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Abstract    Image bitmaps, i.e., data containing pixels and visual perception, have been widely used in emerging applica-

tions for pixel operations while consuming lots of memory space and energy. Compared with legacy DRAM (dynamic ran-

dom access memory), non-volatile memories (NVMs) are suitable for bitmap storage due to the salient features of high

density and intrinsic durability. However, writing NVMs suffers from higher energy consumption and latency compared

with read accesses. Existing precise or approximate compression schemes in NVM controllers show limited performance for

bitmaps due to the irregular data patterns and variance in bitmaps. We observe the pixel-level similarity when writing

bitmaps due to the analogous contents in adjacent pixels. By exploiting the pixel-level similarity, we propose SimCom, an

approximate  similarity-aware  compression  scheme in  the  NVM module  controller,  to  efficiently  compress  data  for  each

write access on-the-fly. The idea behind SimCom is to compress continuous similar words into the pairs of base words with

runs. The storage costs for small runs are further mitigated by reusing the least significant bits of base words. SimCom

adaptively selects an appropriate compression mode for various bitmap formats, thus achieving an efficient trade-off be-

tween quality and memory performance. We implement SimCom on GEM5/zsim with NVMain and evaluate the perfor-

mance with real-world image/video workloads. Our results demonstrate the efficacy and efficiency of our SimCom with an

efficient quality-performance trade-off.

Keywords    approximate computing, data compression, memory architecture, non-volatile memory

 
 

1    Introduction

Many  emerging  applications,  e.g.,  image/video

processing,  computer  vision,  and  machine  learning,

operate  on  pixels,  which  are  maintained  as  raw  im-

ages, called image bitmaps, and stored in main memo-

ry for fast accesses by offsets[1]. However, the storage

of  bitmaps  demands  a  large  amount  of  memory  and

energy  in  DRAM (dynamic  random access  memory).

Conventional  software-based  image  compression

schemes (e.g., JPEG[2]) are not applicable, since these

image-based  applications  need  to  access  raw  images

for computation. For example, the kernel of the sobel

algorithm[3] is used to read and modify pixels one by

one.  Compressed  images  are  still  required  to  be  re-

stored into bitmaps on memory for application uses.

Unlike  conventional  DRAM,  non-volatile  memo-

ries (NVMs), such as phase change memory (PCM)[4, 5]

and  resistive  RAM  (ReRAM)[6],  avoid  frequent  re-

fresh  operations  and  activation  power  while  provid-

ing high density, which is suitable for emerging appli-

cations  involving  bitmaps.  NVMs  offer  DRAM-scale

read  latency  and  power,  but  the  required  power  for

writes is much higher than that of DRAM. Due to the

maximal  current  constraint  during  programing,  the

write  size  is  limited.  Therefore,  NVMs  suffer  from
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high write power and latency[7–12].

Recent designs propose data compression based on

general-purpose patterns inside the NVM module con-

troller to reduce bit writes and improve memory per-

formance[13–16].  Specifically,  upon  receiving  an  NVM

write  request,  these  hardware-layer  compression

schemes  partition  the  data  into  words,  which  are

compressed using general-purpose data patterns,  e.g.,

frequent  patterns  in  frequent  pattern  compression

(FPC)[16] and  base  words  with  small  deltas  in  base

delta  immediate  (BDI)[15].  After  compression,  small

compressed data  are  written  to  NVMs,  thus  improv-

ing the write efficiency. However, for write accesses of

bitmaps, the partitioned words are hard to match the

general data patterns due to the large variance, which

results  in  high  compression  ratios  (compressed  data

size  relative  to  uncompressed  data  size).  In  order  to

verify  the  poor  efficiency  in  existing  compression

schemes,  we  record  the  percentage  of  NVM  writes

containing bitmaps (Fig.1(a)) and corresponding com-

pression  ratios  for  these  writes  (Fig.1(b))  in  six  im-

age-based workloads (Subsection 5.1). Results in Fig.1

indicate that the writes of bitmaps account for a large

portion  of  NVM writes  for  image-based  applications.

However, the average compression ratios of FPC and

BDI are 94.2% and 99.8%, respectively, which means

most data writes of image bitmaps obtain poor com-

pression  performance  and  even  become  incompress-

ible using precise compression schemes.

Recent research explored the approximate storage

for data that tolerate minor inaccuracies[1, 17, 18].  The

approximate image storage proposed by Guo et al.[17]

leverages the significant entropy differences in the en-

coded  bits  of  compressed  images,  and  applies  differ-

ent  levels  of  error  correction  codes  for  different  bits.

However,  entropy  differences  are  negligible  in

bitmaps,  since each bit  in  bitmaps corresponds to at

most  one  pixel.  Recent  work[1, 18] exploits  the  inter-

block  similarity  (the  block  here  denotes  CPU  cache

block)  to  provide  approximate  storage  for  bitmaps.

However,  searching  for  similar  data  in  NVMs during

each  write  access  incurs  extra  latency  and  hardware

overheads. Since a large portion of data to be written

are approximable (Fig.1(a)), it is possible to improve

the  write  performance by approximately  compressing

the data on-the-fly before writing to NVMs. In order

to efficiently reduce the bit-writes of bitmaps in NVM

systems,  there  are  two  challenges  for  data  compres-

sion.

Irregular Data Patterns. The data in NVM writes

containing bitmaps are hard to match the general da-

ta patterns in existing compression schemes. Bitmaps

consist  of  the  bits  in  each  pixel,  and  a  typical  pixel

consists  of  three  bytes.  Since  the  pixel  size  in  com-

mon bitmaps (e.g., 3 B) is not the same as the word

size  in conventional  compression schemes (e.g.,  4  B),

there  is  a  significant  variance  in  partitioned  words.

Besides,  the value of  each word depends on the con-

tents of bitmaps. Therefore, the partitioned words in

conventional  schemes  show  irregular  data  patterns,

leading to poor compression performance.

Bitmap Format Variance. When multiple applica-

tions (or threads) are running on top of NVM systems

with  different  bitmap  formats  (e.g.,  color/grayscale

images and different bits per pixel), write accesses to

NVMs  contain  different  data  layouts.  Moreover,  the

persistence order is  determined by the cache replace-

ment policy,  which is  different  from the program or-

der[11, 19].  Due  to  the  reordering,  it  is  challenging  to

determine  the  bitmap  format  for  each  write  access.

Data compression designed for one bitmap may fail in

others due to the significant changes in data patterns.

Existing  bidirectional  precision  scaling[20] parti-

tions  data  using  the  annotated  word  size  and  con-

ducts approximate precision scaling for error-tolerant

data to reduce the data size.  Specifically,  it  approxi-

mately encodes the most significant bits (MSBs) and

 

his
teq

0

20

40

60

80

100

R
a
ti
o
 o

f 
N

V
M

 W
ri
te

s 

C
o
n
ta

in
in

g
 B

it
m

a
p
s 

(%
)

(a)

0.0

0.2

0.4

0.6

0.8

1.0

C
o
m

p
re

ss
io

n
 R

a
ti
o

 FPC  BDI

(b)

jpeg
sob

el

m
ea

ns

2d
co

nv

de
ba

ye
r

his
teqjpeg

sob
el

m
ea

ns

2d
co

nv

de
ba

ye
r

Fig.1.   Performance  using  typical  compression  schemes  on  im-
age-based applications. (a) Percentage of NVM writes contain-
ing image bitmaps. (b) Compression ratio using FPC and BDI.
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truncates  least  significant  bits  (LSBs)  of  error-toler-

ant data within the accuracy constraint. However, the

pixel  values  in  bitmaps  are  often  stored  using  the

smallest data type, in which identical MSBs are usu-

ally unavailable in bitmaps. Moreover, indiscriminate-

ly truncating LSBs reduces the color depth and caus-

es the noticeable quality degradation.

To address  the above two challenges,  we propose

SimCom,  an  efficient  hardware-level  similarity-aware

compression  scheme,  to  reduce  the  bit  writes  of

bitmaps into NVMs, thus improving the memory per-

formance of NVMs. For the first challenge, we lever-

age  the  pixel-level  similarity  in  bitmaps  and  only

write  a  base  word  (the  representative  word  for  a

group  of  continuous  similar  words)  with  a  run  (the

number of words in the group) for each group of con-

tinuous similar  words,  which eliminates the writes  of

similar  words  in  NVMs.  The  storage  costs  for  small

runs are optimized by reusing the LSBs of base words

without significant accuracy loss. For the second chal-

lenge, SimCom executes compression modes in paral-

lel  and  adaptively  selects  an  efficient  compression

mode  without  programmer  annotations  on  image/

video formats.

Compared  with  the  preliminary  version  of  Sim-

Com[21], this paper makes the following main improve-

ments.

• We  add  important  details  on  the  motivation,

background,  and  design  to  make  this  paper  self-con-

tained.  For  example,  we evaluate  the  ratios  of  NVM

writes containing approximable data in six workloads

to  show  the  opportunities  for  approximate  compres-

sion.

• We  add  several  new  experiments  to  demon-

strate  the  efficiency  of  SimCom  and  analyze  the

trade-offs  in  approximate  compression.  Different

memory architectures (e.g., DRAM-only and DRAM/

NVM  hybrid  main  memory)  are  evaluated  to  study

the energy efficiency of SimCom. Instead of two fixed

output error constraints (3% and 5%) in the previous

work[21], we evaluate more configurations to show the

quality-performance trade-off in SimCom. The break-

down  of  the  bit-write  reduction  on  NVM  by  using

SimCom is presented and analyzed.

• We  discuss  the  compression  modes,  overheads,

and  the  architecture  support  for  SimCom,  and  sum-

marize the related work.

Overall,  we  make  the  following  contributions  in

SimCom.

• Similarity-Aware  Compression. We  develop  a

model to quantify the pixel-level similarity. With the

model, we propose an efficient approximate data com-

pression  scheme  in  the  hardware  layer  to  reduce  the

bit-writes of image bitmaps in NVMs on-the-fly.

• Adaptiveness  for  Different  Formats. With  the

domain  knowledge  of  bitmaps,  we  propose  an  adap-

tive  scheme  to  perform  approximate  compression

without  prior  knowledge  about  data  formats,  thus

eliminating the annotations on the data types and the

pixel size of bitmaps.

• System Implementation. We  have  implemented

the  prototype  of  SimCom  on  GEM5/zsim  with

NVMain  and  have  conducted  experiments  with  real-

world  workloads  in  various  domains.  Results  using

image/video-based  applications  show  that  SimCom

achieves  average  18.3%/22.2%/21.1%  energy  savings

and 17.3%/24.9%/28.8% write latency reduction over

FPC/BDI/BiScaling with 3% quality loss. 

2    Background and Motivation
 

2.1    Image Bitmap

Structure Organization. An image bitmap is a pix-

el storage structure containing the bits for each pixel

color. The bits of a pixel color consist of multiple pri-

mary  colors.  The  values  of  one  primary  color  for  all

pixels  comprise  a  channel.  A  typical  bitmap  consists

of three channels (i.e., red, green, and blue). For each

pixel,  the  number  of  bits  per  channel  is  eight.  Some

bitmaps  contain  an  optional  channel,  called  alpha

channel,  to  store  transparency  information[22, 23].  We

use  channel  count  (CC)  to  represent  the  number  of

channels in a bitmap, and use bits per channel (BPC)

to denote the number of bits per channel for each pix-

el.

ŷ y
m

Quality  Metric.  Root-mean-square  error  (RMSE)

is  an  objective  metric  to  measure  the  quality  of  an

image,  which  indicates  the  difference  of  each  pixel

compared  with  a  baseline  image.  The  RMSE  of  im-

age  with  respect  to  baseline  image  is  calculated

using  (1),  where  denotes  the  number  of  pixels  in

each image.  The value of  RMSE ranges from 0 to 1,

the lower,  the better.  We use RMSE to measure the

output quality of relaxed images like prior work[3, 20]. 

RMSE =

√√√√ 1

m

m−1∑
i=0

(yi − ŷi)
2. (1)

 

2.2    Bit-Write Reduction in NVMs

To address the high energy consumption in write
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operations,  bit-write  reduction  techniques  are  widely

used in NVM-based main memory[10, 14–16, 24–28]. Relat-

ed schemes include data encoding[24, 25, 29],  data com-

pression[15, 16, 27],  and  their  combinations[14, 26, 28].  Be-

fore  writing  data  into  NVMs,  compression  schemes

decrease  the  data  size.  For  read  accesses,  the  com-

pressed  data  are  decompressed.  Data  encoding

schemes are used to reduce the bit flips in write oper-

ations. Moreover, encoding technologies can be lever-

aged to encode the compressed data for further ener-

gy efficiency[14] and lifetime improvement[26]. 

2.3    Approximate Storage

Approximate storage leverages the error-tolerance

of  approximable  data  to  slightly  relax  the  accuracy

constraints for improvement in terms of performance,

data density, lifetime, and energy efficiency. Approx-

imable data are interpreted as the data tolerating mi-

nor inaccuracies. In the context of this paper, approx-

imable  data  denote  image  bitmaps.  For  approximate

storage, typical approximation consists of three steps:

identification of approximable data, approximate tech-

niques,  and  quality  control.  Before  execution,  error-

tolerant  data  should  be  separated  from  raw  applica-

tion data,  which is  accomplished by programmer an-

notations[18, 30–34] and domain knowledge[17, 35]. For er-

ror-tolerant  data,  traditional  guarantees  for  accuracy

in the storage systems are relaxed for gains in memo-

ry  performance  and  efficiency.  Existing  approximate

techniques include decreasing refresh rate[30] and low-

ering  voltage[36] in  DRAM,  using  worn  blocks  and

skipping  program-and-verify  iterations  in  multi-level

cell  (MLC)  PCM[37],  associating  similar  cache  blocks

with  the  same  tag  entry[18, 33],  and  utilizing  selective

error  correction  code[17, 35].  Given  accuracy  con-

straints, we need to select appropriate approximation

parameters[1, 33] to  achieve  suitable  trade-off  between

output quality and performance. The parameters can

be inferred dynamically by monitoring the intermedi-

ate results[38, 39], using the input features[40], and tun-

ing with canary inputs[41, 42]. 

2.4    Pixel-Level Similarity

Pixel-level similarity is interpreted as the similari-

ty among words in the data of an NVM write access.

As shown in Fig.2, the contents of adjacent pixels A,

B, C, and D are similar. Instead of the fixed four-byte

word size, the data in SimCom are partitioned at the

pixel-level  granularity,  e.g.,  three bytes for  RGB for-

mat (more details are available in Subsection 3.4). In

a  bitmap,  each  pixel  describes  the  color  of  a  tiny

point  of  the  image.  Hence,  adjacent  pixels  tend  to

have  similar  contents.  For  the  storage  of  an  image

bitmap, the contents usually are mapped to a contin-

uous region in memory and have continuous address-

es  in  the  address  space.  When  a  write  access  of  a

bitmap is  issued to  the  NVM module,  and we parti-

tion the data at the boundaries of pixels, partitioned

words are possible to be similar due to the analogous

contents  in  adjacent  pixels.  This  paper  proposes  to

leverage the pixel-level similarity in data for approxi-

mate  compression,  thus  reducing  the  data  size  and

improving the memory performance.

We  have  conducted  experiments  to  verify  the

prevalence of pixel-level similarity in write accesses to

NVMs  by  recording  continuous  similar  words  in  ap-
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Controller
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CPU NVM

SimCom

NVM Array

Image Bitmap
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Fig.2.  Example of leveraging the pixel-level similarity to compress data writes.
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proximable  data,  i.e.,  the  data  containing  image

bitmaps. Continuous similar words are interpreted as

a group of sequential words, in which any two words

are similar. We use the proposed model in Subsection

3.3 to  quantify  the  similarity  among words.  Approx-

imable  data  are  partitioned  at  the  pixel  boundaries.

Error  thresholds  denote  the  normalized  difference

(Subsection 3.3) and range from 0% (precise) to 100%

(maximal  approximation),  which  indicates  the  ap-

proximation  degree.  The  details  of  experimental  set-

tings are described in Subsection 5.1. Fig.3 shows the

percentage  of  continuous  similar  words  in  approx-

imable data with different error thresholds. When we

increase  the  error  threshold,  the  ratio  of  continuous

similar words increases up to 82.8% on average.
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Fig.3.  Ratio of continuous similar words in approximable data
with different  error  thresholds.  The ratio  is  interpreted as  the
size of all continuous similar words divided by that of the total
approximable data in bytes.
 

The  pixel-level  similarity  is  common  in  bitmaps

due  to  two  reasons.  1)  The  changes  among  adjacent

pixels  are  generally  slight.  For  example,  most  back-

grounds  in  images  consist  of  similar  colors  and  lack

abrupt  changes.  2)  The  resolution  of  images  is  high.

With a higher resolution for advanced sensors and ap-

plication  requirements,  the  number  of  pixels  corre-

sponding to one item increases and the difference be-

tween  two  adjacent  pixels  decreases.  The  common

similarity of pixels offers the opportunity for approxi-

mate compression.

Note  that  even  when  the  error  threshold  is  0%,

the  ratio  of  continuous  similar  words  is  still  more

than 4.5% and up to 46.5%. The substantial similari-

ty  in  images  motivates  us  to  exploit  the  pixel-level

similarity  for  bit-write  reduction  and  energy  efficien-

cy in NVMs. 

3    Similarity-Aware Data Compression
 

3.1    Design Overview

Fig.4 shows the hardware architecture overview of

SimCom. Specifically, the adaptive approximate com-

pression logic and decompression logic implement the

compression  and  decompression  schemes  of  SimCom,

respectively. The quality table is an on-chip cache[1, 34],

which stores some user-annotated metadata (i.e., start

and  end  addresses,  error  thresholds)  about  bitmaps.

The  quality  table  contains  only  a  few  entries  (e.g.,

64), so that the hardware overheads are negligible.

Write Operation. For approximable data contain-

ing  bitmaps  (indicated  by  the  quality  table),  the

adaptive approximate compression logic partitions da-

ta  into  words,  finds  continuous  similar  words,  and

compresses them into base words and runs. By lever-

aging the pixel-level similarity, SimCom efficiently re-

duces the size of approximable data. For precise data,

i.e.,  the  data  not  covered  by  the  quality  table,  the

precise  compression  logic  leverages  existing  precise

compression schemes (e.g., FPC[16]) to ensure the cor-

rectness, thus enabling the simultaneous executions of

various applications.

Read  Operation. For  NVM  read  accesses,  com-

pressed  data  are  decompressed  in  the  decompression

logic.  With  the  encoded  mode  index  in  the  com-

pressed data, the decompression logic restores the ap-

proximable data for read requests. 

3.2    Software Interface

A software interface, i.e., setApproxRegion(sAddr,
eAddr, TH), is leveraged to deliver user annotated ap-
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Fig.4.  Architecture overview of SimCom.
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proximable  data  regions  ([sAddr, eAddr])  and  error

thresholds of normalized difference (TH) to the quali-

ty  table  of  NVM  module  controllers  via  memory-

mapped registers[20]. If the region of an NVM write re-

quest is not overlapping with any region stored in the

quality  table  (physical  memory  addresses  of  [sAddr,
eAddr]),  corresponding  data  are  processed  via  the

adaptive  approximate  compression  logic.  A  practical

way  to  determine  the  threshold  is  to  search  a  suit-

able  value  using  small  canary  inputs  and  apply  the

threshold on full-size inputs[41, 42]. 

3.3    Similarity Model

maxV alue

p q

Although  the  pixel-level  similarity  exists  in

bitmaps,  how  to  efficiently  detect  the  similarity  re-

mains  a  problem.  We  develop  a  model  to  estimate

and  quantify  the  pixel-level  similarity  between  two

words.  The  model  is  based  on  the  observation  that

corresponding primary colors are similar if two words

correspond to similar pixels. Hence, we use the maxi-

mal absolute difference in different channels to quan-

tify the similarity between two words. The difference

is  normalized  to  the  maximal  value  of  the  primary

color, called . The normalized difference be-

tween words  and  is calculated using (2). 

normDiff =
max{|p[i]− q[i]|}

maxV alue
, i ∈ [0, cc). (2)

p[i] q[i]

maxV alue

maxV alue cc

cc

In  (2),  and  correspond to  primary  colors

in  the  same  channel.  is  a  constant  deter-

mined  by  the  number  of  bits  for  one  primary  color,

i.e.,  BPC. When BPC is  8,  is  255.  de-

notes  the value of  CC (channel  count).  If  one of  the

two words is a partial word,  is substituted by the

number of common channels in the two words. When

the  normalized  difference  is  smaller  than  the  error

threshold annotated by users, two words are similar. 

3.4    Data Partition

Data  partition  is  the  first  step  for  compression

and  nontrivial.  According  to  the  proposed  similarity

model,  we  need  to  partition  the  data  at  the  pixel

boundaries  in  order  to  find  out  the  similar  words.

However, how to identify pixel boundaries in data be-

comes a problem. We cannot figure out the positions

of  pixel  boundaries  without  additional  context  infor-

mation, such as the offset of the data in bitmaps and

the  corresponding  bitmap  format.  A  straightforward

solution  is  to  allocate  each  pixel  with  a  fixed  align-

ment  (the  alignment  should  be  a  factor  of  the  cache

block size, e.g., 4 B), thus enabling static pixel bound-

ary  positions  in  the  memory  space.  However,  when

the actual pixel size (e.g., 3 B) mismatches the align-

ment, the unused space (e.g., 1 B) in each pixel signif-

icantly increases the NVM storage overhead.

In  order  to  preserve  the  similarity  in  partitioned

words  with  low  overheads,  we  propose  a  uniform

scheme to partition the data in a write access. Due to

the  pixel-level  similarity,  the  data  form  an  approxi-

mate  periodic  cycle  of  the  pixel  size.  Therefore,  we

propose  to  partition  at  the  granularity  of  pixel  size,

and leave the possible remaining bytes (when the da-

ta size is not a multiple of the pixel size) at the end

as  a  partial  word.  For  example,  if  the  pixel  size  is

3 bytes and the data write size is  64 bytes,  data are

divided into 21 words of 3 bytes and one partial word

of 1 byte. 

3.5    Searching Continuous Similar Words

O(n2) n

Since  continuous  similar  words  require  that  any

two words are similar (Subsection 2.4), the time com-

plexity to obtain a group of exact continuous similar

words is  (  denotes the number of words). The

high  time  complexity  incurs  high  latency  and  hard-

ware overhead to accurately find all continuous simi-

lar words in a write access.

In  order  to  alleviate  the  cost  of  searching similar

words  during  compression,  we  propose  to  approxi-

mately search for continuous similar words. Specifical-

ly,  we  slightly  relax  the  requirements  of  continuous

similar  words.  Relaxed  continuous  similar  words  are

only required to be similar to the base word (for sim-

plicity,  we use  continuous  similar  words  to  represent

relaxed continuous similar words in the following text

unless specified). Even in the relaxed similarity mod-

el,  the  maximal  normalized  difference  in  a  group  is

constrained to twice of the annotated error threshold.

Though the appropriate candidate for a base word

is  the  average  of  all  similar  words,  we  take  the  first

word of each group as the base word for two reasons

(in the following text, we use the base word and base

interchangeably): 1) taking the first word as the base

simplifies  the  compression  logic;  2)  despite  selecting

the first word as a base, the penalty in the compres-

sion ratio is slight.

With the  relaxation in  similarity  and selection of

the base for continuous similar words, the time com-

plexity  of  getting  continuous  similar  words  decreases
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O(n)to , which efficiently decreases the complexity of

compression logic  and improves the compression per-

formance. 

3.6    Similarity-Aware  Compression  for

NVMs

Compression  for  NVM  Writes. Fig.5 illustrates

the workflow of approximate compression.  After par-

titioning  the  original  data  (Fig.6(a))  into  words  as

shown  in Fig.6(b)  (step  1),  SimCom  sets  the  first

word as the base and initializes the run to 1 (step 2).

If the loaded word is not similar to the base, current

values  of  the  base  and  run  are  encoded  and  written

into compressed data. The current word is set as the

new base and the run is reset to 1 (step 3). If the cur-

rent word is similar to the existing base, SimCom on-

ly increases  the run by 1 (step 4).  Note that for  the

possible partial word at the end of data to be written,

SimCom  obtains  the  normalized  difference  between

the  partial  word  and  the  last  base  via  the  proposed

similarity  model  (Subsection 3.3).  After  processing

each word, SimCom records the last pair of the base

and run in the compressed data. The first byte of the

compressed  data  is  used  to  record  the  number  of

bases and the mode index (step 5). Fig.6(c) shows the

result  of  approximate  compression  using  base  words

and runs. If the data are not approximable, the data

are  compressed  using  existing  precise  data  compres-

sion schemes, e.g., FPC.

The above approximate compression workflow is a

variant  of  run-length  encoding:  the  base  word  is  a

representative word for near-duplicate words, and the

run  denotes  the  repeated  time.  The  compression

scheme  is  efficient  for  data  when  the  run  is  large,

since  multiple  similar  words  are  replaced  by  a  base

1

1

1

0

0

word with a run. However, the storage overheads for

runs become high when the runs are small. For exam-

ple,  due  to  the  first  run  in Fig.6(c),  the  compressed

data for  the first  partitioned word is  one byte larger

than  the  original  word.  To  mitigate  the  metadata

overheads of small runs, we propose to reuse the LS-

Bs  of  base  words  to  encode  small  runs.  Specifically,

the LSB of a base word is used to indicate whether its

corresponding  run  exists  in  the  compressed  data.  If

the LSB of the base word is 1, the run exists in com-

pressed data and we further reuse the MSB of the run

to  store  the  original  LSB  of  its  corresponding  base

word; otherwise, the run is 1 and not stored. For ex-

ample, in Fig.6(d), since run  (i.e., 5) is larger than 1,

the  original  LSB  of base  is  stored  in  the  MSB  of

run , avoiding affecting the accuracy of bases that are

similar to other words. The LSB of base  is 0 and in-

dicates that run  is 1. As a result, only LSBs of words

not similar to adjacent ones are affected and the accu-

racy  loss  is  limited.  According  to  our  evaluation  re-

sults,  the  worst  quality  degradation  of  reusing  LSB

(i.e.,  indiscriminately  truncating  the  LSB  of  all  base

words) is 1.35% when BPC is 8. Reusing 2 bits leads

to nonnegligible quality loss of 2.62%, since the typi-

cal  output  quality  constraint  for  images  is  3%[20].

Hence, SimCom only reuses the LSB of a base word.

Decompression for  NVM Reads. For  read access-

es  to  approximately  compressed  data,  the  approxi-

mate decompression is used to reconstruct the stored

data. Specifically, for each pair of the base and run in

compressed  data,  the  base  is  used  to  fill  the  read

buffer  multiple  times  according  to  the  run. Fig.6(f)

shows  an  example  of  the  decompression.  Essentially,

the bases are used to represent similar words (i.e., the

shadowed  bytes  in  the  figure).  For  precise  com-

pressed  data,  the  encoded  data  are  reconstructed  by
 

Step 5: Write (Base, Run),
Set Metadata

Uncompressed Data

Step 1: Uniform Partition

Step 2: Set the First Word as the Base, Run = 1

Load Next Word

Similar to Base? Is Last Word?

Y

Y

Step 4: Increase Run

N

N

Step 3: Write (Base, Run), 
Update Base & Run

Compressed Data

Fig.5.  Approximate compression workflow in SimCom.
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the  inverse  procedure  of  precise  compression  (e.g.,

FPC). If the loaded data are not compressed, the da-

ta would bypass the decompression logic and respond

to read accesses. 

4    Adaptive Approximate Compression

In  order  to  handle  different  bitmap  formats,  the

approximate  compression  proposed  in Section 3 re-

quires  extra  metadata  including  CC  and  BPC.

Though it is possible to annotate the metadata to be

stored in cache tags[33] or an address table in memory

controllers[20, 34],  these  techniques  cause  additional

overheads  and  programmer  annotations.  Moreover,

users  need to  confirm the  bitmap formats  and anno-

tate  these  metadata  before  execution.  Hence,  in  this

section, we propose to leverage the image characteris-

tics  and  adaptively  select  the  appropriate  mode  for

data compression without additional programmer an-

notations. 

4.1    Adaptive Compression Scheme

The proposed scheme selects from predefined com-

pression modes in an adaptive manner.

1) Why  Use  Predefined  Compression  Modes  for
Different  Image  Formats? The  images  generally  in-

clude  grayscale  and  color  images.  Grayscale  images

contain  only  one  channel  and  the  color  images  in

RGB color  space  consist  of  red,  green,  blue,  and op-

tional  alpha  channels.  In  other  color  spaces  (e.g.,

YUV), similar components (e.g., one luminance chan-

nel and two chrominance channels) exist. The BPC in

common  images  is  8  bits,  which  represent  256  levels

 

(a)

(b)

(c)

(d)

(e)

(f)

Uncompressed Data

Pixel  Pixel Pixel Pixel 

8E  76   83   81   6F   82   81   70   82   81   70   83   84   6C   85   82

8E  76   83   81   6F   82   81   70   82   81   70   83   84   6C   85   82Partitioned Data

2 1 58E 76 82 81 6F 82Compressed Data
(Base Words & Runs)

Saved Space

0 10 1 7 B

2

8 B

82 58E 76 81 6F 83 Saved Space

1

Compressed Data
(Reusing LSB)

LSB = 0
=> 0 Is 1

LSB = 1
=> 1 Exists

1's
Original LSB 0 0000101

82 58E 7622 81 6F 83 Saved Space
Compressed Data

(Encoding Metadata)

Mode Index  Number of Bases

8E  76   82   81   6F   82   81   6F   82   81   6F   82   81   6F   82   81Decompressed Data 

00010001

Fig.6.   Example  of  approximate  compression  and  decompression  when  the  error  threshold  for  normalized  difference  is  0.05.
(a) Original data before compression. (b) Data partition. (c) Compressed data using base words and runs. (d) Compressed data af-
ter reusing LSB. (e) Compressed data after encoding metadata. (f) Uncompressed data after decompression.
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in each channel.  The 24 bits per pixel (3C1B) repre-

sent more than 16 million colors, while the number of

colors  discriminated  by  the  human  eye  is  up  to  10

million[43, 44].  For  applications  processing  HD  (high-

definition)  images,  16  bits  per  channel  is  enough  to

encode the necessary colors. Therefore, we propose to

use  six  compression  modes  to  handle  different  image

formats. The options for CC are 1 (e.g., grayscale), 3

(e.g.,  RGB),  and  4  (e.g.,  RGB  with  an  alpha

channel),  and  the  default  options  for  BPC include  8

and 16.

w[i]

(w[base(i)])

2) How  to  Determine  the  Suitable  Compression
Mode  for  a  Write  Access? A  straightforward  ap-

proach  is  to  sample  some  write  accesses  for  an  effi-

cient  compression mode to  be  applied on later  NVM

writes.  Sampling  works  when  all  write  accesses  have

regular  pattern  formats  (e.g.,  all  applications  using

one  bitmap  format).  However,  sampling  often  fails

when data writes have random pattern formats (e.g.,

applications  using  different  bitmap  formats  are  run-

ning  in  an  NVM system).  Instead  of  sampling,  Sim-

Com performs six compression modes in parallel  and

selects the compression mode with the minimal mean

difference. As shown in (3), mean difference is calcu-

lated as the average difference between every two ad-

jacent words in data. We observe that the mean dif-

ference of the right compression mode (i.e., the mode

matching  the  bitmap  format)  is  minimal,  which

makes  sense  due  to  the  pixel-level  similarity. Fig.7

shows  the  overview  of  the  adaptive  compression

scheme used in SimCom. Six compression modes with

different CCs and BPCs process data in parallel. The

mode selector first selects the mode with the minimal

mean difference.  If  multiple  modes have the minimal

mean  difference,  the  mode  selector  chooses  the  one

with the minimal compressed data size.  For the sim-

plicity  of  compression  logic,  SimCom reuses  the  nor-

malized  difference  between  each  word  (  in  (3))

and the corresponding base (  in (3)) as the

difference between adjacent words.  Due to the error-

tolerance  of  application  and  the  similarity  between

words and their bases, the reuse of normalized differ-

ence is acceptable (evaluated in Section 5). 

meanDiff =
1

n

n−1∑
i=0

normDiff(w[i], w[base(i)]). (3)

 

4.2    Metadata Management

There  are  two  classes  of  metadata  in  SimCom.

The  first-class  metadata  are  used  for  approximately

compressed  data  in  SimCom  including  the  choice  of

compression  mode  and  the  number  of  bases.  Except

for  the  1C1B  compression  mode,  each  base  occupies

at least 2 bytes. Therefore, there are no more than 32

bases  in  compressed  data  with  64-byte  write  data

granularity. The number of bases can be encoded us-

ing  3  bits.  Hence,  for  all  compression  modes  except

for  1C1B,  SimCom  uses  the  first  byte  of  the  com-

pressed  data  to  encode  the  choice  of  compression

mode  (the  highest  3  bits)  and  the  number  of  bases

(the  rest  5  bits). Fig.6(e)  shows  an  example  of  com-

pacting  the  mode  index  of  3C1B and  the  number  of

bases  into  1  byte.  For  the  1C1B  compression  mode,

SimCom stores  the  number  of  bases  into  the  second

byte  of  compressed  data.  The  second-class  metadata

are  used  for  approximate  compression  including  one

compressible  bit  to  indicate  whether  a  data  block  is

compressed  or  not.  SimCom  stores  the  compressible

bits  in  a  separate  region  in  NVMs  like  prior

work[15, 16, 20]. The compressible bit can be packed in-

to compressed data to reduce NVM accesses and im-

prove the memory bandwidth[13, 45]. 

5    Evaluation
 

5.1    Experimental Setup

We  implement  SimCom  in  GEM5[46] with

NVMain[47].  For  energy  comparisons  with  DRAM-

based  memory  systems  (Subsection 5.2),  we  use  the

energy model of Micron DDR3-1333_4Gb_8B_x8 pro-

vided  by  NVMain.  Since  SimCom  focuses  on  data

compression  and  is  orthogonal  to  the  underlying

memory  model,  we  use  a  First  Ready  First  Come

First  Serve  (FRFCFS)  memory  controller  to  serve

NVM accesses  due to  the simplicity  and ease  of  use.

The system configurations of GEM5 and NVMain are

listed in Table 1. Due to the limited simulation speed

of  GEM5,  we  also  leverage  zsim[48],  a  fast  pin-based

 

Write Buffer (Uncompressed Data)Quality
Table

#0 #1 #2 #3 #4 #5

1C1B 4C2B3C2B1C2B4C1B3C1B

Compressed Data

Mode Selector

NVM

Fig.7.   Adaptive  compression  scheme  overview.  The  two  inte-
gers in each compression mode denote the number of channels
and the number of bytes per channel. #i means the identifier of
a compression mode.
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1

x86-64 simulator, to evaluate the video-based applica-

tions.  We  measure  the  performance  with  six  image-

based  workloads,  i.e.,  jpeg,  sobel, kmeans  from

AxBench[3],  2dconv,  debayer,  and  histeq  from  PER-

FECT[49],  and  one  video-based  workload,  i.e.,  x264

from  PARSEC[50].  These  workloads  are  selected  for

various  domains,  i.e.,  jpeg  for  compression,  sobel,

2dconv,  debayer,  and  histeq  for  image  processing,

kmeans for machine learning, and x264 for video pro-

cessing. Two color spaces are used in the tested work-

loads  (YUV  for  x264  and  RGB  for  others).  The  ra-

tios  of  approximable  data  in  these  workloads  are

shown in Fig.1(a). As suggested in related work[3], we

use RMSE (Subsection 2.1) as the metric to measure

the  output  error  (i.e.,  the  quality  of  the  output  im-

age)  compared  with  the  precise  compression  result.

Structural similarity (SSIM)[51] is used to quantify the

output  error  of  videos  by -SSIM.  The input  images

come from the Kodak dataset①. The output errors are

reported using the average RMSE of six images. The

typical output error constraints are 3% following BiS-

caling[20] and  5%  for  more  aggressive  approximation.

Before running these workloads, we warm up the sys-

tem with 100 million instructions.

We  have  evaluated  the  following  compression

schemes (FNW[25] is used to further reduce bit-flips in

all schemes).

• FPC[16]. By exploiting the general frequent pat-

terns, FPC compresses the matched words with short

prefix  bits.  For  fair  comparisons,  we  enhance  this

scheme  by  adding  approximation.  Specifically,  for  a

partitioned  word,  if  a  similar  word  derived  from the

word by flipping few bits matches a data pattern, the

pattern is used to compress the word.

• BDI[15]. This scheme leverages the narrow value

characteristics of an array and compresses cache block

data into  bases  with small  deltas.  This  scheme is  an

approximate version of  BDI[15].  It  relaxes  the narrow

value  constraints  and  compresses  the  words  that

slightly overflow the delta limit.

• BiScaling[20]. This scheme uses bidirectional pre-

cision scaling to approximately  compress  the data to

be written.

• ApproxCom.  This  is  our  proposed  scheme that

leverages  the  pixel-level  similarity  for  approximate

compression.  ApproxCom  requires  annotations  on

BPC and CC.

• SimCom.  This  is  our  proposed scheme leverag-

ing  the  pixel-level  similarity  and  adaptive  compres-

sion  (i.e.,  ApproxCom  +  adaptive  compression),

which  eliminates  the  annotations  on  data  formats

used in BiScaling and ApproxCom.

Since  BiScaling,  ApproxCom,  and  SimCom  focus

on  approximate  compression  on  approximable  data,

we use precise FPC to compress precise data in these

schemes.

We  leverage  programmer  annotations[31, 32] and

ISA extensions[36] to deliver necessary information in-

to  storage  systems  like  prior  work[18, 33, 34, 36].  Pro-

grammer annotations are mature techniques and widely

used in approximate storage systems[18, 31, 33, 34, 36]. We

use  programmer  annotations  to  annotate  bitmaps  as

approximable data in workloads. Through ISA exten-

sions, write accesses with approximable data are iden-

tified and processed by approximate compression log-

ics. Table 2 shows  the  required  annotations  for  all

compression schemes.
  
Table  2.    Annotation Requirements in Compression Schemes

Scheme Error Threshold Channel Count Bits Per Channel

FPC[16] ✓ ✗ ✗

BDI[15] ✓ ✗ ✗

BiScaling[20] ✓ ✗ ✓

ApproxCom ✓ ✓ ✓

SimCom ✓ ✗ ✗

Note: ✓:  requires  the  annotation; ✗:  does  not  require  the
annotation.
 

For fairness, we tune the approximation degrees in

different  schemes  (e.g.,  the  number  of  truncated bits

for BiScaling, normalized difference thresholds for Ap-

proxCom/SimCom) to achieve the same output error

constraints and compare the memory performance. 

5.2    Energy Efficiency

Fig.8 shows the total energy for different memory

systems  when  executing  the  jpeg  workload  (other

 

Table  1.    System Configurations

Component Configuration

CPU Core One x86-64 core, 2 GHz

L1 I/D cache 32 KB, 2 ways, LRU

L2 cache 1 024 KB, 8 ways, LRU

Cache block size 64 B

Memory Model PCM

Controller FCFRFS

Read/write latency 120 ns/150 ns

Organization 4 GB, 8 B write unit size

72 J. Comput. Sci. & Technol., Jan. 2024, Vol.39, No.1
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workloads  show  similar  trends).  Due  to  the  non-

volatility characteristics, NVMs have 225x higher en-

ergy efficiency than legacy DRAM. SimCom decreas-

es the energy consumption in NVM by 58.6% with 3%

quality  loss.  For  hybrid  memory  systems  of  DRAM

and NVM, hot pages are stored in DRAM[47].  Hence,

bitmaps are stored in DRAM as a cache for NVMs to

reduce the writes in NVMs. Although a small DRAM

chip  in  hybrid  memory  systems  reduces  the  refresh

energy,  the  total  energy  consumption  is  still  much

higher than that of NVM-only memory systems. The

reason is  that  NVMs completely  avoid  the  expensive

refresh  operations,  thus  significantly  improving  the

energy efficiency. 

5.3    Quality-Performance Trade-off
 

5.3.1    Image-Based Workloads

Figs.9–14 show the memory performance improve-

ment  in  terms  of  bit-write  ratio,  write  latency,  and

energy consumption using  different  data  compression

schemes under various output error constraints. Dur-

ing  our  experiments,  we  observe  serious  quality  de-

generation  when  the  output  error  approaches  10%.

Therefore, we only plot the curves with output errors

under 10%.

Bit-Write  Ratio. Figs.9(a), 10(a), 11(a), 12(a),

13(a), and 14(a) show the bit-write reduction for im-

age-based  workloads  with  different  output  error  con-

straints. The bit-write ratio denotes the percentage of

bits written on NVM after compression and FNW. A

lower  bit-write  ratio  implies  a  higher  NVM  perfor-

mance improvement.  With the increase of  output er-

rors,  the bit-write ratios in all  approximate compres-

sion schemes decrease. Due to the efficiency of pixel-

level  similarity,  ApproxCom and  SimCom often  gen-

erate  fewer  bit-writes  than  the  other  approximate

compression  schemes  with  the  same  output  error.

SimCom achieves 35.4%/39.6%/34.4% lower bit-write

ratios  on  average  than FPC/BDI/BiScaling  with  the

same output error of 3% (the same constraint follow-

ing related work[20]). When the output error increases

to  5%,  the  average  reductions  of  bit-write  ratios  be-

come  42.4%/47.0%/40.6%.  In kmeans  and  debayer,

the  benefits  of  approximation  decrease  due  to  the

smaller  ratios  of  approximable  data  than  the  other

workloads, as shown in Fig.1(a). Due to the flexibili-

ty  of  adaptive  compression,  SimCom obtains  slightly

lower bit-write ratios than ApproxCom. The reason is
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that the adaptive compression scheme in SimCom op-

timizes the compression of grayscale images which are

stored  in  color  image  formats.  For  example,  if  a

grayscale pixel is  stored in the RGB color space, the

bits  for  each  channel  are  the  same.  When  the  mean

differences  generated  by  1C1B  and  3C1B  are  identi-

cal (e.g., 0), 1C1B obtains a smaller compressed data

size  than  3C1B.  SimCom  prefers  the  modes  with

small  compressed  data  sizes  (e.g.,  1C1B),  thus  lead-

ing  to  more  bit-write  reduction  than  ApproxCom

(e.g., 3C1B).

Write  Latency. Due  to  the  electric  current  con-

straint  in  NVMs,  the  write  operation  is  divided  into

several  sequential  write  units[10, 25].  Therefore,  the

write  latency  mainly  depends  on  the  data  size  to  be

written.  As  shown  in Figs.9(b), 10(b), 11(b), 12(b),

13(b), and 14(b), the trends of write latency in image-

based  workloads  are  analogous  to  the  trends  of  bit-

write  ratios  in  these  workloads.  The  superiority  of

SimCom in terms of  bit-write ratio due to the pixel-

level similarity turns into the benefits in write laten-

cy. Under 3% and 5% quality loss, SimCom achieves

on  average  19.6%/26.3%/30.0%  and  21.8%/28.2%/

31.0%  write  latency  reduction,  respectively,  com-

pared  with  FPC/BDI/BiScaling  for  these  six  work-

loads.

Energy  Consumption. Figs.9(c), 10(c), 11(c),

12(c), 13(c),  and 14(c) show the energy consumption

with  various  quality  loss  for  image-based  workloads.

Since  the  energy  consumed in  the  programming  pro-
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Fig.10.  Performance of sobel. (a) Bit-write ratio. (b) Write la-
tency. (c) Energy consumption.
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Fig.11.   Performance  of kmeans.  (a)  Bit-write  ratio.  (b)  Write
latency. (c) Energy consumption.
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cess is the main fraction in the energy consumption of

NVMs[14], the number of bit-writes determines the en-

ergy consumption. Compared with approximate com-

pression schemes,  SimCom reduces the consumed en-

ergy by 18.3%/22.2%/21.1% and 21.4%/25.6%/23.3%

against FPC/BDI/BiScaling with 3% and 5% quality

loss, respectively. 

5.3.2    Video-Based Workload

Fig.15 shows  the  bit-write  ratio  on  NVM  in  the

x264 workload, a video processing application. Videos

consist  of  frames,  which  are  often  stored  as  bitmaps

to be processed. By leveraging the pixel-level similari-

ty,  SimCom achieves  higher  bit-write  efficiency  than

the other schemes. Under 3% and 5% quality loss for

the x264 workload, SimCom shows 9.2%/26.8%/2.2%

and  16.7%/33.0%/9.2%  lower  bit-write  ratios  than

FPC/BDI/BiScaling,  respectively.  For  the  write  la-

tency, SimCom reduces the latency by 15.2%/18.2%/

22.1% compared with  FPC/BDI/BiScaling  under  3%

quality loss.  We skip the measurement of  the energy

consumption  in  the  x264  workload,  since  zsim  does

not support energy modeling. 

5.4    Breakdown of Bit-Write Reduction

In  order  to  evaluate  the  contribution  of  different

techniques  (i.e.,  precise  compression  for  precise  data,

approximate compression for approximable data, and

FNW for compressed data) in all  evaluated schemes,

we  record  the  bit-write  reduction  from  each  tech-
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Fig.12.   Performance  of  2dconv.  (a)  Bit-write  ratio.  (b)  Write
latency. (c) Energy consumption.
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Fig.13.  Performance of debayer. (a) Bit-write ratio. (b) Write
latency. (c) Energy consumption.
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nique.

As shown in Fig.16 and Fig.17, SimCom gains sig-

nificant  bit-write  reduction  from  the  approximate

compression  for  error-tolerant  data,  thus  obtaining

more bit-write reduction than other schemes. Though

the  percentages  of  precise  data  are  large  in kmeans

and  debayer  (Fig.1(a)),  the  precise  compression  per-

formance is limited due to the pattern mismatch and

irregular  data  types  in  these  workloads,  thus  result-

ing in the inefficiency of precise compression schemes

(i.e., FPC and BDI). 

5.5    Adaptability for Bitmap Format Variance

In order to verify the adaptability of SimCom, we

evaluate the jpeg workload with input images of  dif-

ferent formats. As shown in Fig.18, SimCom achieves

comparable  (within  1%)  bit-write  ratios  to  those  of

ApproxCom. Without annotations on bitmap formats,

SimCom is  able  to  infer  the  data  types  according  to

the mean difference (Subsection 4.1) among data. The

pixel-level similarity in data guarantees that the right

compression  mode  (Section 4)  tends  to  obtain  the

minimal mean difference.

An  interesting  point  is  that  SimCom  obtains

slightly lower bit-write ratios than ApproxCom when

CC  is  3,  e.g.,  bitmap  formats  of  (3,  8)  and  (3,  16)

when  the  output  error  threshold  is  3%  and  5%,  re-

spectively. In order to investigate the performance im-

provement, we record the selection of mode inside the

mode selector  of  SimCom. Table 3 shows SimCom is

able  to  obtain  the  right  compression  mode  in  most

cases (the numbers in boldface). However, when CC is

3,  the  mode  selector  possibly  chooses  the  mode  in

which CC is 1. The reason is that when the values of

the three channels in a pixel are identical, e.g., pixels

of  white  color  and  grayscale  bitmaps  stored  in  RGB

formats,  a  compression  mode  with  one  channel  can

achieve the same mean difference with a smaller com-

pressed  data  size  than  the  right  compression  mode.

Therefore,  SimCom  achieves  the  adaptiveness  in  the

mode  selection  and  low  bit-write  ratios  for  various

bitmap formats.

Since  the  mode  selector  selects  the  compression

mode with  minimal  mean difference,  it  is  possible  to

select a compression mode with slightly smaller mean

difference  but  a  much  larger  compressed  data  size

than  the  matched  compression  mode.  As  shown  in

Fig.18,  the  conservative  strategy  used  in  SimCom

may  cause  slightly  larger  compressed  data  sizes  and

bit-write ratios than that in ApproxCom. 

5.6    Discussion

Approximate  Compression  Modes. There  are  six

available  compression  modes  in  SimCom  by  default.
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Fig.14.  Performance of histeq. (a) Bit-write ratio. (b) Write la-
tency. (c) Energy consumption.
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Compression modes with other CCs and BPCs can be

added  into  SimCom  like  existing  modes.  For  images

with BPC > 16,  an alternative approach is  to down-

scale  the  precision  to  fit  the  images  for  predefined

compression modes in SimCom. Due to the error-tol-

erance  in  images,  slight  precision  downscaling  of  im-

ages with large BPC would not cause significant qual-

ity loss.

Additional Latency of SimCom. Since six approxi-

TH ×maxV alue

mate compression modes are executed in parallel, the

additional  compression  latency  of  SimCom  is  deter-

mined  by  the  slowest  compression  mode.  To  deter-

mine  whether  a  word  is  similar  to  a  base  word,  we

just  need  to  check  if  the  largest  difference  in  each

channel  is  larger  than  or  not  (Sub-

section 3.3). According to the prior study[15], the addi-

tional  latency  for  compression  involving  calculating

differences and comparing results is  a few cycles.  Al-

though there may be multiple rounds of finding simi-

lar  words due to possible  multiple  base words in the
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Fig.18.   Bit-write  ratio  in  the  jpeg  workload  with  different
bitmap formats.

 

Table   3.      Statistics  for  the  Selected  Modes  in  SimCom Un-
der 3% Output Error Constraint

Mode Bitmap Format (CC, BPC)

(1, 8) (3, 8) (4, 8) (1, 16) (3, 16) (4, 16)

1C1B 82.4 47.2 0.6 0.2 0.2 0.2

3C1B 0.2 34.1 0.0 0.0 0.0 0.0

4C1B 0.1 0.4 96.9 0.0 0.0 0.0

1C2B 15.3 7.4 0.0 98.5 58.3 1.0

3C2B 0.0 7.1 0.0 0.2 38.5 0.0

4C2B 0.1 0.1 2.2 0.6 1.6 97.9

Incompressible 1.9 3.7 0.3 0.5 1.4 0.9
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64-byte  data,  the  number  of  iterations  is  usually

small,  since  the  pixel-level  similarity  is  prevalent  in

image-based  applications  as  shown  in Fig.3.  For  de-

compression,  restoring  data  from  base  words  is  sim-

ple intra-block copying and fast.

Hardware  Overhead  of  SimCom. The  majority  of

hardware overhead of SimCom comes from the paral-

lel  execution  using  six  approximate  compression  log-

ics,  which  can  be  optimized  by  reusing  the  logic.  In

this case, six compression modes are executed one by

one  in  the  compression  logic,  which  trades  the  com-

pression speed for the hardware efficiency.

Architecture Support  for  SimCom. In the current

testbed,  SimCom  requires  architecture  support  (i.e.,

microarchitecture  modifications)  like  prior

work[18, 33, 34, 36] to identify write accesses with approx-

imable data, which are widely-used techniques in ap-

proximate storage systems[18, 31–34, 36]. For image-based

applications (e.g., machine learning and computer vi-

sion),  memory  performance  and  energy  efficiency  are

important for the overall  system performance. In ad-

dition,  these  applications  are  generally  tolerant  for

minor  errors.  Moreover,  power  consumption  is  con-

strained  in  specific  platforms  (e.g.,  smartphones  and

embedded devices). Therefore, it is meaningful to pro-

vide architecture support for approximate storage sys-

tems.  With  architecture  support  like  Truffle[36],  Sim-

Com  only  requires  small  hardware  changes  in  the

NVM  module  controller  to  deliver  accuracy  require-

ments  via  software  interfaces  without  ISA

extensions[1, 20, 30].  Through  the  interfaces,  approx-

imable  data are  stored in  a  separate  memory region.

Hence,  read  or  write  accesses  to  the  region  can  be

identified by memory addresses. 

6    Related Work

Data  Compression  in  NVMs. FPC[16] uses  static

data  patterns  to  compress  frequent  patterns  into

short  prefix  bits.  BDI[15] leverages  the  characteristics

of narrow values in arrays to encode each word using

bases  with  small  deltas.  However,  as  shown  in  our

evaluation  (Section 5),  general-purpose  patterns  are

difficult  to  match  bitmaps  even  with  approximation.

Different  from FPC and BDI,  SimCom leverages  the

pixel-level similarity in bitmaps and efficiently trades

slight  output  quality  for  performance  improvement.

CompEx[14] and  CompEx++[52] apply  expansion  cod-

ing to integrate data compression and coding for per-

formance  improvements  in  MLC  NVMs.  COE[26]

leverages the saved space in data compression to store

the  tag  bits  of  data  encoding.  These  combination

schemes are  orthogonal  to data compression and can

be  used  to  further  improve  the  energy  efficiency  of

SimCom.

Approximate Image Storage. To address the chal-

lenge of massive image collections, several approxima-

tion  approaches  were  proposed  to  improve  the  effi-

ciency  of  image  storage.  A  biased  MLC  write

scheme[17, 35] is used to balance the drift and write er-

rors  in  MLC PCM.  Selective  ECC is  applied  on  im-

ages  according  to  the  importance  of  encoded  bits[17].

Progressively  encoding  scheme  can  improve  the  read

performance of images[53]. However, these schemes are

established  based  on  the  significant  entropy  differ-

ences  in  encoded  image  bits,  which  do  not  exist  in

bitmaps.  Therefore,  encoded  image  approximation  is

inefficient for the writes of bitmaps in NVMs. Recent

work[1] proposes to selectively write pixels in approxi-

mate  window  by  writing  soft  bits  in  MLC  STT-

MRAM main memory. The approximation is efficient

when loading entire images from disks to MLC STT-

MRAM.  However,  this  technique  is  specific  to  MLC

STT-MRAM and needs searching for similar contents

in  other  memory  blocks,  which  leverages  inter-block

similarity  and  leads  to  additional  hardware  over-

heads  and  latency  when  writing  data  from  cache  to

NVMs.

Approximate  Cache  and  Main  Memory. For  re-

gions  containing  error-tolerant  data,  Flikker[30] re-

duces the refresh rates of DRAM to improve the ener-

gy  efficiency.  Bidirectional  precision  scaling[20] was

proposed  to  compress  the  data  to  be  written  to

DRAM. However, indiscriminately reducing the preci-

sion  of  all  data  can  significantly  decrease  the  image

quality.  STAxCache[34] proposes  approximate

reads/writes tailored for STT-MRAM based L2 cache.

Associating  similar  data  blocks  with  the  same  cache

tags leads to cache performance improvement[33]. The

accesses to memory can be served with predicted val-

ues according to previous data patterns[18, 54]. The in-

ter-block  similarity  used  in  the  above  caches  is  or-

thogonal to the pixel-level similarity of our work. Un-

like  them,  SimCom exploits  the  pixel-level  similarity

in bitmaps and efficiently decreases NVM write over-

heads by approximate compression. 

7    Conclusions

The  paper  proposed  SimCom,  an  approximate

similarity-aware  compression  scheme  in  the  NVM

module  controller.  SimCom  leverages  the  pixel-level

similarity  in  bitmaps  to  efficiently  reduce  the  writes

of  similar  words  for  NVM-based  main  memory,  thus
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improving the memory performance in terms of ener-

gy  efficiency  and  write  latency.  By  exploiting  adap-

tive approximate compression, SimCom mitigates the

programmer annotations used for compression. Exper-

iments  showed  that  compared  with  state-of-the-art

FPC/BDI/BiScaling, SimCom decreases 18.3%/22.2%/

21.1%  energy  and  17.3%/24.9%/28.8%  write  latency

with slight quality loss of 3%.

SimCom is possible to be extended to leverage the

inter-block similarity in approximable data from vari-

ous applications, which is our future work. 
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