDeStore.

the V 8 chunks are stored closely to improve the phys-

ical locality of version 8. Although the restore perfor-

mance of the old version decreases, such design is feasi-

ble since existing studies [21,23,24] demonstrate that the

newer backup versions are more likely to be restored

from the system crashes or version rollbacks than the

older backup versions. It is worth noting that all the

observations come from backup systems, e.g., the sys-

tems store different versions of the software (such as

Gcc, Linux Kernel) and the snapshots. We have the

same observations on other workloads, e.g., Gdb and

Cmake [4,16,30].

4 Design of HiDeStore

Unlike existing schemes, we propose HiDeStore to

efficiently store chunks with high physical locality for

high deduplication and restore performance. The work-

flow of our design is viewed as a reverse inline dedupli-

cation system. One of the key insights is to classify the

hot and cold chunks during the deduplication phase.

The chunks having a high probability to appear in new

backup versions are hot chunks, while other chunks be-

come cold chunks. Another insight is to respectively

store the hot and cold chunks into active and archival

containers to enhance the physical locality. By group-

ing the chunks of new backup versions closely, the chunk

fragmentation problem is alleviated and the restore per-

formance is improved. Moreover, we directly remove

the expired containers without expensive garbage col-

lections.

The system overview of HiDeStore is shown in

Fig. 4. The differences with existing schemes are that

HiDeStore identifies hot and cold chunks in the pro-

posed fingerprint cache with double hashes, and stores

chunks via a filter to gather different chunks in different

containers. Specifically, the fingerprint cache identifies

duplicate chunks when the coming chunks are matched

within the fingerprint cache. The chunks not appearing

in the current backup version become cold and are re-

moved from the fingerprint cache after current backup

version is processed. To improve the physical locality,

HiDeStore temporarily stores the coming hot chunks

in active containers and moves cold chunks to archival

containers. In the context of our paper, the active and

archival containers are stored in different locations to

respectively enhance the physical locality for hot and

cold chunks. After the cold chunks are kicked out from

the active containers, HiDeStore merges the sparse ac-

tive containers to improve the storage efficiency, and

such design incurs acceptable overheads since the step

of merging space containers is carried out offline. More

details are shown in Subsections 4.1 and 4.2.

Moreover, the recipe records the locations of chunks

when the coming chunks are stored in different active

containers, and the recipe needs to be updated when

some chunks are moved into archival containers. How-

ever, some chunks appear in multiple backup versions,

incurring high overheads to update all the involved

recipes. Instead of updating all recipes, HiDeStore

proposes the recipe chain updating algorithm to only

update the recipe of the previous one backup version,

and a recipe chain is generated among multiple backup

versions. To reduce the overheads of reading recipes,

HiDeStore periodically eliminates the dependency of

the recipe chain by pointing the chunk references to

the archival containers, as shown in Subsection 4.3. The

original data streams are restored by reading chunks ac-

cording to the recipes, and the workflow of restoring is

shown in Subsection 4.4. Moreover, it becomes easy for

8 J. Comput. Sci. & Technol.

HiDeStore to remove expired backups via the proposed

isolated container deletion algorithm, since the corre-

sponding cold chunks are stored together in archival

containers, as shown in Subsection 4.5.

4.1 Fingerprint Cache with Double Hash

The traditional fingerprint cache becomes inefficient

to exploit the observations from Fig. 3, since the cache

fails to identify the hot and cold chunks during the

deduplication phase. Moreover, the traditional finger-

print cache prefetches chunks according to the logical

locality, and becomes inefficient to provide sufficient

space for hot chunks since the cold chunks are also

prefetched in the cache.

The observations from Fig. 3 indicate that cold

chunks have a negligible probability to appear in sub-

sequent backup versions. Hence, we only need to store

hot chunks in the fingerprint cache. Unlike existing

schemes, we propose a fingerprint cache with two hash

tables to classify the hot and cold chunks. In the dedu-

plication phase, HiDeStore only searches hot chunks in

the fingerprint cache and overlooks cold chunks to avoid

the expensive disk accesses. The two hash tables are

respectively represented as T1 and T2, each of which

contains fingerprints as keys and metadata of chunks as

values, where the metadata consists of the chunk size

and the IDs of active containers being stored (abbrevi-

ated as CIDs). Before current backup version (repre-

sented as CV) is processed, T1 caches the hot chunks

(i.e., the chunks of previous backup version) and T2 is

empty. During the deduplication phase, the identified

unique chunks are directly inserted into T2, while the

chunks hitting T1 are removed from T1 and inserted

into T2. After CV is processed, the chunks remaining

in T1 become cold chunks since these chunks do not

appear in CV , while the chunks in T2 are hot chunks

and used to deduplicate subsequent backup versions.

3n7sdg Real Data

4d5lg6 Real Data

6nu0mr Real Data

Fingerprints CID Size
4d5lg6 1 4.2KB
6fykh8 1 3.8KB

5shop3 5 4.3KB

Fingerprints CID Size
4d5lg6 1 4.2KB
6numr 1 3.9KB

3n7sdg 3 4.4KB

ggggggggg4444d4d4d4d4dd5d5d5d5d55l5l5llglglglglgggg6666666 1111 4444.4.4.4.222222K2K2K2KKKKKKKKBBKBBBBBB4444d4d4d4d4d5d5d5d5d5l5l5llglglglglggg66666666 11111 44444444 22222K2K2K2K2KKKKKKBBBKBKBBBB

Fingerprint CacheChunk A

Chunk B

Chunk C

Hash Table T1 Hash Table T2

Remove
and Insert

...

Fig.5. Structure of the fingerprint cache [15].

The workflow of the proposed double-hash finger-

print cache is illustrated in Fig. 5, which totally con-

tains three kinds of cases to process the coming chunks.

In the first case, chunk A is identified as a unique chunk

due to not hitting both T1 and T2. We insert the fin-

gerprints of chunk A into T2 and store the content of

chunk A into an active container, as shown in Subsec-

tion 4.2. In the second case, chunk B is identified as

a duplicate chunk due to hitting T1. Chunk B is also

classified as a hot chunk due to having a high prob-

ability to appear in subsequent backup versions. In

this case, we move the fingerprints of chunk B from T1

to T2 to process the subsequent backup versions. It

is worth noting that the content of chunk B has been

stored in an active container, since chunk B is a dupli-

cate chunk. In the third case, chunk C is also identified

as a duplicate chunk due to hitting T2. The metadata

and content of chunk C have been correctly stored in

T2 and active containers. After CV is processed, the

chunks in T1 become cold and their contents are moved

from active containers to archival containers, as shown

in Subsection 4.2. Finally, HiDeStore leverages the hot

chunks to deduplicate the subsequent backup versions,

which is simply implemented by changing T2 to T1.

We add another hash table to process the workload

of Macos, which is similar with the double-hash finger-

print cache to identify and classify hot and cold chunks.

Since we use the fingerprints calculated via SHA-1 as

keys in the hash table, the probability of a hash collision

is much smaller than that of a hardware error [13]. It is

worth noting that the sizes of T1 and T2 are bounded to

the metadata size of one (or two) backup version(s), and

hardly overflow the limited memory. Take the data in

Macos (a very large workload) as an example, i.e., one

version contains about 5 million chunks and the total

size of T2 is about 100MB (5,000,000*28byte), where

28-byte metadata consists of 20-byte fingerprints, a 4-

byte CID, and a 4-byte chunk size, as shown in Fig. 5.

Compared with traditional deduplication schemes,

HiDeStore significantly improves the deduplication

throughput due to avoiding the expensive disk accesses.

Moreover, HiDeStore achieves high deduplication ra-

Peng-Fei Li et al.: High Physical-Locality Deduplication System 9

tios as shown in Subsection 5.2, since only hot chunks

have a high probability to appear in the subsequent

backup versions and searching hot chunks in the finger-

print cache is efficient for high deduplication ratios.

4.2 Chunk Filter to Separate Chunks

The traditional deduplication systems directly write

the incoming unique chunks into containers for the

archival purpose, which however incurs the severe

chunk fragmentation problem as shown in Fig. 2. Un-

like existing schemes, HiDeStore changes the storage

paths for the coming chunks, and separately stores hot

and cold chunks into active and archival containers.

The structures of active and archival containers are the

same, as shown in Fig. 6. A container contains the

metadata and real data of chunks, where the metadata

consists of the container ID, the total data size and the

hash table for the contained chunks. Each container is

4MB like traditional containers to achieve high storage

efficiency.

Specifically, the incoming unique chunks are tem-

porarily stored in active containers during the dedupli-

cation phase, served as hot chunks. After one backup

version is deduplicated, the cold chunks are identified

by the fingerprint cache and moved from active contain-

ers to archival containers. The process of chunk moving

works like a filter, as shown in Fig. 4. However, some

active containers become sparse after the cold chunks

are removed, and we need to compact the sparse con-

tainers to improve the space utilization. We cannot

directly reuse the space of the removed chunks due to

the unequal sizes. Specifically, the deduplication sys-

tems generally use content-based chunking algorithms

to avoid the boundary-shift problem [9,34], which gener-

ates variable-length chunks. For example, 7.3KB space

in total is released in container 1 after the chunks of

3.6KB and 3.7KB are removed, as shown in Fig. 6.

However, we cannot insert chunk E with 4.2KB into

container 1 due to the discontinuous space. Although

chunk F with 3.1KB can be inserted into container 1,

a large amount of fragmented space is generated and

wasted.

1 Metadata 3.6KB 4.2KB 3.7KB 4.1KB ···

2 Metadata 3.8KB 3.6KB 3.5KB 4.0KB ···

3 Metadata 4.2KB 4.1KB 3.6KB ···

4.2KB 3.1KBChunk E Chunk F

CID

Sparse Containers

Compact

Fig.6. Sparse containers compaction.

Instead, HiDeStore merges and compacts the sparse

containers to reuse the fragmented space in active con-

tainers. Specifically, HiDeStore calculates the space uti-

lization for the active containers after the cold chunks

are removed, where the space utilization is defined as

the used size divided by the total size. The container

with a low space utilization is identified as a sparse

container, requiring to be merged. The process of com-

pacting sparse containers is illustrated in Fig. 6, which

writes the chunks of two (or more) sparse containers

into the same container without considering the order,

since all these chunks are hot chunks and prefetched

together during the reading phase. The merged con-

tainer is stored on disk by overwriting the sparse con-

tainer whose CID is the smallest to improve the space

utilization.

To avoid the overheads of moving cold chunks from

active containers to archival containers, HiDeStore im-

plements the chunk moving phase in a pipeline man-

ner with high parallelism. The deduplication system

continues to process the next backup version with-

out waiting for moving chunks, since the hot and cold

chunks have been identified in the proposed double-

hash fingerprint cache and the cold chunks are moved

to archival containers offline. By separately stor-

ing different chunks in active and archival containers,

HiDeStore significantly improves the physical locality of

new backup versions. Compared with existing schemes,

HiDeStore achieves higher restore performance due to

incurring fewer expensive disk accesses.

4.3 Recipes Updating

The deduplication systems record all chunk refer-

ences of the original data stream in the recipe for future

restoring, where a chunk reference consists of the fin-

gerprints, the chunk size and the ID of the correspond-

ing container (represented as CID). In HiDeStore, the

10 J. Comput. Sci. & Technol.

chunks are temporarily stored in active containers and

moved to archival containers when the chunks become

cold. To exactly record the locations for chunks, the

recipes need to be updated when the chunks are moved

to different containers. However, we have to check all

recipes to determine which one needs to be updated,

which incurs high overheads due to the expensive disk

accesses.

Recipe of Version 1
Active Containers

Archival Containers

StoreRecipe of Version 2

Recipe of Version 3

Recipe of Version 4

Fig.7. Recipes updating. The blue and red chunks are respec-
tively stored in archival and active containers.

Algorithm 1 Recipes Updating [15]

Output: Recipe R[N], Hash Table T
Input: Updated Recipe R[N]
1: int n = N − 1; // n is the previous backup version
2: for all chunk c in R[n] do
3: if c.CID > 0 then
4: insert chunk c into Hash Table T
5: end if
6: end for
7: n−−; // update the recipes of older backup versions
8: while recipe R[n] exist do
9: for all chunk c in R[n] do
10: if c.CID < 0 then
11: if chunk c matches chunk p in T then
12: c.CID = p.CID
13: else
14: c.CID = −(n+ 1)
15: end if
16: end if
17: if c.CID > 0 then
18: insert chunk c into a new Hash Table T ′
19: end if
20: end for
21: HashTableDestroy(T) and T = T ′;
22: n−−; // update the recipes of older backup versions
23: end while

We propose a recipe chain updating algorithm to re-

duce the overheads of updating recipes, which only up-

dates the recipe of previous one backup version, rather

than checking all recipes. For the case of Macos, we

update the previous two recipes. The recipe chain up-

dating algorithm is illustrated in Fig. 7, which shows

the results after backup version V4 is processed. Since

V4 is the newest backup version and all chunks are hot

chunks, the recipe R4 of V4 records CIDs of all chunks

as 0, indicating that all chunks are stored in active con-

tainers. HiDeStore obtains the specific active container

by checking the fingerprint cache. At the same time,

we update R3 since some chunks of V3 become cold

and are moved to archival containers, which is imple-

mented by modifying CIDs of these chunks to the IDs

of the corresponding archival containers. The CIDs of

remaining chunks in R3 are modified to the negative ID

of V4, e.g., the CID −4 indicates that we need to fur-

ther check R4 to find the final chunk locations, while the

CID 4 indicates that the chunk is stored in the archival

container 4.

As a result, all recipes form a chain as shown in

Fig. 7. However, determining the locations of chunks in-

curs high overheads due to the needs of checking multi-

ple recipes in the recipe chain. To eliminate the depen-

dency among recipes, HiDeStore periodically updates

the chunk references via Algorithm 1, which updates

recipes from back to front. We use N to represent

the newest backup version, while using n to represent

the previous backup version. Algorithm 1 updates the

recipes from RN−1, since the newest recipe RN stores

all chunks in active containers and does not need to

read another recipe to determine the chunk locations.

Specifically, HiDeStore reads the recipe RN−1 and in-

serts all positive CIDs into the hash table T (Lines 1-6),

indicating that the corresponding chunks are stored in

archival containers. The hash table T is used to update

the previous recipe RN−2, which modifies the negative

CID of a chunk in RN−2 to the positive CID in T when

the chunk has a match in T (Lines 11-12). The remain-

ing negative CIDs are modified to −(n + 1) (Lines 13-

14), indicating that the chunk references are obtained

from the next recipe. At the same time, HiDeStore in-

serts the positive CIDs of RN−2 into a new hash table

T ′ (Lines 17-19) to update the previous recipe RN−3

(Line 22). Finally, all recipes point to RN to obtain

the locations of chunks. It is worth noting that −N in

the recipe indicates that the chunks are stored in active

containers. Moreover, HiDeStore updates recipes from

RN next time, rather than reading all the recipes to

eliminate the recipe chain.

Updating recipes incurs negligible overheads due to

the small sizes of the recipe files. The recipes only

Peng-Fei Li et al.: High Physical-Locality Deduplication System 11

record the metadata of chunks, as shown in Subsec-

tion 5.4. Moreover, HiDeStore updates the recipes of-

fline to avoid blocking the deduplication system.

4.4 Restore Phase

The original data are restored according to the

chunk references in recipes. In traditional deduplication

systems, all CIDs in recipes are positive numbers and

indicate the referred containers. However, HiDeStore

contains 3 types of CIDs in recipes, including positive

CIDs, 0, and negative CIDs. The positive CIDs and

negative CIDs respectively indicate the archival con-

tainers and the backup versions, while 0 indicates the

active containers. In this case, we update recipes ac-

cording to Algorithm 1 to obtain the locations for all

chunks, and then read the contents of chunks from the

active and archival containers.

The obtained chunks assemble the original data

stream in the restore cache via the chunk- and

container-based approaches [16–19,21]. Compared with

existing schemes, HiDeStore enhances the physical lo-

cality for the new backup versions and delivers higher

restore throughput, since fewer disk accesses are in-

curred for chunk reading.

4.5 Removing of Expired Versions

In deduplication systems, the expired versions are

removed for saving space [16,24]. However, we cannot

directly remove all the chunks of the expired version,

since some chunks may also belong to other backup ver-

sions. We need to detect the chunks that only belong

to the expired version before the chunks are removed,

which however incurs high overheads due to the needs

of checking all backup versions. Moreover, the chunks

of different versions are interleaved together, as shown

in Fig. 2, requiring some garbage collection efforts to re-

claim the space for the deleted chunks. The challenge is

to remove the chunks that are only referred by expired

versions while not incurring a large number of efforts

for garbage collections. In practice, HiDeStore is effi-

cient to carry out chunk detection and garbage collec-

tions, since the chunks of different backup versions are

stored in different containers. Unlike existing schemes

that count the references of chunks, HiDeStore lever-

ages the isolated container deletion algorithm (ICDA)

to remove the containers that are only referred by the

expired backup versions.

6

Version 1

Version 2

Version 3

54321

A

C

F

A

C

F

G

I

G

I

J

K

L

J

K

L

M

N

M

N

B

D

E

B

D

E

HH

Active Containers Archival Containers

 A B C D B E F A G H E

 A I C E J E F K G H L

 A I C M J F K G N L A

Fig.8. Removing of expired data.

The methodology of ICDA is based on the classi-

fication of hot and cold chunks. The different chunks

are identified via the proposed fingerprint cache and

respectively stored in active and archival containers.

The cold chunks of the previous backup versions are

not referred by the subsequent backup versions accord-

ing to the observation from Fig. 3. Instead, the cold

chunks are physically gathered in the same archival con-

tainers. As shown in Fig. 8, we temporarily store hot

chunks in active containers when different backup ver-

sions are processed. At the beginning, all chunks of

backup version 1 are stored in active containers, since

these chunks have a high probability to appear in sub-

sequent backup versions. When we process the backup

versions 2 and 3, some hot chunks becomes cold, e.g.,

chunks B,D,E, andH. In this case, we move these cold

chunks from active containers to the archival contain-

ers. Obviously, the cold chunks (e.g., chunks B,D,E,

and H) are not referred by the version 3. We directly

remove the archival containers 5 and 6 when the expired

versions 1 and 2 are deleted, avoiding the expensive ex-

pired data detection and garbage collections, due to the

high physically locality of the expired data.

However, in the case where only the backup ver-

sion 1 is deleted, we cannot directly remove the archival

container 5, since the chunk E is also referred by the

non-expired backup version 2. To efficiently detect the

archival containers that are only referred by the expired

backup versions, ICDA maintains extra 8B metadata in

the container to record the ID of the newest backup ver-

sion (represented as BID). The container whose BID is

12 J. Comput. Sci. & Technol.

not larger than that of the expired version is the expired

container. We directly remove these expired containers

without the needs for expensive chunk detection and

garbage collections, since these containers are not re-

ferred by the non-expired backup versions.

Unlike existing schemes that detect expired backup

versions chunk by chunk, ICDA removes the expired

data in the granularity of containers. By physically

grouping the expired chunks together in the archival

containers, ICDA becomes efficient to remove the ex-

pired data and reclaim continuous storage space for fur-

ther usage.

5 Performance Evaluation

Since the traditional deduplication schemes sepa-

rately achieve high performance in terms of dedupli-

cation and restore, we respectively select the state-of-

the-art schemes for comparisons.

5.1 Experimental Setup

The prototype of HiDeStore is implemented based

on a widely used deduplication framework, called

Destor [4], which processes data in a pipeline with high

parallelism. Unlike traditional deduplication schemes,

HiDeStore modifies the indexing, rewritting, and stor-

ing phases to identify and classify the hot and cold

chunks. To facilitate fair comparisons, HiDeStore uses

a TTTD chunking algorithm [27] and SHA-1 hash func-

tions like other schemes in the chunking and hash-

ing phases to generate fingerprints for further dedupli-

caiton. Moreover, HiDeStore stores the fingerprints in

the hash tables for low hash collisions [12].

To show the efficiency of HiDeStore in terms of

deduplication performance, we select state-of-the-art

locality- and similarity-based schemes for comparisons,

including DDFS [13], Sparse Index [14] and SiLo [30].

DDFS removes all duplicate chunks by searching the

whole fingerprint table to achieve the highest dedupli-

cation ratio. Sparse Index samples parts of fingerprints

for caching to reduce the overheads of searching the

whole fingerprint table, which significantly reduces the

memory consumption for the fingerprint cache. By ex-

ploiting the similarity of chunk streams, SiLo further

improves the throughput for deduplication. Moreover,

to show the efficiency of HiDeStore in terms of restore

performance, we respectively compare state-of-the-art

caching- and rewriting-based schemes, including Cap-

ping [18], ALACC [19], and FBW [22]. We directly run

the source codes of ALACC for evaluations, while re-

implementing FBW according to the original work [22]

due to the lack of the open source codes. We config-

ure all schemes with the reported parameters from the

original work to achieve the best results.

Table 1. Details of datasets

Dataset Total Size Total Versions Dedup Ratio
Linux Kernel� 64GB 158 91.53%

Gcc� 105GB 175 78.75%
Boost� 61GB 38 83.42%

Fslhomes� 920GB 102 92.17%
Macos� 1.2TB 25 89.56%

We conduct experimental evaluations on five widely

used datasets [4,16,19,22,30], and the details of these

datasets are shown in Table 1. We conduct all exper-

iments on a Linux server with kernel version v4.4.114.

The server is equipped with two 8-core Intel Xeon E5-

2620 v4 @2.10 GHz CPUs (each core with 32KB L1

instruction cache, 32KB L1 data cache, and 256KB L2

cache), 20MB last level cache and 24GB DRAM.

5.2 Performance in Deduplication Phase

In general, the deduplication system needs to be

examined in three performance metrics, including the

deduplication ratio, the deduplication throughput and

the memory consumption for the index table.

5.2.1 Deduplication Ratio

The deduplication ratio examines the amount of

data reduced by the deduplication system, which is

calculated via dividing the size of eliminated data by

the total data size. The deduplication ratios of differ-

ent deduplication schemes are shown in Fig. 9. From

�Linux Kernel, https://www.kernel.org, Sep. 2022.
�Gcc, https://ftp.gnu.org/gnu/gcc, Jul. 2022.
�Boost, https://www.boost.org, Jan. 2023.
�Snapshots, https://tracer.filesystems.org, Jul. 2022.

Peng-Fei Li et al.: High Physical-Locality Deduplication System 13

Fig.9. Deduplication ratios. Fig.10. Index table overheads.

the results, we observe that the deduplication ratio of

DDFS is the highest, since DDFS removes all identified

duplicate data by searching the whole fingerprint ta-

ble. Unlike DDFS, Sparse Index and SiLo only search

the cached fingerprints in memory to reduce the over-

heads of frequent disk accessing, which however de-

creases some deduplication ratios since some duplicate

chunks are overlooked. Specifically, Sparse Index and

SiLo group multiple chunks into segments and sample

partial chunks as features. Two segments sharing the

same features are identified as similar segments. Sparse

Index and SiLo only search the similar segments to

identify the duplicate chunks. However, some duplicate

chunks in the segments are not sampled as features. As

a result, these duplicate chunks are not searched dur-

ing the deduplication phase and result in low dedupli-

cation ratios. Although configuring a large sampling

ratio achieves a high deduplication ratio, more memory

is consumed for fingerprint caching and longer latency

is incurred for features searching. Moreover, we observe

that the deduplication ratio of HiDeStore is almost the

same with that of DDFS, since HiDeStore caches the

chunks that have high probabilities to be deduplicated.

These chunks are identified via our proposed double-

hash fingerprint cache, which fully exploits the obser-

vations from Fig. 3, i.e., only the hot chunks appear

in the subsequent backup versions. By searching the

hot chunks, HiDeStore efficiently identifies the dupli-

cate chunks.

Moreover, we also evaluate the deduplication ratios

for the rewriting schemes, and the results are shown

in Fig. 9. We observe that the deduplication ratios

of the rewriting schemes are lower than those of other

schemes, since the stored duplicate chunks occupy the

available storage space and decrease the storage effi-

ciency. Moreover, the rewriting schemes further de-

crease the deduplication ratios when more data are pro-

cessed due to the existence of more duplicate chunks.

5.2.2 Deduplication Throughput

The experimental platform, i.e., Destor [4], evaluates

the number of the lookup requests to the disk to show

the overheads of the deduplication phase. Specifically,

Destor maintains the whole fingerprint table on disk

for fingerprint searching, while caching parts of finger-

prints in memory to accelerate the fingerprint searching

phase. Hence, a large number of the lookup requests

for the whole fingerprint table represent the high over-

head of accessing disk, which delivers low deduplication

throughput due to the expensive disk I/Os. We evalu-

ate the lookup requests per GB like Destor to show the

deduplication throughput of different schemes, where

the lookup requests per GB are defined as the num-

ber of lookup requests for the whole fingerprint table

when 1GB data are processed. Unlike conventional

schemes, HiDeStore identifies and classifies the hot and

cold chunks during the deduplication phase. All the

hot chunks are prefetched in the pringerprint cache

before the deduplication phase begins, and HiDeStore

only searches the cached hot chunks to avoid the high

overheads of frequent disk accessing. We calculate the

lookup requests of HiDeStore with the same unit size as

the conventional schemes to facilitate fair comparisons,

and the results are shown in Fig. 11.

From the results, we observe that the lookup re-

quests of HiDeStore are the lowest among all schemes.

Specifically, HiDeStore respectively reduces the lookup

overheads by up to 140%, 50%, and 24% than DDFS,

Sparse Index, and SiLo. That is because HiDeStore

14 J. Comput. Sci. & Technol.

0

200

400

600

800

1000

1 2 3 4 5 6 7 8 9 10

Lo
ok

up
 R

eq
ue

sts
 p

er
 G

B

Backup Version

DDFS Sparse Index SiLo HiDeStore

(a)

0

150

300

450

600

1 2 3 4 5 6 7 8 9 10

Lo
ok

up
 R

eq
ue

sts
 p

er
 G

B

Backup Version

DDFS Sparse Index SiLo HiDeStore

(b)

0

75

150

225

300

375

1 2 3 4 5 6 7 8 9 10

Lo
ok

up
 R

eq
ue

sts
 p

er
 G

B

Backup Version

DDFS Sparse Index SiLo HiDeStore

(c)

0

300

600

900

1200

1 2 3 4 5 6 7 8 9 10

Lo
ok

up
 R

eq
ue

sts
 p

er
 G

B

Backup Version

DDFS Sparse Index SiLo HiDeStore

(d)

0

300

600

900

1200

1 2 3 4 5 6 7 8 9 10

Lo
ok

up
 R

eq
ue

sts
 p

er
 G

B
Backup Version

DDFS Sparse Index SiLo HiDeStore

(e)

Fig.11. Lookup overheads on different workloads. (a) Linux Kernel. (b) Gcc. (c) Fslhomes. (d) Macos. (e) Boost.

only searches the hot chunks in the fingerprint cache,

and the duplicate chunks have a high probability to

match with these hot chunks according to the observa-

tions from Fig. 3. By avoiding the needs of frequently

accessing the whole fingerprint table on disk, HiDeStore

significantly reduces the overheads of fingerprint search-

ing and achieves high deduplication throughput.

From the results in Fig. 11(d), we observe that

HiDeStore incurs higher lookup overhead than SiLo on

Macos, because HiDeStore prefetches the chunks of last

two backup versions in the fingerprint cache. However,

it is worth noting that the hot chunks of last two ver-

sions are prefetched in the fingerprint cache before the

next backup version is processed. The lookup over-

heads on Macos incurred by HiDeStore is negligible,

since the prefetching of HiDeStore does not block the

deduplication phase. Moreover, HiDeStore sequentially

prefetches fingerprints from the recipe, which is more

efficient than traditional deduplication schemes due to

the efficient sequential read performance.

5.2.3 Space Consumption for Fingerprint Table

The deduplication system stores the fingerprints in

a hash table for further deduplication, which identifies

and removes the duplicate chunk when the fingerprint

table has a match with the coming chunk. The tra-

ditional deduplication schemes maintain all or sample

parts of fingerprints in the fingerprint table, depending

on the sampling ratios. Unlike the traditional dedu-

plication schemes, HiDeStore directly reads hot chunks

from the recipe of the previous backup version, avoid-

ing constructing an extra fingerprint table to store the

metadata, and hence showing significant strengths over

existing schemes. We use the same metric with exist-

ing schemes [4,30], i.e., space overhead per MB(B) [30],

to evaluate the space consumption for the fingerprint

table, where the space overhead per MB is defined as

the required space for the indexes to deduplicate 1MB

data.

We evaluate the space overhead per MB(B) for the

fingerprint tables of all schemes, and the results are

shown in Fig. 10. DDFS incurs the highest space con-

sumption for the fingerprint table, since DDFS stores

all fingerprints of unique chunks for exact deduplica-

tion. The space consumption is high when a large num-

ber of small files exist in the processed dataset, since

a large number of chunks are generated. To reduce

the space consumption of the fingerprint table, Sparse

Index and SiLo leverage different sampling approaches

and ratios to maintain parts of the fingerprints for near-

exact deduplication, and outperform DDFS by up to

Peng-Fei Li et al.: High Physical-Locality Deduplication System 15

0

1

2

3

4

1 2 3 4 5 6 7 8 9 10

Sp
ee

d
Fa

ct
or

Backup Version

Baseline Capping
LBW+ALACC HiDeStore

(a)

0
0.5

1
1.5

2
2.5

3
3.5

1 2 3 4 5 6 7 8 9 10

Sp
ee

d
Fa

ct
or

Backup Version

Baseline Capping
LBW+ALACC HiDeStore

(b)

3.5

4

4.5

5

5.5

1 2 3 4 5 6 7 8 9 10

Sp
ee

d
Fa

ct
or

Backup Version

Baseline Capping
LBW+ALACC HiDeStore

(c)

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10

Sp
ee

d
Fa

ct
or

Backup Version

Baseline Capping
LBW+ALACC HiDeStore

(d)

0

2

4

6

8

10

1 2 3 4 5 6 7 8 9 10

Sp
ee

d
Fa

ct
or

Backup Version

Baseline Capping
LBW+ALACC HiDeStore

(e)

Fig.12. Restore performance on different workloads. (a) Linux Kernel. (b) Gcc. (c) Fslhomes. (d) Macos. (e) Boost.

two orders-of-magnitude. For example, Sparse Index

achieves about 128× space savings when the sample ra-

tio is set to 128 : 1. SiLo further reduces the space con-

sumption for the fingerprint table, since SiLo samples

less fingerprints from a segments than Sparse Index.

Unlike the traditional schemes, HiDeStore does not

require extra space to store the fingerprint table, due

to identifying and maintaining the fingerprints of hot

chunks during the deduplication phase. Specifically,

the hot fingerprints have been stored in the recipe of

the previous backup version. The hot fingerprints are

directly prefetched in the fingerprint cache before the

next backup version is processed. Therefore, HiDeStore

has significant strengths over existing deduplication

schemes in terms of the space consumption. More-

over, HiDeStore saves more storage space than exist-

ing schemes when more backup versions are processed,

since HiDeStore does not need extra space for the fin-

gerprint table while existing schemes proportionally

consume a large amount of storage space to store the

fingerprint tables.

5.3 Performance in Restore Phase

The restore phase assembles the original data in a

chunk-by-chunk manner, requiring to read chunks from

various containers on disks according to the recipe. The

speed of restoring data is significantly influenced by the

performance of reading chunks. Existing schemes de-

liver low restore performance due to incurring a large

number of disk I/Os to read the physically scattered

chunks. The restore performance decreases when the

backup system stores multiple backup versions due to

the severe chunk fragmentation problem. Unlike ex-

isting schemes, HiDeStore aims to achieve high re-

store performance by enhancing the physical locality

of the data. We use the same metric with existing

schemes [16–19,22] to evaluate the restore performance,

i.e., a speed factor (MB/container-read) which is de-

fined as the mean data size that is restored per con-

tainer [18,22]. The biggest advantage of the speed fac-

tor is to avoid the speed variances of different data

servers. The low speed factor indicates that the chunks

are physically scattered into different containers, which

delivers low restore performance due to the chunk frag-

mentation problem. We set the sizes of all containers to

4MB to facilitate fair comparisons. The scheme without

rewriting phase is set to be the baseline. Moreover, we

also compare HiDeStore with state-of-the-art rewriting

schemes to show the efficiency of HiDeStore over exist-

ing schemes.

Fig. 12 shows the restore performance of different

16 J. Comput. Sci. & Technol.

Fig.13. Overheads incurred by HiDeStore, including the over-
heads of moving cold chunks and updating recipes.

Fig.14. Reference metadata overheads of different schemes.

schemes. We observe that existing schemes deliver high

restore performance on the old backup versions, while

delivering low restore performance on the new backup

versions, because the chunk fragmentation problem is

exacerbated over time, as shown in Fig. 2. Unlike ex-

isting schemes, HiDeStore significantly improves the re-

store performance for the new backup versions, e.g., the

restore performance of HiDeStore is about 2.6× higher

than that of LBW+ALACC on the new backup ver-

sions. The main reason is that the physical locality of

the new backup versions is enhanced by the proposed

active and archival containers. Specifically, HiDeStore

temporarily maintains hot chunks in active containers.

When some hot chunks become cold in processing the

subsequent versions, HiDeStore moves these chunks to

archival containers. Through this way, the hot chunks

of new backup versions are stored closely to avoid the

chunk fragmentation problem, and the restore perfor-

mance of the new backup version is significantly im-

proved. It is worth noting that the new backup versions

are more likely to be restored than the old backup ver-

sions [21,23,24] for version rollbacks, and HiDeStore is ef-

ficient to meet the demands of restoring the new backup

versions with high performance. Moreover, compared

with the rewriting schemes, we observe that HiDeStore

not only delivers higher restore performance on the new

backup version, but also achieves higher deduplication

ratios, as shown in Fig. 9 and Fig. 12. The main rea-

son is that HiDeStore physically stores the hot chunks

together in the same containers, rather than rewriting

multiple duplicate chunks to consume a large amount

of storage space.

5.4 Overheads Incurred by HiDeStore

We evaluate the overheads incurred by HiDeStore,

including the time overheads of updating recipes and

moving chunks. Specifically, HiDeStore records the lo-

cations for the stored hot chunks during the dedupli-

cation phase. When some hot chunks become cold af-

ter one backup version is processed, HiDeStore moves

these chunks from active containers to archival contain-

ers, and updates the recipe according to Algorithm 1

for future restoring. Algorithm 1 incurs O(N) com-

plexity, where N is the number of recipes. We evaluate

the latency of updating a recipe on different datasets,

and the results are shown in Fig. 13. We observe that

the updating latency is related to the size of a dataset,

e.g., HiDeStore spends 21ms on updating a recipe for

the dataset of Linux Kernel. Moreover, it is worth not-

ing that HiDeStore updates the recipes after a backup

version is processed, which does not block the dedupli-

cation system.

The overheads of moving chunks from active con-

tainers to archival containers are higher than that of the

recipe updating phase, as shown in Fig. 13. However,

the chunk moving phase is implemented in a pipeline

manner with high parallelism based on Destor, avoid-

ing blocking the deduplication system for a long time.

Moreover, HiDeStore moves chunks and merges sparse

containers offline to avoid the long latency penalty, and

hence the overheads of moving chunks are acceptable

in HiDeStore.

5.5 Expired Backup Deletion

The expired backup versions are removed to save

space [16,24], which needs to detect the expired chunks,

i.e., the chunks are only referred by the expired backup

versions. We evaluate the metadata overheads for dif-

Peng-Fei Li et al.: High Physical-Locality Deduplication System 17

0

50

100

150

200

250

0 1 2 3 4 5 6 7 8 9 10

N
um

be
r o

f C
on

ta
in

er
s

Backup Version

Baseline Capping CMA ICDA

(a)

100

150

200

250

300

350

1 2 3 4 5 6 7 8 9 10

N
um

be
r o

f C
on

ta
in

er
s

Backup Version

Baseline Capping CMA ICDA

(b)

1200

1500

1800

2100

2400

1 2 3 4 5 6 7 8 9 10

N
um

be
r o

f C
on

ta
in

er
s

Backup Version

Baseline Capping CMA ICDA

(c)

18000

21000

24000

27000

30000

33000

1 2 3 4 5 6 7 8 9 10

N
um

be
r o

f C
on

ta
in

er
s

Backup Version

Baseline Capping CMA ICDA

(d)

100

150

200

250

300

1 2 3 4 5 6 7 8 9 10

N
um

be
r o

f C
on

ta
in

er
s

Backup Version

Baseline Capping CMA ICDA

(e)

Fig.15. Number of non-expired containers after the expired backup versions are removed.(a) Linux Kernel. (b) Gcc. (c) Fslhomes. (d)
Macos. (e) Boost.

ferent inline reference management schemes, including

Reference Counter (RC) [32], Grouped Mark-and-Sweep

(GMS) [33], Container-Marker Algorithm (CMA) [16]

and our proposed Isolated Container Deletion Algo-

rithm (ICDA). We use one byte to maintain the ref-

erence counter in different schemes for fair compar-

isons, and the results are shown in Fig. 14. RC causes

the highest metadata overhead due to recording refer-

ences for all unique chunks. GMS maintains a bitmap

in the container for references, and incurs high meta-

data overhead since each container stores a large num-

ber of chunks. CMA and ICDA record references for

containers and each container only consumes one byte

for the counter. Therefore, CMA and ICDA achieve

about 3-4 orders-of-magnitude space savings than pre-

vious schemes. Moreover, ICDA saves more space than

CMA, since ICDA does not record references for active

containers.

Garbage collections need to merge sparse contain-

ers after the chunks are removed. Compared with RC

and GMS, CMA and ICDA generate fewer sparse con-

tainers and significantly reduce the garbage collection

overheads, since CMA and ICDA directly remove the

expired containers rather than the scattered chunks.

We examine the number of non-expired containers after

the expired backups are removed to exhibit the actual

storage cost, i.e., using the same metric with CMA [16]

to facilitate fair comparisons. Apart from the basic

deduplication process (represented as baseline), we also

evaluate the impact of rewriting algorithms, and the

results are shown in Fig. 15. We observe that ICDA

shows large advantages over other schemes, and respec-

tively reduces the numbers of containers by up to 1.8×,

2.0×, and 1.5× than the baseline, Capping, and CMA

schemes. The main reason is that the cold chunks of

a backup version are gathered together in the same

archival containers, and these archival containers are

directly removed during the expired backup deletions.

However, other schemes store the cold chunks in mul-

tiple containers and fail to fully utilize the containers

after the expired chunks are removed. Moreover, the

rewriting algorithm consumes more space than other

schemes even after the expired backups are removed,

since multiple chunks for the new backup versions are

rewritten.

6 Related Work

Deduplication Schemes for Fingerprint Ac-

cess Bottleneck. The deduplication system stores

18 J. Comput. Sci. & Technol.

fingerprints of all chunks on disk [13,14]. However, the

deduplication throughput significantly decreases when

a large number of chunks are stored due to the expen-

sive disk I/Os. Zhu et al. [13] observed that the chunk

sequences appear in the same order in multiple backup

streams. By exploiting such logical locality of the chunk

sequence, DDFS [13] proposes to prefetch the chunk se-

quences for caching and construct an in-memory Bloom

Filter to deliver high deduplication throughput. To re-

duce the memory consumption of the cached chunks,

Sparse Index [14] proposes to sample parts of chunks

for near-exact deduplication. Block Locality Cache

(BLC) [26] proposes to update the locality information

according to the stored data, which avoids using the

outdated locality. ChunkStash [25] stores the fingerprint

table on SSD to avoid the penalty of the random disk

I/O. Extreme Binning [29] and SiLo [30,35] explore and

exploit the similarity of segments to achieve high dedu-

plication ratios.

Restore Schemes for Chunk Fragmentation

Problem. Existing deduplication systems propose two

kinds of approaches to alleviate the chunk fragmenta-

tion problem, including optimizing the restore cache

and rewriting some duplicate chunks. Specifically, the

stored chunk sequences have a high probability to be

read for assembling the original data [18,19]. There-

fore, many schemes propose to cache the chunks and

containers [16,17,21] to reduce the number of disk I/Os.

ALACC [19] proposes to construct a cache for the slid-

ing window to deliver higher restore performance. Un-

like the caching-based schemes, many schemes rewrite

chunks according to different standards, such as the

Content-Based Rewriting algorithm (CBR) [17], Chunk

Fragmentation Level (CFL) [23], and Capping [18]. Cao

et al. [22] dynamically set the threshold for capping-

based schemes on different workloads to enhance the

physical locality of data streams.

Expired Data Deletion. The backup systems re-

move the expired data to save space. However, the

expired chunks are physically scattered into different

containers and become hard to be removed due to the

high overheads of expired chunk detection and garbage

collections. Reference Counter (RC) [32] counts the ref-

erence number of chunks, and removes the chunks which

are not referred by any backup version. To reduce

the space overheads of referencing, Grouped Mark-and-

Sweep (GMS) [33] uses a bitmap in each container, while

Container-Marker Algorithm (CMA) [16] marks the con-

tainers rather than chunks.

7 Conclusion

Based on the observation that the adjacent versions

are the most similar, our proposed HiDeStore leverages

the double-hash fingerprint cache to identify hot and

cold chunks, and respectively stores different chunks

in active and archival containers to enhance the phys-

ical locality. Our experimental evaluation results show

that HiDeStore achieves higher performance in terms of

deduplication, restore, and data deletion than state-of-

the-art schemes. We have released the open source code

of HiDeStore for public use in GitHub. Moreover, apart

from the backup storage systems, the database sys-

tems and cloud storage systems contain a large amount

of redundant data and require efficient deduplication

techniques to save space. However, we cannot directly

deploy HiDeStore in the databases and cloud storage

systems, since the data in these two systems exhibit

different patterns. We will further optimize HiDeStore

by exploring and exploiting the data patterns in other

storage systems for better performance.

References

[1] Khorasani S, Rellermeyer J, Epema D. Self-adaptive Ex-

ecutors for Big Data Processing. In Proc. the 20th Inter-

national Middleware Conference, Dec. 2019, pp.176–188.

DOI: 10.1145/3361525.3361545.

[2] Birke R, Rocha I, Pérez J, Schiavoni V, Felber P, Chen

L. Differential Approximation and Sprinting for Multi-

Priority Big Data Engines. In Proc. the 20th Inter-

national Middleware Conference, Dec. 2019, pp.202–214.

DOI: 10.1145/3361525.3361547.

[3] Akbari A, Martinez J, Jafari R. Facilitating Human Ac-

tivity Data Annotation via Context-Aware Change Detec-

tion on Smartwatches. ACM Trans. Embed. Comput. Syst.,

2021, 20(2): 15:1–15:20. DOI: 10.1145/3431503.

Peng-Fei Li et al.: High Physical-Locality Deduplication System 19

[4] Fu M, Feng D, Hua Y, He X, Chen Z, Xia W, Zhang Y, Tan

Y. Design tradeoffs for data deduplication performance in

backup workloads. In Proc. the 13th USENIX Conference

on File and Storage Technologies, Feb. 2015, pp.331–344.

[5] Li Y K, Xu M, Ng C H, Lee P C. Efficient hybrid inline and

out-of-line deduplication for backup storage. ACM Trans.

Storage, 2015, 11(1): 2:1–2:21. DOI: 10.1145/2641572.

[6] Park D, Fan Z, Nam Y, Du D. A lookahead read cache:

improving read performance for deduplication backup stor-

age. J. Comput. Sci. Technol., 2017, 32(1): 26–40.

DOI: 10.1007/s11390-017-1680-8.

[7] Duggal A, Jenkins F, Shilane P, Chinthekindi R, Shah R,

Kamat M. Data Domain Cloud Tier: Backup here, backup

there, deduplicated everywhere!. In Proc. the USENIX An-

nual Technical Conference, Jul. 2019, pp.647–660.

[8] Meyer D T., Bolosky W J. A study of practical dedu-

plication. ACM Trans. Storage, 2012, 7(4): 14:1–14:20.

DOI: 10.1145/2078861.2078864.

[9] Muthitacharoen A, Chen B, Mazières D. A low-bandwidth

network file system. In Proc. the 18th ACM Symposium

on Operating System Principles, Oct. 2001, pp.174–187.

DOI: 10.1145/502034.502052.

[10] Wallace G, Douglis F, Qian H, Shilane P, Smaldone S,

Chamness M, Hsu W. Characteristics of backup workloads

in production systems.. In Proc. the 10th USENIX confer-

ence on File and Storage Technologies, Feb. 2012, pp.4–4.

[11] Yang Q, Jin R, Zhao M. Smartdedup: optimizing dedu-

plication for resource-constrained devices. In Proc. the

USENIX Annual Technical Conference, Jul. 2019, pp.633–

646.

[12] Quinlan S, Dorward S. Venti: A New Approach to Archival

Storage. In Proc. the FAST ’02 Conference on File and

Storage Technologies, Jan. 2002, pp.89–101.

[13] Zhu B, Li K, Patterson R. Avoiding the Disk Bottleneck

in the Data Domain Deduplication File System.. In Proc.

6th USENIX Conference on File and Storage Technologies,

Feb. 2008, pp.269–282.

[14] Lillibridge M, Eshghi K, Bhagwat D, Deolalikar V, Trezis G,

Camble P. Sparse Indexing: Large Scale, Inline Deduplica-

tion Using Sampling and Locality. In Proc. the 7th USENIX

Conference on File and Storage Technologies, Feb. 2009,

pp.111–123.

[15] Li P, Hua Y, Cao Q, Zhang M. Improving the

Restore Performance via Physical-Locality Middleware

for Backup Systems. In Proc. the 21st Interna-

tional Middleware Conference, Dec. 2020, pp.341–355.

DOI: 10.1145/3423211.3425691.

[16] Fu M, Feng D, Hua Y, He X, Chen Z, Xia W, Huang

F, Liu Q. Accelerating restore and garbage collection in

deduplication-based backup systems via exploiting histor-

ical information. In Proc. the USENIX Annual Technical

Conference, Jun. 2014, pp.181–192.

[17] Kaczmarczyk M, Barczynski M, Kilian W, Dubnicki C.

Reducing impact of data fragmentation caused by in-

line deduplication. In Proc. the 5th Annual Interna-

tional Systems and Storage Conference, Jun. 2012, pp.1–12.

DOI: 10.1145/2367589.2367600.

[18] Lillibridge M, Eshghi K, Bhagwat D. Improving restore

speed for backup systems that use inline chunk-based dedu-

plication. In Proc. the 11th USENIX conference on File and

Storage Technologies, Feb. 2013, pp.183–197.

[19] Cao Z, Wen H, Wu F, Du D. ALACC: Accelerating restore

performance of data deduplication systems using adaptive

look-ahead window assisted chunk caching. In Proc. the

16th USENIX Conference on File and Storage Technolo-

gies, Feb. 2018, pp.309–324.

[20] Mao B, Jiang H, Wu S, Fu Y, Tian L. SAR: SSD assisted re-

store optimization for deduplication-based storage systems

in the cloud. In Proc. the 7th IEEE International Confer-

ence on Networking, Architecture, Jun. 2012, pp.328–337.

DOI: 10.1109/NAS.2012.48.

[21] Nam Y, Park D, Du D. Assuring demanded read

performance of data deduplication storage with backup

datasets. In Proc. the 20th IEEE International Sympo-

sium on Modeling, Analysis and Simulation of Computer

and Telecommunication Systems, Aug. 2012, pp.201–208.

DOI: 10.1109/MASCOTS.2012.32.

[22] Cao Z, Liu S, Wu F, Wang G, Li B, Du D. Sliding look-back

window assisted data chunk rewriting for improving dedu-

plication restore performance. In Proc. the 17th USENIX

Conference on File and Storage Technologies, Feb. 2019,

pp.129–142.

[23] Nam Y, Lu G, Park N, Xiao W, Du D. Chunk frag-

mentation level: An effective indicator for read perfor-

mance degradation in deduplication storage. In Proc.

the 13th IEEE International Conference on High Perfor-

mance Computing & Communication, Sep. 2011, pp.581–

586. DOI: 10.1109/HPCC.2011.82.

[24] Ng C H, Lee P. Revdedup: A reverse deduplication storage

system optimized for reads to latest backups. In Proc. the

4th Asia-Pacific Workshop on Systems, Jul. 2013, pp.1–7.

DOI: 10.1145/2500727.2500731.

[25] Debnath B, Sengupta S, Li J. ChunkStash: Speeding Up

Inline Storage Deduplication Using Flash Memory. In Proc.

the USENIX Annual Technical Conference, Jun. 2010,

pp.1–16.

[26] Meister D, Kaiser J, Brinkmann A. Block locality caching

for data deduplication. In Proc. the 6th Annual Interna-

20 J. Comput. Sci. & Technol.

tional Systems and Storage Conference, Jul. 2013, pp.1–12.

DOI: 10.1145/2485732.2485748.

[27] Eshghi K, Tang H K. A framework for analyzing and

improving content-based chunking algorithms. Hewlett-

Packard Labs Technical Report TR, HP Laboratory,

2005. http://shiftleft.com/mirrors/www.hpl.hp.com/

techreports/2005/HPL-2005-30R1.pdf. Nov, 2022.

[28] Xia W, Zhou Y, Jiang H, Feng D, Hua Y, Hu Y, Liu Q,

Zhang Y. Fastcdc: a fast and efficient content-defined

chunking approach for data deduplication. In Proc. the

USENIX Annual Technical Conference, Jun. 2016, pp.101–

114.

[29] Bhagwat D, Eshghi K, Long D, Lillibridge M. Extreme

binning: Scalable, parallel deduplication for chunk-based

file backup. In Proc. the 17th Annual Meeting of the

IEEE/ACM International Symposium on Modelling, Anal-

ysis and Simulation of Computer and Telecommunica-

tion Systems, Sep. 2009, pp.1–9. DOI: 10.1109/MAS-

COT.2009.5366623.

[30] Xia W, Jiang H, Feng D, Hua Y. SiLo: A Similarity-

Locality based Near-Exact Deduplication Scheme with Low

RAM Overhead and High Throughput. In Proc. the

USENIX Annual Technical Conference, Jun. 2011, pp.26–

30.

[31] Xu G, Tang B, Lu H, Yu Q, Sung C W. LIPA: A Learning-

based Indexing and Prefetching Approach for Data Dedu-

plication. In Proc. the 35th Symposium on Mass Stor-

age Systems and Technologies, May. 2019, pp.299–310.

DOI: 10.1109/MSST.2019.00010.

[32] Wei J, Jiang H, Zhou K, Feng D. MAD2: A scalable

high-throughput exact deduplication approach for network

backup services. In Proc. the IEEE 26th Symposium on

Mass Storage Systems and Technologies, May. 2010, pp.1–

14. DOI: 10.1109/MSST.2010.5496987.

[33] Guo F, Efstathopoulos P. Building a High-performance

Deduplication System. In Proc. the USENIX Annual Tech-

nical Conference, Jun. 2011.

[34] Zhang Y, Jiang H, Feng D, Xia W, Fu M, Huang F, Zhou

Y. AE: An asymmetric extremum content defined chunking

algorithm for fast and bandwidth-efficient data deduplica-

tion. In Proc. the IEEE Conference on Computer Commu-

nications, May. 2015, pp.1337–1345. DOI: 10.1109/INFO-

COM.2015.7218510.

[35] Xia W, Jiang H, Feng D, Hua Y. Similarity and local-

ity based indexing for high performance data deduplica-

tion. IEEE Trans. Computers, 2015, 64(4): 1162–1176.

DOI: 10.1109/TC.2014.2308181.

Peng-Fei Li received the B.S. degree

in computer science and technology

from Huazhong University of Science

and Technology, Wuhan, in 2017. He is

currently a Ph.D. candidate majoring

in computer system architecture at

Huazhong University of Science and

Technology, Wuhan. His research

interests include in-memory indexes,

network-attached key-value stores, and deduplication

techniques.

Yu Hua received the B.S. and

Ph.D. degrees in computer science from

Wuhan University, Wuhan, in 2001 and

2005, respectively. He is currently a

professor at Huazhong University of

Science and Technology, Wuhan. His

research interests include cloud storage

systems, file systems, non-volatile memory architectures,

etc. He is the distinguished member of CCF, senior

member of ACM and IEEE.

Qin Cao received the B.S. degree in

computer science from Central China

Normal University, Wuhan, in 2017,

and the Master degree in computer

science and technology from Huazhong

University of Science and Technology,

Wuhan, in 2020. Her research interests

include data deduplication techniques

and persistent memory systems.

