

Approximate Similarity-Aware Compression for Non-Volatile Main
Memory

Zhang-Yu Chen (陈章玉), Yu Hua* (华　宇), Distinguished Member, CCF, Senior Member, ACM, IEEE
Peng-Fei Zuo (左鹏飞), Yuan-Yuan Sun (孙园园), and Yun-Cheng Guo (郭云程)

Wuhan National Laboratory for Optoelectronics, School of Computer Science and Technology, Huazhong University of
Science and Technology, Wuhan 430074, China

E-mail: chenzy@hust.edu.cn; csyhua@hust.edu.cn; pfzuo@hust.edu.cn; sunyuanyuan@hust.edu.cn; ycguo@hust.edu.cn

Received June 14, 2022; accepted February 12, 2023.

Abstract Image bitmaps, i.e., data containing pixels and visual perception, have been widely used in emerging applica-

tions for pixel operations while consuming lots of memory space and energy. Compared with legacy DRAM (dynamic ran-

dom access memory), non-volatile memories (NVMs) are suitable for bitmap storage due to the salient features of high

density and intrinsic durability. However, writing NVMs suffers from higher energy consumption and latency compared

with read accesses. Existing precise or approximate compression schemes in NVM controllers show limited performance for

bitmaps due to the irregular data patterns and variance in bitmaps. We observe the pixel-level similarity when writing

bitmaps due to the analogous contents in adjacent pixels. By exploiting the pixel-level similarity, we propose SimCom, an

approximate similarity-aware compression scheme in the NVM module controller, to efficiently compress data for each

write access on-the-fly. The idea behind SimCom is to compress continuous similar words into the pairs of base words with

runs. The storage costs for small runs are further mitigated by reusing the least significant bits of base words. SimCom

adaptively selects an appropriate compression mode for various bitmap formats, thus achieving an efficient trade-off be-

tween quality and memory performance. We implement SimCom on GEM5/zsim with NVMain and evaluate the perfor-

mance with real-world image/video workloads. Our results demonstrate the efficacy and efficiency of our SimCom with an

efficient quality-performance trade-off.

Keywords approximate computing, data compression, memory architecture, non-volatile memory

1 Introduction

Many emerging applications, e.g., image/video

processing, computer vision, and machine learning,

operate on pixels, which are maintained as raw im-

ages, called image bitmaps, and stored in main memo-

ry for fast accesses by offsets[1]. However, the storage

of bitmaps demands a large amount of memory and

energy in DRAM (dynamic random access memory).

Conventional software-based image compression

schemes (e.g., JPEG[2]) are not applicable, since these

image-based applications need to access raw images

for computation. For example, the kernel of the sobel

algorithm[3] is used to read and modify pixels one by

one. Compressed images are still required to be re-

stored into bitmaps on memory for application uses.

Unlike conventional DRAM, non-volatile memo-

ries (NVMs), such as phase change memory (PCM)[4, 5]

and resistive RAM (ReRAM)[6], avoid frequent re-

fresh operations and activation power while provid-

ing high density, which is suitable for emerging appli-

cations involving bitmaps. NVMs offer DRAM-scale

read latency and power, but the required power for

writes is much higher than that of DRAM. Due to the

maximal current constraint during programing, the

write size is limited. Therefore, NVMs suffer from

Regular Paper

A preliminary version of this paper was published in the Proceedings of DAC 2020.

This work was supported in part by the National Natural Science Foundation of China under Grant Nos. 62125202 and
U22B2022.

*Corresponding Author

Chen ZY, Hua Y, Zuo PF et al. Approximate similarity-aware compression for non-volatile main memory. JOURNAL OF

COMPUTER SCIENCE AND TECHNOLOGY 39(1): 63−81 Jan. 2024. DOI: 10.1007/s11390-023-2565-7

©Institute of Computing Technology, Chinese Academy of Sciences 2024

https://doi.org/10.1007/s11390-023-2565-7
https://doi.org/10.1007/s11390-023-2565-7
https://doi.org/10.1007/s11390-023-2565-7
https://doi.org/10.1007/s11390-023-2565-7
https://doi.org/10.1007/s11390-023-2565-7
https://doi.org/10.1007/s11390-023-2565-7
https://doi.org/10.1007/s11390-023-2565-7

high write power and latency[7–12].

Recent designs propose data compression based on

general-purpose patterns inside the NVM module con-

troller to reduce bit writes and improve memory per-

formance[13–16]. Specifically, upon receiving an NVM

write request, these hardware-layer compression

schemes partition the data into words, which are

compressed using general-purpose data patterns, e.g.,

frequent patterns in frequent pattern compression

(FPC)[16] and base words with small deltas in base

delta immediate (BDI)[15]. After compression, small

compressed data are written to NVMs, thus improv-

ing the write efficiency. However, for write accesses of

bitmaps, the partitioned words are hard to match the

general data patterns due to the large variance, which

results in high compression ratios (compressed data

size relative to uncompressed data size). In order to

verify the poor efficiency in existing compression

schemes, we record the percentage of NVM writes

containing bitmaps (Fig.1(a)) and corresponding com-

pression ratios for these writes (Fig.1(b)) in six im-

age-based workloads (Subsection 5.1). Results in Fig.1

indicate that the writes of bitmaps account for a large

portion of NVM writes for image-based applications.

However, the average compression ratios of FPC and

BDI are 94.2% and 99.8%, respectively, which means

most data writes of image bitmaps obtain poor com-

pression performance and even become incompress-

ible using precise compression schemes.

Recent research explored the approximate storage

for data that tolerate minor inaccuracies[1, 17, 18]. The

approximate image storage proposed by Guo et al.[17]

leverages the significant entropy differences in the en-

coded bits of compressed images, and applies differ-

ent levels of error correction codes for different bits.

However, entropy differences are negligible in

bitmaps, since each bit in bitmaps corresponds to at

most one pixel. Recent work[1, 18] exploits the inter-

block similarity (the block here denotes CPU cache

block) to provide approximate storage for bitmaps.

However, searching for similar data in NVMs during

each write access incurs extra latency and hardware

overheads. Since a large portion of data to be written

are approximable (Fig.1(a)), it is possible to improve

the write performance by approximately compressing

the data on-the-fly before writing to NVMs. In order

to efficiently reduce the bit-writes of bitmaps in NVM

systems, there are two challenges for data compres-

sion.

Irregular Data Patterns. The data in NVM writes

containing bitmaps are hard to match the general da-

ta patterns in existing compression schemes. Bitmaps

consist of the bits in each pixel, and a typical pixel

consists of three bytes. Since the pixel size in com-

mon bitmaps (e.g., 3 B) is not the same as the word

size in conventional compression schemes (e.g., 4 B),

there is a significant variance in partitioned words.

Besides, the value of each word depends on the con-

tents of bitmaps. Therefore, the partitioned words in

conventional schemes show irregular data patterns,

leading to poor compression performance.

Bitmap Format Variance. When multiple applica-

tions (or threads) are running on top of NVM systems

with different bitmap formats (e.g., color/grayscale

images and different bits per pixel), write accesses to

NVMs contain different data layouts. Moreover, the

persistence order is determined by the cache replace-

ment policy, which is different from the program or-

der[11, 19]. Due to the reordering, it is challenging to

determine the bitmap format for each write access.

Data compression designed for one bitmap may fail in

others due to the significant changes in data patterns.

Existing bidirectional precision scaling[20] parti-

tions data using the annotated word size and con-

ducts approximate precision scaling for error-tolerant

data to reduce the data size. Specifically, it approxi-

mately encodes the most significant bits (MSBs) and

his
teq

0

20

40

60

80

100

R
a
ti
o
 o

f
N

V
M

 W
ri
te

s

C
o
n
ta

in
in

g
 B

it
m

a
p
s

(%
)

(a)

0.0

0.2

0.4

0.6

0.8

1.0

C
o
m

p
re

ss
io

n
 R

a
ti
o

 FPC BDI

(b)

jpeg
sob

el

m
ea

ns

2d
co

nv

de
ba

ye
r

his
teqjpeg

sob
el

m
ea

ns

2d
co

nv

de
ba

ye
r

Fig.1. Performance using typical compression schemes on im-
age-based applications. (a) Percentage of NVM writes contain-
ing image bitmaps. (b) Compression ratio using FPC and BDI.

64 J. Comput. Sci. & Technol., Jan. 2024, Vol.39, No.1

truncates least significant bits (LSBs) of error-toler-

ant data within the accuracy constraint. However, the

pixel values in bitmaps are often stored using the

smallest data type, in which identical MSBs are usu-

ally unavailable in bitmaps. Moreover, indiscriminate-

ly truncating LSBs reduces the color depth and caus-

es the noticeable quality degradation.

To address the above two challenges, we propose

SimCom, an efficient hardware-level similarity-aware

compression scheme, to reduce the bit writes of

bitmaps into NVMs, thus improving the memory per-

formance of NVMs. For the first challenge, we lever-

age the pixel-level similarity in bitmaps and only

write a base word (the representative word for a

group of continuous similar words) with a run (the

number of words in the group) for each group of con-

tinuous similar words, which eliminates the writes of

similar words in NVMs. The storage costs for small

runs are optimized by reusing the LSBs of base words

without significant accuracy loss. For the second chal-

lenge, SimCom executes compression modes in paral-

lel and adaptively selects an efficient compression

mode without programmer annotations on image/

video formats.

Compared with the preliminary version of Sim-

Com[21], this paper makes the following main improve-

ments.

• We add important details on the motivation,

background, and design to make this paper self-con-

tained. For example, we evaluate the ratios of NVM

writes containing approximable data in six workloads

to show the opportunities for approximate compres-

sion.

• We add several new experiments to demon-

strate the efficiency of SimCom and analyze the

trade-offs in approximate compression. Different

memory architectures (e.g., DRAM-only and DRAM/

NVM hybrid main memory) are evaluated to study

the energy efficiency of SimCom. Instead of two fixed

output error constraints (3% and 5%) in the previous

work[21], we evaluate more configurations to show the

quality-performance trade-off in SimCom. The break-

down of the bit-write reduction on NVM by using

SimCom is presented and analyzed.

• We discuss the compression modes, overheads,

and the architecture support for SimCom, and sum-

marize the related work.

Overall, we make the following contributions in

SimCom.

• Similarity-Aware Compression. We develop a

model to quantify the pixel-level similarity. With the

model, we propose an efficient approximate data com-

pression scheme in the hardware layer to reduce the

bit-writes of image bitmaps in NVMs on-the-fly.

• Adaptiveness for Different Formats. With the

domain knowledge of bitmaps, we propose an adap-

tive scheme to perform approximate compression

without prior knowledge about data formats, thus

eliminating the annotations on the data types and the

pixel size of bitmaps.

• System Implementation. We have implemented

the prototype of SimCom on GEM5/zsim with

NVMain and have conducted experiments with real-

world workloads in various domains. Results using

image/video-based applications show that SimCom

achieves average 18.3%/22.2%/21.1% energy savings

and 17.3%/24.9%/28.8% write latency reduction over

FPC/BDI/BiScaling with 3% quality loss.

2 Background and Motivation

2.1 Image Bitmap

Structure Organization. An image bitmap is a pix-

el storage structure containing the bits for each pixel

color. The bits of a pixel color consist of multiple pri-

mary colors. The values of one primary color for all

pixels comprise a channel. A typical bitmap consists

of three channels (i.e., red, green, and blue). For each

pixel, the number of bits per channel is eight. Some

bitmaps contain an optional channel, called alpha

channel, to store transparency information[22, 23]. We

use channel count (CC) to represent the number of

channels in a bitmap, and use bits per channel (BPC)

to denote the number of bits per channel for each pix-

el.

ŷ y
m

Quality Metric. Root-mean-square error (RMSE)

is an objective metric to measure the quality of an

image, which indicates the difference of each pixel

compared with a baseline image. The RMSE of im-

age with respect to baseline image is calculated

using (1), where denotes the number of pixels in

each image. The value of RMSE ranges from 0 to 1,

the lower, the better. We use RMSE to measure the

output quality of relaxed images like prior work[3, 20].

RMSE =

√√√√ 1

m

m−1∑
i=0

(yi − ŷi)
2. (1)

2.2 Bit-Write Reduction in NVMs

To address the high energy consumption in write

Zhang-Yu Chen et al.: Approximate Similarity-Aware Compression for Non-Volatile Main Memory 65

operations, bit-write reduction techniques are widely

used in NVM-based main memory[10, 14–16, 24–28]. Relat-

ed schemes include data encoding[24, 25, 29], data com-

pression[15, 16, 27], and their combinations[14, 26, 28]. Be-

fore writing data into NVMs, compression schemes

decrease the data size. For read accesses, the com-

pressed data are decompressed. Data encoding

schemes are used to reduce the bit flips in write oper-

ations. Moreover, encoding technologies can be lever-

aged to encode the compressed data for further ener-

gy efficiency[14] and lifetime improvement[26].

2.3 Approximate Storage

Approximate storage leverages the error-tolerance

of approximable data to slightly relax the accuracy

constraints for improvement in terms of performance,

data density, lifetime, and energy efficiency. Approx-

imable data are interpreted as the data tolerating mi-

nor inaccuracies. In the context of this paper, approx-

imable data denote image bitmaps. For approximate

storage, typical approximation consists of three steps:

identification of approximable data, approximate tech-

niques, and quality control. Before execution, error-

tolerant data should be separated from raw applica-

tion data, which is accomplished by programmer an-

notations[18, 30–34] and domain knowledge[17, 35]. For er-

ror-tolerant data, traditional guarantees for accuracy

in the storage systems are relaxed for gains in memo-

ry performance and efficiency. Existing approximate

techniques include decreasing refresh rate[30] and low-

ering voltage[36] in DRAM, using worn blocks and

skipping program-and-verify iterations in multi-level

cell (MLC) PCM[37], associating similar cache blocks

with the same tag entry[18, 33], and utilizing selective

error correction code[17, 35]. Given accuracy con-

straints, we need to select appropriate approximation

parameters[1, 33] to achieve suitable trade-off between

output quality and performance. The parameters can

be inferred dynamically by monitoring the intermedi-

ate results[38, 39], using the input features[40], and tun-

ing with canary inputs[41, 42].

2.4 Pixel-Level Similarity

Pixel-level similarity is interpreted as the similari-

ty among words in the data of an NVM write access.

As shown in Fig.2, the contents of adjacent pixels A,

B, C, and D are similar. Instead of the fixed four-byte

word size, the data in SimCom are partitioned at the

pixel-level granularity, e.g., three bytes for RGB for-

mat (more details are available in Subsection 3.4). In

a bitmap, each pixel describes the color of a tiny

point of the image. Hence, adjacent pixels tend to

have similar contents. For the storage of an image

bitmap, the contents usually are mapped to a contin-

uous region in memory and have continuous address-

es in the address space. When a write access of a

bitmap is issued to the NVM module, and we parti-

tion the data at the boundaries of pixels, partitioned

words are possible to be similar due to the analogous

contents in adjacent pixels. This paper proposes to

leverage the pixel-level similarity in data for approxi-

mate compression, thus reducing the data size and

improving the memory performance.

We have conducted experiments to verify the

prevalence of pixel-level similarity in write accesses to

NVMs by recording continuous similar words in ap-

Tag Data

Last Level Cache

Memory
Controller

Write Access

CPU NVM

SimCom

NVM Array

Image Bitmap

Fig.2. Example of leveraging the pixel-level similarity to compress data writes.

66 J. Comput. Sci. & Technol., Jan. 2024, Vol.39, No.1

proximable data, i.e., the data containing image

bitmaps. Continuous similar words are interpreted as

a group of sequential words, in which any two words

are similar. We use the proposed model in Subsection

3.3 to quantify the similarity among words. Approx-

imable data are partitioned at the pixel boundaries.

Error thresholds denote the normalized difference

(Subsection 3.3) and range from 0% (precise) to 100%

(maximal approximation), which indicates the ap-

proximation degree. The details of experimental set-

tings are described in Subsection 5.1. Fig.3 shows the

percentage of continuous similar words in approx-

imable data with different error thresholds. When we

increase the error threshold, the ratio of continuous

similar words increases up to 82.8% on average.

0

20

40

60

80

100

R
a
ti
o
 o

f
C

o
n
ti
n
u
o
u
s

S
im

il
a
r

W
o
rd

s
(%

)

 0% 1% 3% 5%

his
teqjpeg

sob
el

m
ea

ns

2d
co

nv

de
ba

ye
r

Fig.3. Ratio of continuous similar words in approximable data
with different error thresholds. The ratio is interpreted as the
size of all continuous similar words divided by that of the total
approximable data in bytes.

The pixel-level similarity is common in bitmaps

due to two reasons. 1) The changes among adjacent

pixels are generally slight. For example, most back-

grounds in images consist of similar colors and lack

abrupt changes. 2) The resolution of images is high.

With a higher resolution for advanced sensors and ap-

plication requirements, the number of pixels corre-

sponding to one item increases and the difference be-

tween two adjacent pixels decreases. The common

similarity of pixels offers the opportunity for approxi-

mate compression.

Note that even when the error threshold is 0%,

the ratio of continuous similar words is still more

than 4.5% and up to 46.5%. The substantial similari-

ty in images motivates us to exploit the pixel-level

similarity for bit-write reduction and energy efficien-

cy in NVMs.

3 Similarity-Aware Data Compression

3.1 Design Overview

Fig.4 shows the hardware architecture overview of

SimCom. Specifically, the adaptive approximate com-

pression logic and decompression logic implement the

compression and decompression schemes of SimCom,

respectively. The quality table is an on-chip cache[1, 34],

which stores some user-annotated metadata (i.e., start

and end addresses, error thresholds) about bitmaps.

The quality table contains only a few entries (e.g.,

64), so that the hardware overheads are negligible.

Write Operation. For approximable data contain-

ing bitmaps (indicated by the quality table), the

adaptive approximate compression logic partitions da-

ta into words, finds continuous similar words, and

compresses them into base words and runs. By lever-

aging the pixel-level similarity, SimCom efficiently re-

duces the size of approximable data. For precise data,

i.e., the data not covered by the quality table, the

precise compression logic leverages existing precise

compression schemes (e.g., FPC[16]) to ensure the cor-

rectness, thus enabling the simultaneous executions of

various applications.

Read Operation. For NVM read accesses, com-

pressed data are decompressed in the decompression

logic. With the encoded mode index in the com-

pressed data, the decompression logic restores the ap-

proximable data for read requests.

3.2 Software Interface

A software interface, i.e., setApproxRegion(sAddr,
eAddr, TH), is leveraged to deliver user annotated ap-

Adaptive Approximate
Compression Logic

Precise
Compression Logic

Last Level Cache and Cores

Memory Controller
CPU

NVM Module
Controller

Write Controller Read Controller

Write Buffer Read Buffer

NVM Module

NVM Array

Quality
Table

Decompression
Logic

Fig.4. Architecture overview of SimCom.

Zhang-Yu Chen et al.: Approximate Similarity-Aware Compression for Non-Volatile Main Memory 67

proximable data regions ([sAddr, eAddr]) and error

thresholds of normalized difference (TH) to the quali-

ty table of NVM module controllers via memory-

mapped registers[20]. If the region of an NVM write re-

quest is not overlapping with any region stored in the

quality table (physical memory addresses of [sAddr,
eAddr]), corresponding data are processed via the

adaptive approximate compression logic. A practical

way to determine the threshold is to search a suit-

able value using small canary inputs and apply the

threshold on full-size inputs[41, 42].

3.3 Similarity Model

maxV alue

p q

Although the pixel-level similarity exists in

bitmaps, how to efficiently detect the similarity re-

mains a problem. We develop a model to estimate

and quantify the pixel-level similarity between two

words. The model is based on the observation that

corresponding primary colors are similar if two words

correspond to similar pixels. Hence, we use the maxi-

mal absolute difference in different channels to quan-

tify the similarity between two words. The difference

is normalized to the maximal value of the primary

color, called . The normalized difference be-

tween words and is calculated using (2).

normDiff =
max{|p[i]− q[i]|}

maxV alue
, i ∈ [0, cc). (2)

p[i] q[i]

maxV alue

maxV alue cc

cc

In (2), and correspond to primary colors

in the same channel. is a constant deter-

mined by the number of bits for one primary color,

i.e., BPC. When BPC is 8, is 255. de-

notes the value of CC (channel count). If one of the

two words is a partial word, is substituted by the

number of common channels in the two words. When

the normalized difference is smaller than the error

threshold annotated by users, two words are similar.

3.4 Data Partition

Data partition is the first step for compression

and nontrivial. According to the proposed similarity

model, we need to partition the data at the pixel

boundaries in order to find out the similar words.

However, how to identify pixel boundaries in data be-

comes a problem. We cannot figure out the positions

of pixel boundaries without additional context infor-

mation, such as the offset of the data in bitmaps and

the corresponding bitmap format. A straightforward

solution is to allocate each pixel with a fixed align-

ment (the alignment should be a factor of the cache

block size, e.g., 4 B), thus enabling static pixel bound-

ary positions in the memory space. However, when

the actual pixel size (e.g., 3 B) mismatches the align-

ment, the unused space (e.g., 1 B) in each pixel signif-

icantly increases the NVM storage overhead.

In order to preserve the similarity in partitioned

words with low overheads, we propose a uniform

scheme to partition the data in a write access. Due to

the pixel-level similarity, the data form an approxi-

mate periodic cycle of the pixel size. Therefore, we

propose to partition at the granularity of pixel size,

and leave the possible remaining bytes (when the da-

ta size is not a multiple of the pixel size) at the end

as a partial word. For example, if the pixel size is

3 bytes and the data write size is 64 bytes, data are

divided into 21 words of 3 bytes and one partial word

of 1 byte.

3.5 Searching Continuous Similar Words

O(n2) n

Since continuous similar words require that any

two words are similar (Subsection 2.4), the time com-

plexity to obtain a group of exact continuous similar

words is (denotes the number of words). The

high time complexity incurs high latency and hard-

ware overhead to accurately find all continuous simi-

lar words in a write access.

In order to alleviate the cost of searching similar

words during compression, we propose to approxi-

mately search for continuous similar words. Specifical-

ly, we slightly relax the requirements of continuous

similar words. Relaxed continuous similar words are

only required to be similar to the base word (for sim-

plicity, we use continuous similar words to represent

relaxed continuous similar words in the following text

unless specified). Even in the relaxed similarity mod-

el, the maximal normalized difference in a group is

constrained to twice of the annotated error threshold.

Though the appropriate candidate for a base word

is the average of all similar words, we take the first

word of each group as the base word for two reasons

(in the following text, we use the base word and base

interchangeably): 1) taking the first word as the base

simplifies the compression logic; 2) despite selecting

the first word as a base, the penalty in the compres-

sion ratio is slight.

With the relaxation in similarity and selection of

the base for continuous similar words, the time com-

plexity of getting continuous similar words decreases

68 J. Comput. Sci. & Technol., Jan. 2024, Vol.39, No.1

O(n)to , which efficiently decreases the complexity of

compression logic and improves the compression per-

formance.

3.6 Similarity-Aware Compression for

NVMs

Compression for NVM Writes. Fig.5 illustrates

the workflow of approximate compression. After par-

titioning the original data (Fig.6(a)) into words as

shown in Fig.6(b) (step 1), SimCom sets the first

word as the base and initializes the run to 1 (step 2).

If the loaded word is not similar to the base, current

values of the base and run are encoded and written

into compressed data. The current word is set as the

new base and the run is reset to 1 (step 3). If the cur-

rent word is similar to the existing base, SimCom on-

ly increases the run by 1 (step 4). Note that for the

possible partial word at the end of data to be written,

SimCom obtains the normalized difference between

the partial word and the last base via the proposed

similarity model (Subsection 3.3). After processing

each word, SimCom records the last pair of the base

and run in the compressed data. The first byte of the

compressed data is used to record the number of

bases and the mode index (step 5). Fig.6(c) shows the

result of approximate compression using base words

and runs. If the data are not approximable, the data

are compressed using existing precise data compres-

sion schemes, e.g., FPC.

The above approximate compression workflow is a

variant of run-length encoding: the base word is a

representative word for near-duplicate words, and the

run denotes the repeated time. The compression

scheme is efficient for data when the run is large,

since multiple similar words are replaced by a base

1

1

1

0

0

word with a run. However, the storage overheads for

runs become high when the runs are small. For exam-

ple, due to the first run in Fig.6(c), the compressed

data for the first partitioned word is one byte larger

than the original word. To mitigate the metadata

overheads of small runs, we propose to reuse the LS-

Bs of base words to encode small runs. Specifically,

the LSB of a base word is used to indicate whether its

corresponding run exists in the compressed data. If

the LSB of the base word is 1, the run exists in com-

pressed data and we further reuse the MSB of the run

to store the original LSB of its corresponding base

word; otherwise, the run is 1 and not stored. For ex-

ample, in Fig.6(d), since run (i.e., 5) is larger than 1,

the original LSB of base is stored in the MSB of

run , avoiding affecting the accuracy of bases that are

similar to other words. The LSB of base is 0 and in-

dicates that run is 1. As a result, only LSBs of words

not similar to adjacent ones are affected and the accu-

racy loss is limited. According to our evaluation re-

sults, the worst quality degradation of reusing LSB

(i.e., indiscriminately truncating the LSB of all base

words) is 1.35% when BPC is 8. Reusing 2 bits leads

to nonnegligible quality loss of 2.62%, since the typi-

cal output quality constraint for images is 3%[20].

Hence, SimCom only reuses the LSB of a base word.

Decompression for NVM Reads. For read access-

es to approximately compressed data, the approxi-

mate decompression is used to reconstruct the stored

data. Specifically, for each pair of the base and run in

compressed data, the base is used to fill the read

buffer multiple times according to the run. Fig.6(f)

shows an example of the decompression. Essentially,

the bases are used to represent similar words (i.e., the

shadowed bytes in the figure). For precise com-

pressed data, the encoded data are reconstructed by

Step 5: Write (Base, Run),
Set Metadata

Uncompressed Data

Step 1: Uniform Partition

Step 2: Set the First Word as the Base, Run = 1

Load Next Word

Similar to Base? Is Last Word?

Y

Y

Step 4: Increase Run

N

N

Step 3: Write (Base, Run),
Update Base & Run

Compressed Data

Fig.5. Approximate compression workflow in SimCom.

Zhang-Yu Chen et al.: Approximate Similarity-Aware Compression for Non-Volatile Main Memory 69

the inverse procedure of precise compression (e.g.,

FPC). If the loaded data are not compressed, the da-

ta would bypass the decompression logic and respond

to read accesses.

4 Adaptive Approximate Compression

In order to handle different bitmap formats, the

approximate compression proposed in Section 3 re-

quires extra metadata including CC and BPC.

Though it is possible to annotate the metadata to be

stored in cache tags[33] or an address table in memory

controllers[20, 34], these techniques cause additional

overheads and programmer annotations. Moreover,

users need to confirm the bitmap formats and anno-

tate these metadata before execution. Hence, in this

section, we propose to leverage the image characteris-

tics and adaptively select the appropriate mode for

data compression without additional programmer an-

notations.

4.1 Adaptive Compression Scheme

The proposed scheme selects from predefined com-

pression modes in an adaptive manner.

1) Why Use Predefined Compression Modes for
Different Image Formats? The images generally in-

clude grayscale and color images. Grayscale images

contain only one channel and the color images in

RGB color space consist of red, green, blue, and op-

tional alpha channels. In other color spaces (e.g.,

YUV), similar components (e.g., one luminance chan-

nel and two chrominance channels) exist. The BPC in

common images is 8 bits, which represent 256 levels

(a)

(b)

(c)

(d)

(e)

(f)

Uncompressed Data

Pixel Pixel Pixel Pixel

8E 76 83 81 6F 82 81 70 82 81 70 83 84 6C 85 82

8E 76 83 81 6F 82 81 70 82 81 70 83 84 6C 85 82Partitioned Data

2 1 58E 76 82 81 6F 82Compressed Data
(Base Words & Runs)

Saved Space

0 10 1 7 B

2

8 B

82 58E 76 81 6F 83 Saved Space

1

Compressed Data
(Reusing LSB)

LSB = 0
=> 0 Is 1

LSB = 1
=> 1 Exists

1's
Original LSB 0 0000101

82 58E 7622 81 6F 83 Saved Space
Compressed Data

(Encoding Metadata)

Mode Index Number of Bases

8E 76 82 81 6F 82 81 6F 82 81 6F 82 81 6F 82 81Decompressed Data

00010001

Fig.6. Example of approximate compression and decompression when the error threshold for normalized difference is 0.05.
(a) Original data before compression. (b) Data partition. (c) Compressed data using base words and runs. (d) Compressed data af-
ter reusing LSB. (e) Compressed data after encoding metadata. (f) Uncompressed data after decompression.

70 J. Comput. Sci. & Technol., Jan. 2024, Vol.39, No.1

in each channel. The 24 bits per pixel (3C1B) repre-

sent more than 16 million colors, while the number of

colors discriminated by the human eye is up to 10

million[43, 44]. For applications processing HD (high-

definition) images, 16 bits per channel is enough to

encode the necessary colors. Therefore, we propose to

use six compression modes to handle different image

formats. The options for CC are 1 (e.g., grayscale), 3

(e.g., RGB), and 4 (e.g., RGB with an alpha

channel), and the default options for BPC include 8

and 16.

w[i]

(w[base(i)])

2) How to Determine the Suitable Compression
Mode for a Write Access? A straightforward ap-

proach is to sample some write accesses for an effi-

cient compression mode to be applied on later NVM

writes. Sampling works when all write accesses have

regular pattern formats (e.g., all applications using

one bitmap format). However, sampling often fails

when data writes have random pattern formats (e.g.,

applications using different bitmap formats are run-

ning in an NVM system). Instead of sampling, Sim-

Com performs six compression modes in parallel and

selects the compression mode with the minimal mean

difference. As shown in (3), mean difference is calcu-

lated as the average difference between every two ad-

jacent words in data. We observe that the mean dif-

ference of the right compression mode (i.e., the mode

matching the bitmap format) is minimal, which

makes sense due to the pixel-level similarity. Fig.7

shows the overview of the adaptive compression

scheme used in SimCom. Six compression modes with

different CCs and BPCs process data in parallel. The

mode selector first selects the mode with the minimal

mean difference. If multiple modes have the minimal

mean difference, the mode selector chooses the one

with the minimal compressed data size. For the sim-

plicity of compression logic, SimCom reuses the nor-

malized difference between each word (in (3))

and the corresponding base (in (3)) as the

difference between adjacent words. Due to the error-

tolerance of application and the similarity between

words and their bases, the reuse of normalized differ-

ence is acceptable (evaluated in Section 5).

meanDiff =
1

n

n−1∑
i=0

normDiff(w[i], w[base(i)]). (3)

4.2 Metadata Management

There are two classes of metadata in SimCom.

The first-class metadata are used for approximately

compressed data in SimCom including the choice of

compression mode and the number of bases. Except

for the 1C1B compression mode, each base occupies

at least 2 bytes. Therefore, there are no more than 32

bases in compressed data with 64-byte write data

granularity. The number of bases can be encoded us-

ing 3 bits. Hence, for all compression modes except

for 1C1B, SimCom uses the first byte of the com-

pressed data to encode the choice of compression

mode (the highest 3 bits) and the number of bases

(the rest 5 bits). Fig.6(e) shows an example of com-

pacting the mode index of 3C1B and the number of

bases into 1 byte. For the 1C1B compression mode,

SimCom stores the number of bases into the second

byte of compressed data. The second-class metadata

are used for approximate compression including one

compressible bit to indicate whether a data block is

compressed or not. SimCom stores the compressible

bits in a separate region in NVMs like prior

work[15, 16, 20]. The compressible bit can be packed in-

to compressed data to reduce NVM accesses and im-

prove the memory bandwidth[13, 45].

5 Evaluation

5.1 Experimental Setup

We implement SimCom in GEM5[46] with

NVMain[47]. For energy comparisons with DRAM-

based memory systems (Subsection 5.2), we use the

energy model of Micron DDR3-1333_4Gb_8B_x8 pro-

vided by NVMain. Since SimCom focuses on data

compression and is orthogonal to the underlying

memory model, we use a First Ready First Come

First Serve (FRFCFS) memory controller to serve

NVM accesses due to the simplicity and ease of use.

The system configurations of GEM5 and NVMain are

listed in Table 1. Due to the limited simulation speed

of GEM5, we also leverage zsim[48], a fast pin-based

Write Buffer (Uncompressed Data)Quality
Table

#0 #1 #2 #3 #4 #5

1C1B 4C2B3C2B1C2B4C1B3C1B

Compressed Data

Mode Selector

NVM

Fig.7. Adaptive compression scheme overview. The two inte-
gers in each compression mode denote the number of channels
and the number of bytes per channel. #i means the identifier of
a compression mode.

Zhang-Yu Chen et al.: Approximate Similarity-Aware Compression for Non-Volatile Main Memory 71

1

x86-64 simulator, to evaluate the video-based applica-

tions. We measure the performance with six image-

based workloads, i.e., jpeg, sobel, kmeans from

AxBench[3], 2dconv, debayer, and histeq from PER-

FECT[49], and one video-based workload, i.e., x264

from PARSEC[50]. These workloads are selected for

various domains, i.e., jpeg for compression, sobel,

2dconv, debayer, and histeq for image processing,

kmeans for machine learning, and x264 for video pro-

cessing. Two color spaces are used in the tested work-

loads (YUV for x264 and RGB for others). The ra-

tios of approximable data in these workloads are

shown in Fig.1(a). As suggested in related work[3], we

use RMSE (Subsection 2.1) as the metric to measure

the output error (i.e., the quality of the output im-

age) compared with the precise compression result.

Structural similarity (SSIM)[51] is used to quantify the

output error of videos by -SSIM. The input images

come from the Kodak dataset①. The output errors are

reported using the average RMSE of six images. The

typical output error constraints are 3% following BiS-

caling[20] and 5% for more aggressive approximation.

Before running these workloads, we warm up the sys-

tem with 100 million instructions.

We have evaluated the following compression

schemes (FNW[25] is used to further reduce bit-flips in

all schemes).

• FPC[16]. By exploiting the general frequent pat-

terns, FPC compresses the matched words with short

prefix bits. For fair comparisons, we enhance this

scheme by adding approximation. Specifically, for a

partitioned word, if a similar word derived from the

word by flipping few bits matches a data pattern, the

pattern is used to compress the word.

• BDI[15]. This scheme leverages the narrow value

characteristics of an array and compresses cache block

data into bases with small deltas. This scheme is an

approximate version of BDI[15]. It relaxes the narrow

value constraints and compresses the words that

slightly overflow the delta limit.

• BiScaling[20]. This scheme uses bidirectional pre-

cision scaling to approximately compress the data to

be written.

• ApproxCom. This is our proposed scheme that

leverages the pixel-level similarity for approximate

compression. ApproxCom requires annotations on

BPC and CC.

• SimCom. This is our proposed scheme leverag-

ing the pixel-level similarity and adaptive compres-

sion (i.e., ApproxCom + adaptive compression),

which eliminates the annotations on data formats

used in BiScaling and ApproxCom.

Since BiScaling, ApproxCom, and SimCom focus

on approximate compression on approximable data,

we use precise FPC to compress precise data in these

schemes.

We leverage programmer annotations[31, 32] and

ISA extensions[36] to deliver necessary information in-

to storage systems like prior work[18, 33, 34, 36]. Pro-

grammer annotations are mature techniques and widely

used in approximate storage systems[18, 31, 33, 34, 36]. We

use programmer annotations to annotate bitmaps as

approximable data in workloads. Through ISA exten-

sions, write accesses with approximable data are iden-

tified and processed by approximate compression log-

ics. Table 2 shows the required annotations for all

compression schemes.

Table 2. Annotation Requirements in Compression Schemes

Scheme Error Threshold Channel Count Bits Per Channel

FPC[16] ✓ ✗ ✗

BDI[15] ✓ ✗ ✗

BiScaling[20] ✓ ✗ ✓

ApproxCom ✓ ✓ ✓

SimCom ✓ ✗ ✗

Note: ✓: requires the annotation; ✗: does not require the
annotation.

For fairness, we tune the approximation degrees in

different schemes (e.g., the number of truncated bits

for BiScaling, normalized difference thresholds for Ap-

proxCom/SimCom) to achieve the same output error

constraints and compare the memory performance.

5.2 Energy Efficiency

Fig.8 shows the total energy for different memory

systems when executing the jpeg workload (other

Table 1. System Configurations

Component Configuration

CPU Core One x86-64 core, 2 GHz

L1 I/D cache 32 KB, 2 ways, LRU

L2 cache 1 024 KB, 8 ways, LRU

Cache block size 64 B

Memory Model PCM

Controller FCFRFS

Read/write latency 120 ns/150 ns

Organization 4 GB, 8 B write unit size

72 J. Comput. Sci. & Technol., Jan. 2024, Vol.39, No.1

①http://r0k.us/graphics/kodak/, Jan. 2024.

http://r0k.us/graphics/kodak/

workloads show similar trends). Due to the non-

volatility characteristics, NVMs have 225x higher en-

ergy efficiency than legacy DRAM. SimCom decreas-

es the energy consumption in NVM by 58.6% with 3%

quality loss. For hybrid memory systems of DRAM

and NVM, hot pages are stored in DRAM[47]. Hence,

bitmaps are stored in DRAM as a cache for NVMs to

reduce the writes in NVMs. Although a small DRAM

chip in hybrid memory systems reduces the refresh

energy, the total energy consumption is still much

higher than that of NVM-only memory systems. The

reason is that NVMs completely avoid the expensive

refresh operations, thus significantly improving the

energy efficiency.

5.3 Quality-Performance Trade-off

5.3.1 Image-Based Workloads

Figs.9–14 show the memory performance improve-

ment in terms of bit-write ratio, write latency, and

energy consumption using different data compression

schemes under various output error constraints. Dur-

ing our experiments, we observe serious quality de-

generation when the output error approaches 10%.

Therefore, we only plot the curves with output errors

under 10%.

Bit-Write Ratio. Figs.9(a), 10(a), 11(a), 12(a),

13(a), and 14(a) show the bit-write reduction for im-

age-based workloads with different output error con-

straints. The bit-write ratio denotes the percentage of

bits written on NVM after compression and FNW. A

lower bit-write ratio implies a higher NVM perfor-

mance improvement. With the increase of output er-

rors, the bit-write ratios in all approximate compres-

sion schemes decrease. Due to the efficiency of pixel-

level similarity, ApproxCom and SimCom often gen-

erate fewer bit-writes than the other approximate

compression schemes with the same output error.

SimCom achieves 35.4%/39.6%/34.4% lower bit-write

ratios on average than FPC/BDI/BiScaling with the

same output error of 3% (the same constraint follow-

ing related work[20]). When the output error increases

to 5%, the average reductions of bit-write ratios be-

come 42.4%/47.0%/40.6%. In kmeans and debayer,

the benefits of approximation decrease due to the

smaller ratios of approximable data than the other

workloads, as shown in Fig.1(a). Due to the flexibili-

ty of adaptive compression, SimCom obtains slightly

lower bit-write ratios than ApproxCom. The reason is

D
R
A
M

H
yb

ri
d
(2
)

H
yb

ri
d
(1
)

H
yb

ri
d
(0
.5
)

N
V
M
 w

/o
 S
im

C
om

N
V
M
 w

/S
im

C
om

105

106

107

108

109

1010

E
n
e
rg

y
C

o
n
su

m
p
ti
o
n
 (

n
J
)

Fig.8. Energy consumption for different memory systems with
4 GB total capacity using jpeg workload. “Hybrid” indicates a
hybrid main memory consisting of DRAM and NVM. The num-
ber after “Hybrid” denotes the capacity of DRAM in GB. w/o:
without; w/: with.

0

50

40

30

20

10

0

500

400

300

200

100

0

1.5

1.0

0.5

0.0

2 4 6 8 10

Output Error (%)

B
it
-
W

ri
te

 R
a
ti
o
 (

%
) FPC BDI BiScaling

ApproxCom SimCom

FPC BDI BiScaling

ApproxCom SimCom

FPC BDI BiScaling

ApproxCom SimCom

(b)

0 2 4 6 8 10

Output Error (%)

(a)

0 2 4 6 8 10

Output Error (%)

(c)

W
ri
te

 L
a
te

n
c
y
 (

n
s)

E
n
e
rg

y
 C

o
n
su

m
p
ti
o
n
 (

n
J
)

107

Fig.9. Performance of jpeg. (a) Bit-write ratio. (b) Write laten-
cy. (c) Energy consumption.

Zhang-Yu Chen et al.: Approximate Similarity-Aware Compression for Non-Volatile Main Memory 73

that the adaptive compression scheme in SimCom op-

timizes the compression of grayscale images which are

stored in color image formats. For example, if a

grayscale pixel is stored in the RGB color space, the

bits for each channel are the same. When the mean

differences generated by 1C1B and 3C1B are identi-

cal (e.g., 0), 1C1B obtains a smaller compressed data

size than 3C1B. SimCom prefers the modes with

small compressed data sizes (e.g., 1C1B), thus lead-

ing to more bit-write reduction than ApproxCom

(e.g., 3C1B).

Write Latency. Due to the electric current con-

straint in NVMs, the write operation is divided into

several sequential write units[10, 25]. Therefore, the

write latency mainly depends on the data size to be

written. As shown in Figs.9(b), 10(b), 11(b), 12(b),

13(b), and 14(b), the trends of write latency in image-

based workloads are analogous to the trends of bit-

write ratios in these workloads. The superiority of

SimCom in terms of bit-write ratio due to the pixel-

level similarity turns into the benefits in write laten-

cy. Under 3% and 5% quality loss, SimCom achieves

on average 19.6%/26.3%/30.0% and 21.8%/28.2%/

31.0% write latency reduction, respectively, com-

pared with FPC/BDI/BiScaling for these six work-

loads.

Energy Consumption. Figs.9(c), 10(c), 11(c),

12(c), 13(c), and 14(c) show the energy consumption

with various quality loss for image-based workloads.

Since the energy consumed in the programming pro-

FPC BDI BiScaling

ApproxCom SimCom

FPC BDI BiScaling

ApproxCom SimCom

FPC BDI BiScaling

ApproxCom SimCom

0 2 4 6 8 10

Output Error (%)

(a)

0 2 4 6 8 10

Output Error (%)

(b)

0 2 4 6 8 10

Output Error (%)

(c)

50

40

30

20

10

0

B
it
-
W

ri
te

 R
a
ti
o
 (

%
)

400

300

200

100

0

W
ri
te

 L
a
te

n
c
y
 (

n
s)

3

2

1

0E
n
e
rg

y
 C

o
n
su

m
p
ti
o
n

(n

J
) 107

Fig.10. Performance of sobel. (a) Bit-write ratio. (b) Write la-
tency. (c) Energy consumption.

FPC BDI BiScaling

ApproxCom SimCom

FPC BDI BiScaling

ApproxCom SimCom

FPC BDI BiScaling

ApproxCom SimCom

0 2 4 6 8 10

Output Error (%)

(a)

0 2 4 6 8 10

Output Error (%)

(b)

0 2 4 6 8 10

Output Error (%)

(c)

30

20

10

0

B
it
-
W

ri
te

 R
a
ti
o
 (

%
)

300

200

100

0
W

ri
te

 L
a
te

n
c
y
 (

n
s)

4

3

2

1

0E
n
e
rg

y
 C

o
n
su

m
p
ti
o
n
 (

n
J
) 107

Fig.11. Performance of kmeans. (a) Bit-write ratio. (b) Write
latency. (c) Energy consumption.

74 J. Comput. Sci. & Technol., Jan. 2024, Vol.39, No.1

cess is the main fraction in the energy consumption of

NVMs[14], the number of bit-writes determines the en-

ergy consumption. Compared with approximate com-

pression schemes, SimCom reduces the consumed en-

ergy by 18.3%/22.2%/21.1% and 21.4%/25.6%/23.3%

against FPC/BDI/BiScaling with 3% and 5% quality

loss, respectively.

5.3.2 Video-Based Workload

Fig.15 shows the bit-write ratio on NVM in the

x264 workload, a video processing application. Videos

consist of frames, which are often stored as bitmaps

to be processed. By leveraging the pixel-level similari-

ty, SimCom achieves higher bit-write efficiency than

the other schemes. Under 3% and 5% quality loss for

the x264 workload, SimCom shows 9.2%/26.8%/2.2%

and 16.7%/33.0%/9.2% lower bit-write ratios than

FPC/BDI/BiScaling, respectively. For the write la-

tency, SimCom reduces the latency by 15.2%/18.2%/

22.1% compared with FPC/BDI/BiScaling under 3%

quality loss. We skip the measurement of the energy

consumption in the x264 workload, since zsim does

not support energy modeling.

5.4 Breakdown of Bit-Write Reduction

In order to evaluate the contribution of different

techniques (i.e., precise compression for precise data,

approximate compression for approximable data, and

FNW for compressed data) in all evaluated schemes,

we record the bit-write reduction from each tech-

FPC BDI BiScaling

ApproxCom SimCom

FPC BDI

BiScaling ApproxCom

SimCom

FPC BDI BiScaling

ApproxCom SimCom

0 2 4 6 8 10

Output Error (%)

(a)

0 2 4 6 8 10

Output Error (%)

(b)

0 2 4 6 8 10

Output Error (%)

(c)

40

30

20

10

0

B
it
-
W

ri
te

 R
a
ti
o
 (

%
)

2 000

1 600

1 200

800

400

0

W
ri
te

 L
a
te

n
c
y
 (

n
s)

3

2

1

0E
n
e
rg

y
 C

o
n
su

m
p
ti
o
n
 (

n
J
) 107

Fig.12. Performance of 2dconv. (a) Bit-write ratio. (b) Write
latency. (c) Energy consumption.

FPC BDI BiScaling

ApproxCom SimCom

FPC BDI BiScaling

ApproxCom SimCom

FPC BDI BiScaling

ApproxCom SimCom

0 2 4 6 8 10

Output Error (%)

(a)

0 2 4 6 8 10

Output Error (%)

(b)

0 2 4 6 8 10

Output Error (%)

(c)

20

15

10

5

0

B
it
-
W

ri
te

 R
a
ti
o
 (

%
)

400

300

200

100

0
W

ri
te

 L
a
te

n
c
y
 (

n
s)

4

3

2

1

0E
n
e
rg

y
 C

o
n
su

m
p
ti
o
n
 (

n
J
) 107

Fig.13. Performance of debayer. (a) Bit-write ratio. (b) Write
latency. (c) Energy consumption.

Zhang-Yu Chen et al.: Approximate Similarity-Aware Compression for Non-Volatile Main Memory 75

nique.

As shown in Fig.16 and Fig.17, SimCom gains sig-

nificant bit-write reduction from the approximate

compression for error-tolerant data, thus obtaining

more bit-write reduction than other schemes. Though

the percentages of precise data are large in kmeans

and debayer (Fig.1(a)), the precise compression per-

formance is limited due to the pattern mismatch and

irregular data types in these workloads, thus result-

ing in the inefficiency of precise compression schemes

(i.e., FPC and BDI).

5.5 Adaptability for Bitmap Format Variance

In order to verify the adaptability of SimCom, we

evaluate the jpeg workload with input images of dif-

ferent formats. As shown in Fig.18, SimCom achieves

comparable (within 1%) bit-write ratios to those of

ApproxCom. Without annotations on bitmap formats,

SimCom is able to infer the data types according to

the mean difference (Subsection 4.1) among data. The

pixel-level similarity in data guarantees that the right

compression mode (Section 4) tends to obtain the

minimal mean difference.

An interesting point is that SimCom obtains

slightly lower bit-write ratios than ApproxCom when

CC is 3, e.g., bitmap formats of (3, 8) and (3, 16)

when the output error threshold is 3% and 5%, re-

spectively. In order to investigate the performance im-

provement, we record the selection of mode inside the

mode selector of SimCom. Table 3 shows SimCom is

able to obtain the right compression mode in most

cases (the numbers in boldface). However, when CC is

3, the mode selector possibly chooses the mode in

which CC is 1. The reason is that when the values of

the three channels in a pixel are identical, e.g., pixels

of white color and grayscale bitmaps stored in RGB

formats, a compression mode with one channel can

achieve the same mean difference with a smaller com-

pressed data size than the right compression mode.

Therefore, SimCom achieves the adaptiveness in the

mode selection and low bit-write ratios for various

bitmap formats.

Since the mode selector selects the compression

mode with minimal mean difference, it is possible to

select a compression mode with slightly smaller mean

difference but a much larger compressed data size

than the matched compression mode. As shown in

Fig.18, the conservative strategy used in SimCom

may cause slightly larger compressed data sizes and

bit-write ratios than that in ApproxCom.

5.6 Discussion

Approximate Compression Modes. There are six

available compression modes in SimCom by default.

FPC BDI BiScaling

ApproxCom SimCom

FPC BDI BiScaling

ApproxCom SimCom

FPC BDI BiScaling

ApproxCom SimCom

0 2 4 6 8 10

Output Error (%)

(a)

0 2 4 6 8 10

Output Error (%)

(b)

0 2 4 6 8 10

Output Error (%)

(c)

50

40

30

20

10

0

B
it
-
W

ri
te

 R
a
ti
o
 (

%
)

300

200

100

0

W
ri
te

 L
a
te

n
c
y
 (

n
s)

2.0

1.5

1.0

0.5

0.0E
n
e
rg

y
 C

o
n
su

m
p
ti
o
n
 (

n
J
) 107

Fig.14. Performance of histeq. (a) Bit-write ratio. (b) Write la-
tency. (c) Energy consumption.

FPC BDI BiScaling
ApproxCom SimCom

0 2 4 6 8 10

Output Error (%)

30

25

20

15

10

B
it
-
W

ri
te

 R
a
ti
o
 (

%
)

Fig.15. Bit-write ratio in the x264 workload.

76 J. Comput. Sci. & Technol., Jan. 2024, Vol.39, No.1

Compression modes with other CCs and BPCs can be

added into SimCom like existing modes. For images

with BPC > 16, an alternative approach is to down-

scale the precision to fit the images for predefined

compression modes in SimCom. Due to the error-tol-

erance in images, slight precision downscaling of im-

ages with large BPC would not cause significant qual-

ity loss.

Additional Latency of SimCom. Since six approxi-

TH ×maxV alue

mate compression modes are executed in parallel, the

additional compression latency of SimCom is deter-

mined by the slowest compression mode. To deter-

mine whether a word is similar to a base word, we

just need to check if the largest difference in each

channel is larger than or not (Sub-

section 3.3). According to the prior study[15], the addi-

tional latency for compression involving calculating

differences and comparing results is a few cycles. Al-

though there may be multiple rounds of finding simi-

lar words due to possible multiple base words in the

FNW

FN: FNW F: FPC B: BDI Bi: BiScaling A: ApproxCom S: SimCom

jpeg histeqdebayer2dconvmeanssobel

N
o
rm

a
li
z
e
d

B
it
-
W

ri
te

 R
e
d
u
c
ti
o
n

2.0

1.5

1.0

0.5

0.0

Precise CompressionApproximate Compression

FN

F
B
Bi

A S

FN
F

B

Bi A
S

FN
F BBi

A S

FN

F
B

Bi

A S

FNF BBiA
S

FN
F BBi

A S

Fig.16. Breakdown of bit-write reduction with 3% output error.

FNW

FN: FNW F: FPC B: BDI Bi: BiScaling A: ApproxCom S: SimCom

jpeg histeqdebayer2dconvmeanssobel

N
o
rm

a
li
z
e
d

B
it
-
W

ri
te

 R
e
d
u
c
ti
o
n

2.0

1.5

1.0

0.5

0.0

Precise CompressionApproximate Compression

FN

F
B
Bi

A S

FN

F
B

BiA
S

FN
F BBi

AS

FN

F B
Bi

A S

FNF BBiA S
FN

F
B
Bi

A S

Fig.17. Breakdown of bit-write reduction with 5% output error.

ApproxCom SimCom

Output Error < 3% Output Error < 5%

B
it
-
W

ri
te

 R
a
ti
o
 (

%
)

20

15

10

5

0

(1
,
8
)

(3
,
8
)

(4
,
8
)

(1
,
1
6
)

(3
,
1
6
)

(4
,
1
6
)

(1
,
8
)

(3
,
8
)

(4
,
8
)

(1
,
1
6
)

(3
,
1
6
)

(4
,
1
6
)

Bitmap Format (CC, BPC)

Fig.18. Bit-write ratio in the jpeg workload with different
bitmap formats.

Table 3. Statistics for the Selected Modes in SimCom Un-
der 3% Output Error Constraint

Mode Bitmap Format (CC, BPC)

(1, 8) (3, 8) (4, 8) (1, 16) (3, 16) (4, 16)

1C1B 82.4 47.2 0.6 0.2 0.2 0.2

3C1B 0.2 34.1 0.0 0.0 0.0 0.0

4C1B 0.1 0.4 96.9 0.0 0.0 0.0

1C2B 15.3 7.4 0.0 98.5 58.3 1.0

3C2B 0.0 7.1 0.0 0.2 38.5 0.0

4C2B 0.1 0.1 2.2 0.6 1.6 97.9

Incompressible 1.9 3.7 0.3 0.5 1.4 0.9

Zhang-Yu Chen et al.: Approximate Similarity-Aware Compression for Non-Volatile Main Memory 77

64-byte data, the number of iterations is usually

small, since the pixel-level similarity is prevalent in

image-based applications as shown in Fig.3. For de-

compression, restoring data from base words is sim-

ple intra-block copying and fast.

Hardware Overhead of SimCom. The majority of

hardware overhead of SimCom comes from the paral-

lel execution using six approximate compression log-

ics, which can be optimized by reusing the logic. In

this case, six compression modes are executed one by

one in the compression logic, which trades the com-

pression speed for the hardware efficiency.

Architecture Support for SimCom. In the current

testbed, SimCom requires architecture support (i.e.,

microarchitecture modifications) like prior

work[18, 33, 34, 36] to identify write accesses with approx-

imable data, which are widely-used techniques in ap-

proximate storage systems[18, 31–34, 36]. For image-based

applications (e.g., machine learning and computer vi-

sion), memory performance and energy efficiency are

important for the overall system performance. In ad-

dition, these applications are generally tolerant for

minor errors. Moreover, power consumption is con-

strained in specific platforms (e.g., smartphones and

embedded devices). Therefore, it is meaningful to pro-

vide architecture support for approximate storage sys-

tems. With architecture support like Truffle[36], Sim-

Com only requires small hardware changes in the

NVM module controller to deliver accuracy require-

ments via software interfaces without ISA

extensions[1, 20, 30]. Through the interfaces, approx-

imable data are stored in a separate memory region.

Hence, read or write accesses to the region can be

identified by memory addresses.

6 Related Work

Data Compression in NVMs. FPC[16] uses static

data patterns to compress frequent patterns into

short prefix bits. BDI[15] leverages the characteristics

of narrow values in arrays to encode each word using

bases with small deltas. However, as shown in our

evaluation (Section 5), general-purpose patterns are

difficult to match bitmaps even with approximation.

Different from FPC and BDI, SimCom leverages the

pixel-level similarity in bitmaps and efficiently trades

slight output quality for performance improvement.

CompEx[14] and CompEx++[52] apply expansion cod-

ing to integrate data compression and coding for per-

formance improvements in MLC NVMs. COE[26]

leverages the saved space in data compression to store

the tag bits of data encoding. These combination

schemes are orthogonal to data compression and can

be used to further improve the energy efficiency of

SimCom.

Approximate Image Storage. To address the chal-

lenge of massive image collections, several approxima-

tion approaches were proposed to improve the effi-

ciency of image storage. A biased MLC write

scheme[17, 35] is used to balance the drift and write er-

rors in MLC PCM. Selective ECC is applied on im-

ages according to the importance of encoded bits[17].

Progressively encoding scheme can improve the read

performance of images[53]. However, these schemes are

established based on the significant entropy differ-

ences in encoded image bits, which do not exist in

bitmaps. Therefore, encoded image approximation is

inefficient for the writes of bitmaps in NVMs. Recent

work[1] proposes to selectively write pixels in approxi-

mate window by writing soft bits in MLC STT-

MRAM main memory. The approximation is efficient

when loading entire images from disks to MLC STT-

MRAM. However, this technique is specific to MLC

STT-MRAM and needs searching for similar contents

in other memory blocks, which leverages inter-block

similarity and leads to additional hardware over-

heads and latency when writing data from cache to

NVMs.

Approximate Cache and Main Memory. For re-

gions containing error-tolerant data, Flikker[30] re-

duces the refresh rates of DRAM to improve the ener-

gy efficiency. Bidirectional precision scaling[20] was

proposed to compress the data to be written to

DRAM. However, indiscriminately reducing the preci-

sion of all data can significantly decrease the image

quality. STAxCache[34] proposes approximate

reads/writes tailored for STT-MRAM based L2 cache.

Associating similar data blocks with the same cache

tags leads to cache performance improvement[33]. The

accesses to memory can be served with predicted val-

ues according to previous data patterns[18, 54]. The in-

ter-block similarity used in the above caches is or-

thogonal to the pixel-level similarity of our work. Un-

like them, SimCom exploits the pixel-level similarity

in bitmaps and efficiently decreases NVM write over-

heads by approximate compression.

7 Conclusions

The paper proposed SimCom, an approximate

similarity-aware compression scheme in the NVM

module controller. SimCom leverages the pixel-level

similarity in bitmaps to efficiently reduce the writes

of similar words for NVM-based main memory, thus

78 J. Comput. Sci. & Technol., Jan. 2024, Vol.39, No.1

improving the memory performance in terms of ener-

gy efficiency and write latency. By exploiting adap-

tive approximate compression, SimCom mitigates the

programmer annotations used for compression. Exper-

iments showed that compared with state-of-the-art

FPC/BDI/BiScaling, SimCom decreases 18.3%/22.2%/

21.1% energy and 17.3%/24.9%/28.8% write latency

with slight quality loss of 3%.

SimCom is possible to be extended to leverage the

inter-block similarity in approximable data from vari-

ous applications, which is our future work.

Conflict of Interest The authors declare that

they have no conflict of interest.

References

 Zhao H Y, Xue L N, Chi P, Zhao J S. Approximate im-

age storage with multi-level cell STT-MRAM main mem-

ory. In Proc. the 2017 IEEE/ACM International Confer-

ence on Computer-Aided Design, Nov. 2017, pp.268–275.
DOI: 10.1109/ICCAD.2017.8203788.

[1]

 Wallace G K. The JPEG still picture compression stan-

dard. Communications of the ACM, 1991, 34(4): 30–44.
DOI: 10.1145/103085.103089.

[2]

 Yazdanbakhsh A, Mahajan D, Esmaeilzadeh H, Lotfi-

Kamran P. AxBench: A multiplatform benchmark suite

for approximate computing. IEEE Design & Test, 2017,

34(2): 60–68. DOI: 10.1109/MDAT.2016.2630270.

[3]

 Xia F, Jiang D J, Xiong J, Sun N H. A survey of phase

change memory systems. Journal of Computer Science

and Technology, 2015, 30(1): 121–144. DOI: 10.1007/s11390-

015-1509-2.

[4]

 Wong H S P, Raoux S, Kim S, Liang J L, Reifenberg J P,

Rajendran B, Asheghi M, Goodson K E. Phase change

memory. Proceedings of the IEEE, 2010, 98(12):

2201–2227. DOI: 10.1109/JPROC.2010.2070050.

[5]

 Wong H S P, Lee H Y, Yu S M, Chen Y S, Wu Y, Chen

P S, Lee B, Chen F T, Tsai M J. Metal-oxide RRAM.

Proceedings of the IEEE, 2012, 100(6): 1951–1970. DOI:

10.1109/JPROC.2012.2190369.

[6]

 Liu H K, Chen D, Jin H, Liao X F, He B S, Hu K, Zhang

Y. A survey of non-volatile main memory technologies:

State-of-the-arts, practices, and future directions. Journal

of Computer Science and Technology, 2021, 36(1): 4–32.
DOI: 10.1007/s11390-020-0780-z.

[7]

 Bittman D, Alvaro P, Long D D E, Miller E L. Optimiz-

ing systems for byte-addressable NVM by reducing bit

flipping. In Proc. the 17th USENIX Conference on File

and Storage Technologies, Feb. 2019, pp.17–30.

[8]

 Li Z Q, Zhou R J, Li T. Exploring high-performance and

energy proportional interface for phase change memory

systems. In Proc. the 19th IEEE International Sympo-

sium on High Performance Computer Architecture, Feb.

2013, pp.210–221. DOI: 10.1109/HPCA.2013.6522320.

[9]

 Yue J H, Zhu Y F. Accelerating write by exploiting PCM

asymmetries. In Proc. the 19th IEEE International Sym-

posium on High Performance Computer Architecture,

[10]

Feb. 2013, pp.282–293. DOI: 10.1109/HPCA.2013.6522326.

 Zuo P F, Hua Y, Wu J. Write-optimized and high-perfor-

mance hashing index scheme for persistent memory. In

Proc. the 13th USENIX Symposium on Operating Sys-

tems Design and Implementation, Oct. 2018, pp.461–476.

[11]

 Xu J, Zhang L, Memaripour A, Gangadharaiah A, Bo-

rase A, Da Silva T B, Swanson S, Rudoff A. NOVA-For-

tis: A fault-tolerant non-volatile main memory file system.

In Proc. the 26th Symposium on Operating Systems Prin-

ciples, Oct. 2017, pp.478–496. DOI: 10.1145/3132747.3132

761.

[12]

 Hong S, Nair P J, Abali B, Buyuktosunoglu A, Kim K H,

Healy M. Attaché: Towards ideal memory compression by

mitigating metadata bandwidth overheads. In Proc. the

51st Annual IEEE/ACM International Symposium on Mi-

croarchitecture, Oct. 2018, pp.326–338. DOI: 10.1109/MI-

CRO.2018.00034.

[13]

 Palangappa P M, Mohanram K. CompEx: Compression-

expansion coding for energy, latency, and lifetime im-

provements in MLC/TLC NVM. In Proc. the 2016 IEEE

International Symposium on High Performance Comput-

er Architecture, Mar. 2016, pp.90–101. DOI: 10.1109/HP-

CA.2016.7446056.

[14]

 Pekhimenko G, Seshadri V, Mutlu O, Gibbons P B,

Kozuch M A, Mowry T C. Base-delta-immediate compres-

sion: Practical data compression for on-chip caches. In

Proc. the 21st International Conference on Parallel Archi-

tectures and Compilation Techniques, Sept. 2012, pp.377–
388. DOI: 10.1145/2370816.2370870.

[15]

 Dgien D B, Palangappa P M, Hunter N A, Li J Y, Mo-

hanram K. Compression architecture for bit-write reduc-

tion in non-volatile memory technologies. In Proc. the

2014 IEEE/ACM International Symposium on Nanoscale

Architectures, Jul. 2014, pp.51–56. DOI: 10.1109/NANO

ARCH.2014.6880482.

[16]

 Guo Q, Strauss K, Ceze L, Malvar H S. High-density im-

age storage using approximate memory cells. In Proc. the

21st International Conference on Architectural Support

for Programming Languages and Operating Systems, Apr.

2016, pp.413–426. DOI: 10.1145/2872362.2872413.

[17]

 San Miguel J, Albericio J, Jerger N E, Jaleel A. The

bunker cache for spatio-value approximation. In Proc. the

49th Annual IEEE/ACM International Symposium on

Microarchitecture, Oct. 2016, Article No. 43. DOI: 10.1109/

MICRO.2016.7783746.

[18]

 Shin S, Tirukkovalluri S K, Tuck J, Solihin Y. Proteus: A

flexible and fast software supported hardware logging ap-

proach for NVM. In Proc. the 50th Annual IEEE/ACM

International Symposium on Microarchitecture, Oct. 2017,

pp.178–190. DOI: 10.1145/3123939.3124539.

[19]

 Ranjan A, Raha A, Raghunathan V, Raghunathan A. Ap-

proximate memory compression for energy-efficiency. In

Proc. the 2017 IEEE/ACM International Symposium on

Low Power Electronics and Design, Jul. 2017. DOI: 10.

1109/ISLPED.2017.8009173.

[20]

 Chen Z Y, Hua Y, Zuo P F, Sun Y Y, Guo Y C. Reduc-

ing bit writes in non-volatile main memory by similarity-

aware compression. In Proc. the 57th ACM/IEEE Design

Automation Conference, Jul. 2020. DOI: 10.1109/

[21]

Zhang-Yu Chen et al.: Approximate Similarity-Aware Compression for Non-Volatile Main Memory 79

https://doi.org/10.1109/ICCAD.2017.8203788
https://doi.org/10.1145/103085.103089
https://doi.org/10.1109/MDAT.2016.2630270
https://doi.org/10.1007/s11390-015-1509-2
https://doi.org/10.1007/s11390-015-1509-2
https://doi.org/10.1007/s11390-015-1509-2
https://doi.org/10.1007/s11390-015-1509-2
https://doi.org/10.1007/s11390-015-1509-2
https://doi.org/10.1007/s11390-015-1509-2
https://doi.org/10.1007/s11390-015-1509-2
https://doi.org/10.1109/JPROC.2010.2070050
https://doi.org/10.1109/JPROC.2012.2190369
https://doi.org/10.1007/s11390-020-0780-z
https://doi.org/10.1007/s11390-020-0780-z
https://doi.org/10.1007/s11390-020-0780-z
https://doi.org/10.1007/s11390-020-0780-z
https://doi.org/10.1007/s11390-020-0780-z
https://doi.org/10.1007/s11390-020-0780-z
https://doi.org/10.1007/s11390-020-0780-z
https://doi.org/10.1109/HPCA.2013.6522320
https://doi.org/10.1109/HPCA.2013.6522326
https://doi.org/10.1145/3132747.3132761
https://doi.org/10.1145/3132747.3132761
https://doi.org/10.1109/MICRO.2018.00034
https://doi.org/10.1109/MICRO.2018.00034
https://doi.org/10.1109/MICRO.2018.00034
https://doi.org/10.1109/HPCA.2016.7446056
https://doi.org/10.1109/HPCA.2016.7446056
https://doi.org/10.1109/HPCA.2016.7446056
https://doi.org/10.1145/2370816.2370870
https://doi.org/10.1109/NANOARCH.2014.6880482
https://doi.org/10.1109/NANOARCH.2014.6880482
https://doi.org/10.1145/2872362.2872413
https://doi.org/10.1109/MICRO.2016.7783746
https://doi.org/10.1109/MICRO.2016.7783746
https://doi.org/10.1145/3123939.3124539
https://doi.org/10.1109/ISLPED.2017.8009173
https://doi.org/10.1109/ISLPED.2017.8009173
https://doi.org/10.1109/DAC18072.2020.9218683

DAC18072.2020.9218683.

 Porter T K, Duff T. Compositing digital images. In Proc.

the 11th Annual Conference on Computer Graphics and

Interactive Techniques, Jan. 1984, pp.253–259. DOI: 10.

1145/800031.808606.

[22]

 Duff T. Deep compositing using lie algebras. ACM Trans.

Graphics, 2017, 36(3): Article No. 26. DOI: 10.1145/

3023386.

[23]

 Yang B D, Lee J E, Kim J S, Cho J, Lee S Y, Yu B G. A

low power phase-change random access memory using a

data-comparison write scheme. In Proc. the 2007 Interna-

tional Symposium on Circuits and Systems, May 2007,

pp.3014–3017. DOI: 10.1109/ISCAS.2007.377981.

[24]

 Cho S, Lee H. Flip-N-write: A simple deterministic tech-

nique to improve PRAM write performance, energy and

endurance. In Proc. the 42nd Annual IEEE/ACM Inter-

national Symposium on Microarchitecture, Dec. 2009,

pp.347–357. DOI: 10.1145/1669112.1669157.

[25]

 Xu J, Feng D, Hua Y, Tong W, Liu J N, Li C Y. Extend-

ing the lifetime of NVMs with compression. In Proc. the

2018 Design, Automation & Test in Europe Conference &
Exhibition, Mar. 2018, pp.1604–1609. DOI: 10.23919/

DATE.2018.8342271.

[26]

 Guo Y C, Hua Y, Zuo P F. DFPC: A dynamic frequent

pattern compression scheme in NVM-based main memory.

In Proc. the 2018 Design, Automation & Test in Europe

Conference & Exhibition, Mar. 2018, pp.1622–1627. DOI:

10.23919/DATE.2018.8342274.

[27]

 Palangappa P M, Mohanram K. CASTLE: Compression

architecture for secure low latency, low energy, high en-

durance NVMs. In Proc. the 55th Annual Design Au-

tomation Conference, Jun. 2018, Article No. 87. DOI: 10.

1145/3195970.3196007.

[28]

 Jacobvitz A N, Calderbank R, Sorin D J. Coset coding to

extend the lifetime of memory. In Proc. the 19th IEEE

International Symposium on High Performance Comput-

er Architecture, Feb. 2013, pp.222–233. DOI: 10.1109/HP-

CA.2013.6522321.

[29]

 Liu S, Pattabiraman K, Moscibroda T, Zorn B G. Flikker:

Saving DRAM refresh-power through critical data parti-

tioning. In Proc. the 16th International Conference on Ar-

chitectural Support for Programming Languages and Op-

erating Systems, Mar. 2011, pp.213–224. DOI: 10.1145/

1950365.1950391.

[30]

 Sampson A, Dietl W, Fortuna E, Gnanapragasam D,

Ceze L, Grossman D. EnerJ: Approximate data types for

safe and general low-power computation. In Proc. the

32nd ACM SIGPLAN Conference on Programming Lan-

guage Design and Implementation, Jun. 2011, pp.164–174.
DOI: 10.1145/1993498.1993518.

[31]

 Sampson A, Baixo A, Ransford B, Moreau T, Yip J, Ceze

L, Oskin M. ACCEPT: A programmer-guided compiler

framework for practical approximate computing. Techni-

cal Report UW-CSE-15-01, University of Washington,

2015. https://dada.cs.washington.edu/research/tr/2015/

01/UW-CSE-15-01-01.pdf, Jan. 2024.

[32]

 San Miguel J, Albericio J, Moshovos A, Jerger N E.

Doppelgänger: A cache for approximate computing. In

Proc. the 48th International Symposium on Microarchi-

[33]

tecture, Dec. 2015, pp.50–61. DOI: 10.1145/2830772.2830

790.

 Ranjan A, Venkataramani S, Pajouhi Z, Venkatesan R,

Roy K, Raghunathan A. STAxCache: An approximate,

energy efficient STT-MRAM cache. In Proc. the 2017 De-

sign, Automation & Test in Europe Conference & Exhibi-

tion, Mar. 2017, pp.356–361. DOI: 10.23919/DATE.2017.

7927016.

[34]

 Jevdjic D, Strauss K, Ceze L, Malvar H S. Approximate

storage of compressed and encrypted videos. In Proc. the

22nd International Conference on Architectural Support

for Programming Languages and Operating Systems, Apr.

2017, pp.361–373. DOI: 10.1145/3037697.3037718.

[35]

 Esmaeilzadeh H, Sampson A, Ceze L, Burger D. Architec-

ture support for disciplined approximate programming. In

Proc. the 17th International Conference on Architectural

Support for Programming Languages and Operating Sys-

tems, Mar. 2012, pp.301–312. DOI: 10.1145/2150976.2151

008.

[36]

 Sampson A, Nelson J, Strauss K, Ceze L. Approximate

storage in solid-state memories. In Proc. the 46th Annual

IEEE/ACM International Symposium on Microarchitec-

ture, Dec. 2013, pp.25–36. DOI: 10.1145/2540708.2540712.

[37]

 Baek W, Chilimbi T M. Green: A framework for support-

ing energy-conscious programming using controlled ap-

proximation. In Proc. the 31st ACM SIGPLAN Confer-

ence on Programming Language Design and Implementa-

tion, Jun. 2010, pp.198–209. DOI: 10.1145/1806596.1806

620.

[38]

 Samadi M, Jamshidi D A, Lee J, Mahlke S. Paraprox:

Pattern-based approximation for data parallel applica-

tions. In Proc. the 19th Architectural Support for Pro-

gramming Languages and Operating Systems, Feb. 2014,

pp.35–50. DOI: 10.1145/2541940.2541948.

[39]

 Sui X, Lenharth A, Fussell D S, Pingali K. Proactive con-

trol of approximate programs. In Proc. the 21st Architec-

tural Support for Programming Languages and Operat-

ing Systems, Mar. 2016, pp.607–621. DOI: 10.1145/2872

362.2872402.

[40]

 Laurenzano M A, Hill P, Samadi M, Mahlke S, Mars J,

Tang L J. Input responsiveness: Using canary inputs to

dynamically steer approximation. In Proc. the 37th ACM

SIGPLAN Conference on Programming Language Design

and Implementation, Jun. 2016, pp.161–176. DOI: 10.1145/

2908080.2908087.

[41]

 Xu R, Koo J, Kumar R, Bai P, Mitra S, Misailovic S,

Bagchi S. VideoChef: Efficient approximation for stream-

ing video processing pipelines. In Proc. the 2018 USENIX

Annual Technical Conference, Jul. 2018, pp.43–55.

[42]

 Judd D B. Color in Business, Science, and Industry (3rd

edition). Wiley-Interscience, 1975.

[43]

 Leong J. Number of colors distinguishable by the human

eye. In Color, Wyszecki G (ed.), World Book Inc., 2006,

p.824.

[44]

 Young V, Kariyappa S, Qureshi M K. Enabling transpar-

ent memory-compression for commodity memory systems.

In Proc. the 25th IEEE International Symposium on High

Performance Computer Architecture, Feb. 2019, pp.570–
581. DOI: 10.1109/HPCA.2019.00010.

[45]

80 J. Comput. Sci. & Technol., Jan. 2024, Vol.39, No.1

https://doi.org/10.1109/DAC18072.2020.9218683
https://doi.org/10.1145/800031.808606
https://doi.org/10.1145/800031.808606
https://doi.org/10.1145/3023386
https://doi.org/10.1145/3023386
https://doi.org/10.1109/ISCAS.2007.377981
https://doi.org/10.1145/1669112.1669157
https://doi.org/10.23919/DATE.2018.8342271
https://doi.org/10.23919/DATE.2018.8342271
https://doi.org/10.23919/DATE.2018.8342274
https://doi.org/10.1145/3195970.3196007
https://doi.org/10.1145/3195970.3196007
https://doi.org/10.1109/HPCA.2013.6522321
https://doi.org/10.1109/HPCA.2013.6522321
https://doi.org/10.1109/HPCA.2013.6522321
https://doi.org/10.1145/1950365.1950391
https://doi.org/10.1145/1950365.1950391
https://doi.org/10.1145/1993498.1993518
https://dada.cs.washington.edu/research/tr/2015/01/UW-CSE-15-01-01.pdf
https://dada.cs.washington.edu/research/tr/2015/01/UW-CSE-15-01-01.pdf
https://dada.cs.washington.edu/research/tr/2015/01/UW-CSE-15-01-01.pdf
https://dada.cs.washington.edu/research/tr/2015/01/UW-CSE-15-01-01.pdf
https://dada.cs.washington.edu/research/tr/2015/01/UW-CSE-15-01-01.pdf
https://dada.cs.washington.edu/research/tr/2015/01/UW-CSE-15-01-01.pdf
https://dada.cs.washington.edu/research/tr/2015/01/UW-CSE-15-01-01.pdf
https://dada.cs.washington.edu/research/tr/2015/01/UW-CSE-15-01-01.pdf
https://dada.cs.washington.edu/research/tr/2015/01/UW-CSE-15-01-01.pdf
https://dada.cs.washington.edu/research/tr/2015/01/UW-CSE-15-01-01.pdf
https://doi.org/10.1145/2830772.2830790
https://doi.org/10.1145/2830772.2830790
https://doi.org/10.23919/DATE.2017.7927016
https://doi.org/10.23919/DATE.2017.7927016
https://doi.org/10.1145/3037697.3037718
https://doi.org/10.1145/2150976.2151008
https://doi.org/10.1145/2150976.2151008
https://doi.org/10.1145/2540708.2540712
https://doi.org/10.1145/1806596.1806620
https://doi.org/10.1145/1806596.1806620
https://doi.org/10.1145/2541940.2541948
https://doi.org/10.1145/2872362.2872402
https://doi.org/10.1145/2872362.2872402
https://doi.org/10.1145/2908080.2908087
https://doi.org/10.1145/2908080.2908087
https://doi.org/10.1109/HPCA.2019.00010

 Binkert N, Beckmann B, Black G, Reinhardt S K, Saidi

A, Basu A, Hestness J, Hower D R, Krishna T, Sardashti

S, Sen R, Sewell K, Shoaib M, Vaish N, Hill M D, Wood

D A. The gem5 simulator. ACM SIGARCH Computer

Architecture News, 2011, 39(2): 1–7. DOI: 10.1145/2024716.

2024718.

[46]

 Poremba M, Zhang T, Xie Y. NVMain 2.0: A user-friend-

ly memory simulator to model (non-)volatile memory sys-

tems. IEEE Computer Architecture Letters, 2015, 14(2):

140–143. DOI: 10.1109/LCA.2015.2402435.

[47]

 Sánchez D, Kozyrakis C. ZSim: Fast and accurate mi-

croarchitectural simulation of thousand-core systems. In

Proc. the 40th Annual International Symposium on Com-

puter Architecture, Jun. 2013, pp.475–486. DOI: 10.1145/

2485922.2485963.

[48]

 Barker K, Benson T, Campbell D, Ediger D, Gioiosa R,

Hoisie A, Kerbyson D, Manzano J, Marquez A, Song L,

Tallent N R, Tumeo A. PERFECT (power efficiency rev-

olution for embedded computing technologies) bench-

mark suite manual. Technical Report, Pacific Northwest

National Laboratory and Georgia Tech Research Insti-

tute, 2013. https://hpc.pnnl.gov/PERFECT/, Jan. 2024.

[49]

 Bienia C, Kumar S, Singh J P, Li K. The PARSEC

benchmark suite: Characterization and architectural im-

plications. Technical Report TR-811-08, Princeton Uni-

versity, 2008. https://www.cs.princeton.edu/techreports/

2008/811.pdf, Jan. 2024.

[50]

 Wang Z, Bovik A C, Sheikh H R, Simoncelli E P. Image

quality assessment: From error visibility to structural

similarity. IEEE Trans. Image Processing, 2004, 13(4):

600–612. DOI: 10.1109/TIP.2003.819861.

[51]

 Palangappa P M, Mohanram K. CompEx++: Compres-

sion-expansion coding for energy, latency, and lifetime im-

provements in MLC/TLC NVMs. ACM Trans. Architec-

ture and Code Optimization, 2017, 14(1): Article No. 10.

DOI: 10.1145/3050440.

[52]

 Yan E, Zhang K Y, Wang X, Strauss K, Ceze L. Cus-

tomizing progressive JPEG for efficient image storage. In

Proc. the 9th USENIX Workshop on Hot Topics in Stor-

age and File Systems, Jul. 2017.

[53]

 San Miguel J, Badr M, Jerger N E. Load value approxi-

mation. In Proc. the 47th Annual IEEE/ACM Interna-

tional Symposium on Microarchitecture, Dec. 2014,

pp.127–139. DOI: 10.1109/MICRO.2014.22.

[54]

Zhang-Yu Chen received his B.S.

degree in computer science and tech-

nology from Huazhong University of

Science and Technology, Wuhan, in

2017. He is currently a Ph.D. candi-

date majoring in computer system ar-

chitecture at Huazhong University of

Science and Technology, Wuhan. His research interests

include non-volatile memory systems, key-value stores,

memory architecture, and debugging.

Yu Hua received his B.S. and

Ph.D. degrees in computer science

from Wuhan University, Wuhan, in

2001 and 2005, respectively. He is cur-

rently a professor at Huazhong Uni-

versity of Science and Technology,

Wuhan. His research interests include

cloud storage systems, file systems, non-volatile memo-

ry architectures, etc. He is a distinguished member of

CCF, and a senior member of ACM and IEEE.

Peng-Fei Zuo received his B.S. and

Ph.D. degrees in computer science and

technology from Huazhong University

of Science and Technology, Wuhan, in

2014 and 2019, respectively. His re-

search interests include memory sys-

tems, storage systems and techniques,

and security.

Yuan-Yuan Sun received her B.S.

and Ph.D. degrees in computer sci-

ence and technology from Huazhong

University of Science and Technology,

Wuhan, in 2014 and 2019, respective-

ly. Her research interests include cloud

storage systems, semantic hashing,

metadata management, index structures, and big data

analytics.

Yun-Cheng Guo received his B.S.

and M.S. degrees in computer science

and technology from Huazhong Uni-

versity of Science and Technology,

Wuhan, in 2015 and 2018, respective-

ly. His research interests include non-

volatile memory, algorithms of hash-

ing, and data analytics.

Zhang-Yu Chen et al.: Approximate Similarity-Aware Compression for Non-Volatile Main Memory 81

https://doi.org/10.1145/2024716.2024718
https://doi.org/10.1145/2024716.2024718
https://doi.org/10.1109/LCA.2015.2402435
https://doi.org/10.1145/2485922.2485963
https://doi.org/10.1145/2485922.2485963
https://hpc.pnnl.gov/PERFECT/
https://www.cs.princeton.edu/techreports/2008/811.pdf
https://www.cs.princeton.edu/techreports/2008/811.pdf
https://doi.org/10.1109/TIP.2003.819861
https://doi.org/10.1145/3050440
https://doi.org/10.1109/MICRO.2014.22

