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Abstract—The management of multi-level caching hierarchy
is a critical and challenging task. Although there exist many
hardware and OS-based schemes, they are difficult to be
adopted in practice since they incur non-trivial overheads and
high complexity. In order to efficiently deal with this challenge,
we propose MERCURY, a cost-effective and lightweight hard-
ware support to coordinate with OS-based cache management
schemes. Its basic idea is to leverage data similarity to reduce
data migration costs and deliver high performance. Moreover,
in order to accurately and efficiently capture the data sim-
ilarity, we propose to use low-complexity Locality-Sensitive
Hashing (LSH). In our design, in addition to the problem of
space inefficiency, we identify that a conventional LSH scheme
also suffers from the problem of homogeneous data placement.
To address these two problems, we design a novel Multi-Core-
enabled LSH (MC-LSH) that accurately captures the differen-
tiated similarity across data. The similarity-aware MERCURY
hence efficiently partitions data into L1 cache, L2 cache and
main memory based on their distinct localities, which help
optimize cache utilization and minimize the pollution in the
last level cache. Experiments through real-world benchmarks
further corroborate the efficacy and efficiency of MERCURY.

Keywords-Multi-core processor; cache management; system
scalability; data similarity.

I. INTRODUCTION

The increasing number of cores on a chip and the different
degrees of data similarity exhibited within the workloads
present the challenges to the design of cache hierarchies in
Chip Multi-Processors (CMPs). These include the organiza-
tion and the policies associated with the cache hierarchy to
meet the needs of system performance improvements and
scalability. Cache organization presents multiple levels in
the cache hierarchy as well as the size, associativity, latency,
and bandwidth parameters at each level. Proper policies help
minimize the latency to frequently accessed data [1]-[4].
The focus of this paper is to optimize the data placement
of the multi-level cache hierarchy (e.g., L1, L2 caches and
main memory) to improve the overall system performance
in the CMPs.

CMPs are prevalent these days. Vendors already ship
CMPs with four to twelve cores and have the roadmaps to
release hundreds of cores to the market. For example, in
the commercial markets, there are Tilera TILE64, Ambric
Am?2045, and Nvidia GeForce GT200. They are widely used
in high performance applications. Despite the popularity, it
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is still a daunting task to accurately and efficiently perform
the multi-core caching for high performance computing.

A good design on efficient cache hierarchy management
needs to answer the questions, such as “how to significantly
improve the cache utilization and how to efficiently support
the cached data placement?”. These problems are more
difficult and challenging to address, especially in the case
of large core count. Specifically, we need to address the
following challenges.

Challenge 1: Inconsistency Gap between CPU and
Operating System Caches. In order to bridge the speed
gap between CPU and memory, CPU caches (e.g., L1 and
L2) and Operating System (OS) buffer cache are widely used
in a multi-level cache hierarchy. Since the CPU caches are
at the hardware level while the buffer cache is a part of OS,
these two layers are conventionally designed independently
without the awareness of each other. This possibly works
for small-scale systems. However, with the increments of
multi-core amounts and increasingly large capacity of main
memory, severe performance degradation may occur once
the inconsistency gap exists. These two layers hence become
inefficient to work cooperatively. Moreover, by leveraging
a shared cache, a thread, which cooperatively works with
multiple co-running threads, can influence each other. This
generally leads to severe performance degradation. In the
near future, a cache will be shared by many cores, and the
gap may degrade the performance even more seriously [5],
[6].

Challenge 2: Performance Bottleneck Shift in High
Performance Systems. Multi-core based hardware advance-
ments bring new challenges to the design and the imple-
mentation of high performance systems [7]. This is because
the performance bottleneck has been shifted from slow
I/O access speeds to high memory access latency. The
performance bottleneck of accelerating the execution comes
is correlated with the placement problem of cached data. The
optimization of cached data placement hence becomes im-
portant to improve the overall system performance. Unfortu-
nately, existing policies in the multi-core processors become
neither efficient nor scalable to address the data placement
problem. In order to efficiently address this problem, we
need to carefully explore and exploit the data similarity that
generally hides behind access behaviors. We also need to
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optimize the capacity utilization of a private cache, while
alleviating uncontrolled interference in a shared cache.

Challenge 3: Exacerbation of LLC Pollution. Last
Level Cache (LLC) [1] is dynamically shared among the
cores while each core has its lowest level of the cache
hierarchy. Cache pollution refers to the replacement of a
cache element by a less useful one. It occurs when a
non-reusable cache line is installed into a cache set. The
installed line displaces a reusable cache line. In order to
alleviate the LLC pollution, conventional approaches have
the premise that recent ordering serves as the good pre-
diction for subsequent behaviors of cache accesses [5], [8].
In practice, although leveraging the access patterns helps
predict future accesses, the caches have to install all cache
lines that are accessed. Since performing the identification
on the access patterns incurs heavy temporal and spatial
overheads, the existing approaches generally demonstrate
unsatisfactory performance. Long latency and information
staleness further exacerbate the LLC pollution. What we
need is a new scheme that simplifies the identification of
access locality without the loss of accuracy.

Although existing hardware based schemes work for
meeting the design requirements, their lack of flexibility is
becoming an inherent weakness and potential performance
bottleneck, especially for future multicore processors that
have an increasingly large number of cores. On the other
hand, the OS based cache schemes have demonstrated their
efficiency and effectiveness to offer competitive solutions
to the hardware’s problems, with the aid of the predictable
access patterns and well-analyzed data similarity. For ex-
amples, the simple LRU cache replacement policy [9] can
successfully support the cache management in the single pro-
cessor. Unfortunately, in the context of multicore processors,
the OS based cache management becomes more challenging
than ever due to the separate management schemes in the
hardware and the OS. Hardware caches are beyond the
scope of the OS management. Multiple threads are hence
difficult to share and schedule. In the meanwhile, the OS-
based schemes incur non-trivial software overheads.

In order to alleviate the limitations in the hardware
solutions and the OS-based methods, this paper proposes a
cost-effective and efficient scheme, called MERCURY. The
rationale behind MERCURY comes from the observation
that performing the state maintenance and reference pattern
analysis at page granularity generally incurs less overheads
than at block [1], [5], [8]. MERCURY hence plays a sig-
nificant role in managing the multi-level cache hierarchy.
The cost-effective MERCURY is able to provide hybrid
functionalities. One is to provide a lightweight hardware
mechanism for allocating cache resources. The other is to
support the OS-based dynamic cache allocation and capture
data similarity with the aid of space-efficiency structures.
MERCURY hence allows the OS control over the shared
LLCs, while minimizing the software overheads. Specifi-
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cally, we make the following contributions.

First, (for Challenge 1), in order to narrow the incon-
sistency gap and quantify the data correlation, MERCURY
employs multi-type membership management. Here, the
membership refers that an item belongs to a given dataset.
The data in the similarity-aware multi-core caches are ju-
diciously classified into three types, i.e., Family, Friend,
and Foreigner, to respectively represent frequently accessed
and correlated, frequently accessed but not correlated, and
infrequently accessed memberships. To guarantee the data
consistency and integrity, we further quantify these mem-
berships using a new coding technique.

Second, (for Challenge 2 & 3), in order to address the per-
formance bottleneck and alleviate the LLC pollution, MER-
CURY explores and exploits the access locality by using a
Multi-Core-enabled Locality-Sensitive Hashing (MC-LSH).
MC-LSH uses a self-contained and space-efficient signature
vector, rather than many hash tables in a standard LSH,
to accomplish the significant space savings and meanwhile
accurately measure the data similarity. Since MERCURY
minimizes cache conflicts and reduces the amounts of the
migrated data, it significantly reduces the low-speed mem-
ory accesses. MERCURY can accurately identify the data
similarity and mitigate the staleness of cached data to meet
the needs of high performance systems.

Third, we have implemented the components and the
functionalities of MERCURY in a software layer, which
is compliant with existing hardware devices. In order to
further examine and evaluate the efficacy and efficiency
of the proposed scheme, we implemented MERCURY in
a PolyScalar [10]. The extensive experiments make use
of multiple real-world traces and datasets under multiple
performance evaluation metrics.

The remainder of this paper is organized as follows. Sec-
tion II describes the proposed MERCURY caching scheme.
Section III shows the cached data management schemes in
the multi-level hierarchy. Section IV shows the performance
evaluation results through extensive experiments. We present
the related work in Section V. Finally, we conclude our paper
in Section VI with summaries of findings.

II. MERCURY ARCHITECTURE

MERCURY uses MC-LSH to identify similar data and
leverages an LRU replacement in each cache to update stale
data. Figure 1 shows the MERCURY architecture in the
multi-level hierarchy. We assume that each core has one
private L1 cache and all processor cores share an L2 cache.
The MERCURY scheme is tightly associated with two parts.
One is the processor architecture and the other is the operat-
ing system. Furthermore, in order to explicitly represent the
differentiated memberships identified by MC-LSH, we use
different flags to label each cache line and obtain holistic
optimization in the multi-level cache hierarchy.
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Figure 1. MERCURY multi-core caching architecture.

A. Caches in a Multi-core Processor

The caching schemes in a multi-core processor include
L1 and L2 cache management, and virtual-physical address
translation.

L1 Cache Management: Each core has one associated
cache that contains frequently visited data to increase the
access speed and decrease the required bandwidth. We need
to update the stale and infrequently accessed data.

L2 Cache Management: In order to partition the shared
L2 cache, we leverage the well-known page color [11]
due to its simplicity and flexibility. Page coloring is an
extensively used OS technique for improving cache and
memory performance. A physical address contains several
common bits between the cache index and the physical page
number, which is indicated as a page color. One can divide
a physically addressed cache into non-intersecting regions
(cache color) by page color, and the pages with the same
page color are mapped to the same cache color. A shared
cache is divided into N colors where N comes from the
architectural settings. The cache lines are represented by
using one of N cache colors. We assign the cache colors
of the virtual pages by using the virtual-to-physical page
mapping.

Address Translation: The address translation can trans-
late the virtual address into the physical address by reading
from page table. The cache color is tightly associated with
the number of page colors in the L2 cache. A virtual Tag
(v-Tag) helps identify the similar data by using the results
from the MC-LSH computation.

B. Operating System

Operating system functionalities includes the MC-LSH
computation and the locality-aware data update schemes.

MC-LSH: A standard LSH helps identify similar data and
unfortunately incurs heavy space overhead, i.e., consuming
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too many hash tables, to identify the locality-aware data. The
space inefficiency often results in the overflowing from a
limited-size cache. MERCURY proposes to use an MC-LSH
to offer efficiency and scalability to the multi-core caching.
Specifically, MC-LSH uses a space-efficient signature vector
to maintain the cached data and utilizes a coding technique
to support differentiated placement policy for the multi-type
data. We will describe the design details of MC-LSH in
Section III.

Locality-aware Data Update: In order to execute fast and
accurate updates, a key function in MERCURY is to identify
similar data with low operation complexity. In practice,
many high-performance computing applications demonstrate
the identical data at the same virtual address, but different
physical addresses [2]. All relevant virtual addresses thus
need to be mapped to the same cache set. We make use
of MC-LSH to identify similar data and avoid brute-force
checking between arriving data and all valid cache lines.
The similar data are then placed in the same or close-by
caches to facilitate multi-core computation and efficiently
support data update operations. Since the cached data are
locality-aware, MERCURY hence decreases migration costs
and minimize cache conflicts.

C. Interface to Applications

In order to satisfy query requests and provide flexible
use, we design an interface between high-performance ap-
plications and operating system as shown in Figure 1. Its
main function is to wrap high-level operation requests to
low-level system calls with the aid of the page coloring
technique [11]. Page color manages the bits between the
cache index and the physical page number in the physical
memory address. Specifically, the applications decide how to
partition available cache space among query requests. Query
execution processes indicate partitioning results by updating
a page color table. The operating system then reads the page
color table to know the cache partitions among the query
requests.

Although operating system can’t directly allocate on-chip
cache space, it can make use of virtual-physical address
mapping to control how to allocate pages in the main
memory. The memory pages of the same color can be
mapped to the same cache region. In order to efficiently
partition the cache space, we allocate different page colors
to memory threads. MERCURY can hence utilize the page
coloring technique to complete cache partitioning among
different processes and support the queries.

III. CACHED DATA MANAGEMENT IN MERCURY

In order to capture the data similarity, we propose an
MC-LSH design in MERCURY. A space-efficient signature
vector and a simple coding technique help maintain and
represent the multi-type memberships. We finally describe
a data update scheme in MERCURY.



A. The MC-LSH Scheme

MC-LSH is a multi-core-enabled scheme that consists
of the LSH-based computation, a signature vector structure
and the multi-type membership coding technique. It offers
a deterministic membership for each data item. Compared
with conventional classification schemes that pursue precise
results, MC-LSH provides a near-accurate and fast approach
to obtaining significant time- and space-savings. MC-LSH
employs the LSH functions to identify similar data based
on the access patterns. In order to address the problem of
space inefficiency (i.e., too many hash tables) in the standard
LSH, we employ a signature vector structure. Furthermore,
in order to offer differentiated data placement, we use a
multi-type membership coding technique.

Limitations of Standard LSH. An LSH [12] can identify
the similar data by allowing them to be placed into the same
hash buckets with a high probability. In practice, in order to
support similar queries, LSH needs to hash a query point ¢
into the buckets of multiple hash tables. All data items in
the chosen buckets are then united and ranked according to
their distances to the query point ¢ in a geometric space (e.g.,
Euclidean space). By using the LSH functions, the similar
data have a higher probability of colliding than the data that
are far apart [13].

Definition 1: Given a data domain .S and a distance func-
ie, H={h:S - U}
is called (R, cR, Py, P»)-sensitive, if for Vp,q € S:

o If |p, gl < R then Pry[h(p) = h(q)] = P

o If [|p, ql| > cR then Pru[h(p) = h(q)] < P2

where ¢ > 1 and P} > P.

In practice, for the used hash functions in H, h,4(v) =
L%*bj a is a d-dimensional random vector with chosen
entries following an s-stable distribution and b is a real
number chosen uniformly from the range [0,w), where w
is a large constant. In order to enlarge the gap between P;
and P, we make use of multiple hash tables that may incur
the space inefficiency.

Although LSH has been recently used in many applica-
tions, it is difficult to be used in the multi-core systems due
to heavy space overhead and homogeneous data placement.
These limitations have severely hamper the use of the multi-
core benefits for high performance systems. Unlike existing
work, MERCURY enables LSH to be space-efficient and
leverages the differentiated multi-type policy.

Space-efficient Signature Vector. MC-LSH leverages a
space-efficient signature vector to store and maintain the
locality of access patterns. Specifically, a signature vector
is an m-bit array where each bit is initially set to 0. There
are totally L LSH functions, g; (1 < i < L), to hash a
data point into bits, rather than its original buckets in hash
tables, to significantly decrease space overhead. A data point
as an input of each hash function g; is mapped into a bit
that is thus set to 1 possibly more than once and only the
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Figure 2. Signature vector for maintaining page-level data similarity.

first setting takes effect.

A signature vector is able to maintain the data similarity
as shown in Figure 2. A centralized bit is the bit that
receives more hits than its left and right neighbors. The hit
numbers as shown in this Figure are also much larger than
a pre-defined threshold value. The centralized bits become
the centers of correlated data and are further selected to
be mapped and stored in the L1 caches. When hashing
data into the signature vector, we count the hit numbers
of bits and carefully select the centralized bits. Moreover,
the threshold demonstrates the clustering degree of data
distribution, thus depending upon the access patterns of the
real-world applications. After selecting the centralized bits,
we can construct a mapping between the centralized bits and
L1 caches to facilitate the data placement. It is worth noting
that the number of centralized bits is unnecessarily equal to
that of the L1 caches. If the number of centralized bits is
larger than that of L1 caches, an L1 cache may contain the
data from more than one adjacent centralized bits.

The MC-LSH computation can guarantee similar data
to be hashed into one bit with very high probability that
however is not 100%, meaning that similar data are still
possible to be placed into adjacent bits. False negative hence
takes place when the hit bit is O and one of its neighbors
is 1. In order to avoid potential false negatives, a simple
solution is to check extra neighboring bits besides the hit
one. Although extra checking on neighboring bits possibly
incurs false positives, in practice, a miss from the false
negative generally incurs the larger penalty than the false
positive.

A reasonable size of checking extra bits is acceptable
to obtain a suitable tradeoff between false negatives and
false positives. MERCURY probes more than one hit bit,
i.e. checking totally 2t bits (¢ left and ¢ right neighbors)
besides the hashed bit. Note that the extra checking occurs
only when the hit bit is “0”. Our result conforms to the
conclusion of sampling data in multi-probe LSH [14] by
probing § € {+1, —1} neighbors.

In order to efficiently update the signature vectors, MER-
CURY offers scalable and flexible schemes based on the



characteristics of the real-world workloads. Specifically, if
the workloads exhibit an operation-intensive (e.g., write-
intensive) characteristic, we can carry out the operations in
bulk on the signature vectors and allow the (re)-initialization
in the idle time. Moreover, if the workloads become uni-
form, MERCURY makes use of 4-bit counters [15], rather
than bits, in the Bloom filters. Each indexed counter is
incremented when adding an item and is decremented when
removing an item. In practice, a 4-bit counter can satisfy the
requirements for most applications.

Multi-type Membership Coding. The memberships in
MC-LSH include Family, Neighbor and Foreigner, which
respectively represent different similarities among cached
data. MC-LSH identifies data memberships and places data
into L1 cache, L2 cache or main memory, respectively. One
key issue in the data placement is how to determine whether
the hits in multiple LSH vectors indicate a single cache. In
order to address this problem, we use a coding technique to
guarantee membership consistency and integrity.
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T AND operation ! Hit! |
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Figure 3. Differentiated membership coding technique.

We use an example to illustrate the differentiated mem-
bership coding as shown in Figure 3. Given an item, we
first compute its hashed values by using hash functions in
the signature vector to determine whether it is correlated to
one of existing L1 caches. Based on the conclusion in [14],
if the hit bit is any of the centralized bit, its left and right
neighbors, the item is considered to be correlated with the
corresponding cache and further obtains an M = 1 indicator
(i.e., in the memory), together with F'F' (Family/Friend)
code (e.g., the location) of that centralized bit in an LSH
array.

We construct a mapping table between arriving data and
multi-core caches to facilitate differentiated data placement.
If all M indicators from L LSH arrays show 1 for an item
by using a bit-based AND operation, we determine that this
item is correlated with multi-core caches to execute further
checking on the data mapping table. Otherwise, the item is
not considered to be correlated and directly inserted into
the main memory. The checking on the table allows to
determine whether the item is a Family or Friend. Since
performing direct searching on the entire table consumes
too much time, we first hash the concatenated code of that
item into a standard Bloom filter that has already stored
the code indicators. If a hit occurs, we continue to perform
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the checking on the mapping table. Otherwise, the item is
considered as a Friend and then inserted into the shared
L2 cache. Furthermore, since the table contains too many
code indicators, the linearly brute-force searching will lead
to unacceptable costs, possibly becoming the performance
bottleneck. To address this issue, we make use of a hash table
to maintain these code indicators and decrease the searching
latency. When a hit occurs in the mapping hash table, we
insert this item into the corresponding L1 cache.

B. Data Update

In the multi-level hierarchy of MERCURY, we need to
update cached data and their memberships in the signature
vector.

For updating cached data. In order to update actual data,
we make use of a label-based technique to update stale data
in multi-level caches. The reason comes from the fact that
similar data are potentially re-used by corresponding caches
in the near future. In order to decrease re-caching costs,
we temporarily label stale data for certain time. When the
time expires, we update the caches and replace these labeled
stale data. Moreover, the L1 caches belonging to multiple
cores possibly contain different amounts of similar data.
Performing the load balance within multiple L1 caches is
hence important to obtain performance improvements. Due
to the limited-size capacity in each L1 cache, MERCURY
temporarily places excess but correlated data, which have
been inserted into corresponding counting Bloom filters, into
the shared L2 cache, in which we label them by using
the page colors of the correlated cores to facilitate the
cache update. Once free space is available in an L1 cache,
MERCURY reloads these labeled data into the corresponding
L1 cache.

The cache update in MERCURY needs to replace stale
data in both L1 and L2 caches while guaranteeing high
hit rates and low maintenance costs. MERCURY makes use
of MC-LSH to identify similar data that are then placed
into the L1 caches. The L1 caches employ the simple
LRU replacement to update stale data. When the data in
the L1 caches become stale, they are transferred into the
shared L2 cache among multiple cores. Moreover, if the
data in the L2 cache become stale, they move to the main
memory. Therefore, our cache update is actually a multi-
level migration process from the L1 cache, then the L2
cache, finally to the main memory.

For updating memberships. In order to update the
data membership in the signature vectors, we make use
of counting Bloom filters to facilitate the data deletion
and maintain the membership of the data that have been
identified to be correlated and placed into the corresponding
L1 caches. The counting Bloom filters help maintain the
membership of cached data in a space-efficient way, carry
out the initialization of the L1 caches and keep the load
balance among multiple L1 caches. Each counting Bloom



filter is associated with one L1 cache. When an item is
inserted into the L1 cache, it is meanwhile inserted into
the counting Bloom filter, in which the hit counters are
increased by 1. Since each counting Bloom filter only needs
to maintain the items existing in the corresponding L1 cache
and the number of stored data is relatively small, thus not
requiring too much storage capacity. When deleting an item,
the hit counters are decreased by 1. If all counters become
0, meaning that there are no cached data, we initialize the
associated caches by sampling data to determine the locality-
aware representation in the signature vector.

IV. PERFORMANCE EVALUATION
A. Experiment Configuration

We use simulation study primarily for the evalua-
tion of MERCURY’s scalability. Our simulation uses
PolyScalar [10], in which we add page tables into PolyScalar
for each process to enhance its virtual-to-physical address
translation functionality. We further improve PolyScalar by
adding the similarity-aware functionalities that are described
in Section II and III. The size of each OS page is 8KB.
Since our study focuses on the last-level cache (L2 cache)
that has strong interaction with the main memory, we
extend PolyScalar to simulate DDR2 DRAM systems. The
simulated memory transactions are pipelined.

MERCURY leverages MC-LSH to identify similar data
that are respectively placed into L1 and L2 caches with
an LRU replacement policy. Specifically, each processor
has its own private L1 cache. An L2 cache is shared by
multiple cores. We evaluate the scalability of MERCURY
by increasing the number of cores. In the page color policy
of the L2 cache, each core has 8 colors and each color has
128 cache sets. We hence allocate 1MB cache for 4-core
system, 2MB cache for 8-core system, and 4MB cache for
16-core system. Table I shows the parameter settings in the
simulations.

Table I
SIMULATION PARAMETERS.
| Parameters | Values |
Processor 4/8/16 cores
Issue/Commit 8/8
ALU/FPU/Mult/Div 4/4/1/1
I-Fetch Q/LSQ/RUU 16/64/128
Branch predictor 2-level 1024 entry, history length 10
BTB size 4K-entry and 4-way
RAS entries 16
Branch penalty 3 cycles
DRAM latency 200 cycles
L2 Cache (shared) 4MB, 8-way, 64B lines
L2 Latency 6 cycles
L1 Cache (per core) 64KB Inst/64KB Data, 64B lines, 2-way
L1 Latency 1 cycle
Memory regions 32-memory region/process
Cache color 8/core

The properties of the used traces and datasets are listed.
o Forest CoverType dataset [16] contains 581,012 data
points, each of which has 54-dimensional attributes.
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TPC-H benchmark [17] has a large volume of data for
decision support systems when executing 22 different
types of queries.

EECS NFS server at Harvard [18] collects the I/O
accesses. This dataset contains the requests with a total
of 4.4 millions operations.

HP file system provides a 10-day 500GB trace [19] that
records the accesses from 236 users.

175.vpr and 300.twolf show the CPU performance
in the SPEC2000 evaluation [20]. 175.vpr leverages
combinatorial optimization technique to automatically
synthesize the mapped circuits. 300.twolf makes use of
TimberWolfSC placement and global routing package.

We use the three metrics to evaluate the performance,
i.e., Throughput, Weighted speedup and Fair speedup as
shown in Table II. Specifically, the Throughput refers to the
absolute IPC numbers to evaluate the system utilization. The
Weighted speedup is the sum of speedups of all programs
over a baseline scheme to indicate the decrements of ex-
ecution time. The Fair speedup is the harmonic mean of
the speedups over a baseline scheme to obtain the balance
between fairness and performance.

Table II
PERFORMANCE EVALUATION METRICS.
\ Metric \ Description \
Throughput Z?:l (IPCsch,eme ['L])
Weighted Speedup v 1 (IPCychemeli]/TPChqseli])
Fair Speedup TL/ Z?:l(lpcbase[i /Ipcscheme ZD

B. Results

We compare MERCURY with baseline approaches, i.e.,
private and shared caches, and state-of-the-work, PCM [7]
and Mergeable [2] schemes, which we re-implemented for
the experiments.

1) Throughput: Figure 4 shows the throughput result
from running 6 real-world applications with the increments
of multi-core number from 4 to 16. The average throughputs
on 4-core systems with private cache, shared cache, PCM
and MERCURY are respectively 1.352, 1.563, 1.815 and
2.162. For 8-core systems, the average throughputs are
2.481, 2.572, 2.953 and 3.305. For 16-core systems, they
are 3.281, 3.469, 3.957 and 4.452.

We observe that two typical SPEC2000 benchmarks ob-
tain the larger throughputs on average by 15.7% incre-
ments than other applications. The main reason is that the
SPEC2000 benchmarks have better similarity in the access
pattern, thus allowing LSH to accurately and efficiently
capture correlated data. In addition, MERCURY executes
constant-scale hashing computation to quickly and accu-
rately identify correlated data, thus obtaining the larger
throughput than the PCM scheme.

2) Weighted Speedup: We take into account the changes
of the relative IPC that is the ratio of absolute IPC to
the baseline as the metric of the weighted speedup. The
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weighted speedups are normalized to those with the private
caches. The shared cache obtains better performance than
the private cache due to the ability to adapt to the demands
of competing processes. Compared with the private cache,
the increments of the shared cache are 9.87%, 17.52% and
23.67% respectively on 4-core, 8-core and 16-core systems.
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Figure 5.

The PCM and MERCURY have much better performance
than the shared cache. The average normalized weighted
speedups of the PCM scheme are 1.263, 1.376 and 1.482
respectively on 4-core, 8-core and 16-core systems. MER-
CURY obtains 1.527, 1.634 and 1.928 weighted speedups,
demonstrating better performance. With the increments of
cores, MERCURY further exhibits its effectiveness and scal-
ability since it makes use of simple hashing to adapt to the
workload changes.

3) Fair Speedup: Fair speedup computes the harmonic
mean of the normalized IPCs while taking into account
both fairness and performance. Figure 6 shows the results
of comparing MERCURY with baseline schemes and PCM
in terms of fair speedups. The fair speedups are normalized
to those with the private cache.

Compared with the PCM scheme, MERCURY signifi-
cantly improves the performance on this metric by 8.35%,
9.52% and 9.96%, respectively on 4-core, §-core and 16-core
systems. The main reason is that MERCURY leverages the
differentiated placement policy that fairly assigns the data
into the correlated caches and improves the utilization of the
multi-core processor based on the multi-type memberships.

4) Migration Cost: Hit misses or updates in caches often
lead to data migration among multiple caches, which incurs
relatively high costs in terms of data transmission and re-
placement in the caches of other cores. Figure 7 shows
the percentage of migrated data in PCM, Mergeable and
MERCURY. Mergeable is able to detect and merge similar
data to guarantee that many correlated data are stored in

Normalized Weighted Speedup.
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Figure 6. Normalized Fair Speedup.

a single cache, thus producing the smaller number of the
migrated data than PCM.

Compared with Mergeable, MERCURY can obtain better
performance in this metric and decrease the number of
migrated data on average by 35.26%, 32.57% and 31.73%
on 4-core, 8-core and 16-core systems. The main reasons
are twofold. One is that MC-LSH provides high accuracy
of identifying correlated data, thus reducing the number
of migrated data. The other is that the fast identification
of similar data in MERCURY produces low computation
complexity.
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Figure 7. Percentage of migrated data.

V. RELATED WORK

The optimization management problem of multi-level
cache hierarchy in CMPs has been studied in the computer
architecture and software communities. There exist a wide
range of proposals to improve caching performance (e.g., hit
rate, access latency and space overhead) [1], [3], [4], [21].

In order to mitigate the loss of reusing cached states
when rescheduling a process, affinity scheduling [22] helps
reduce cache misses by judiciously scheduling a process on
a recently used CPU. In order to improve the performance
in the multi-execution applications, Mergeable [2] captures
data similarities and merges duplicate cache lines owned by
different processes to obtain substantial space savings. Per-
forming the explicitly merging operations on cache blocks
requires relatively longer execution time and increases com-
putation complexity. Process-level cache management policy
(PCM) [7] has the assumption that all memory regions be-
longing to a running process exhibit the same access pattern.
MCC-DB [23] makes use of different locality strengths
and query execution patterns to minimize cache conflicts.
An OS-based cache partitioning mechanism [24] presents
execution- and measure-based strategies for multi-core cache



partitioning upon multiple representative workloads. More-
over, integrated processor-cache partitioning [4] divides both
the available processors and the shared cache in a chip
multiprocessor among different multi-threaded applications.
MERCURY is orthogonal to existing schemes. It leverages
light-weight LSH based computation and obtains significant
performance improvements on LLC by accurately capturing
the differentiated locality across data.

VI. CONCLUSION AND FUTURE WORK

This paper proposed MERCURY, a novel multi-level cache
hierarchy designed for high performance systems running
on CMPs. MERCURY significantly improves overall system
performance. It explores data similarity that is derived from
locality-aware access patterns to alleviate homogeneous data
placement and improve system performance by using the
low-complexity MC-LSH computation. We also propose the
use of space-efficient signature vectors to obtain significant
space savings. A simple coding technique further helps
maintain the multi-type memberships for carrying out dif-
ferentiated data placement. Experimental results demonstrate
the efficiency and efficacy of MERCURY. Our future work
will consider the methods of improving the hashing accuracy
for capturing the data similarity.
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