MaxPB: Accelerating PCM Write by Maximizing the Power
Budget Utilization

ZHENG LI, FANG WANG, DAN FENG, YU HUA, JINGNING LIU, and WEI TONG,
Wuhan National Laboratory for Optoelectronics, School of Computer Science and Technology,
Huazhong University of Science and Technology

Phase Change Memory (PCM) is one of the promising memory technologies but suffers from some critical
problems such as poor write performance and high write energy consumption. Due to the high write energy
consumption and limited power supply, the size of concurrent bit-write is restricted inside one PCM chip.
Typically, the size of concurrent bit-write is much less than the cache line size and it is normal that many
serially executed write units are consumed to write down the data block to PCM when using it as the main
memory. Existing state-of-the-art PCM write schemes, such as FNW (Flip-N-Write) and two-stage-write,
address the problem of poor performance by improving the write parallelism under the power constraints.
The parallelism is obtained via reducing the data amount and leveraging power as well as time asymme-
tries, respectively. However, due to the extremely pessimistic assumptions of current utilization (FNW) and
optimistic assumptions of asymmetries (two-stage-write), these schemes fail to maximize the power supply
utilization and hence improve the write parallelism.

In this article, we propose a novel PCM write scheme, called MaxPB (Maximize the Power Budget utiliza-
tion) to maximize the power budget utilization with minimum changes about the circuits design. MaxPB is a
“think before acting” method. The main idea of MaxPB is to monitor the actual power needs of all data units
first and then effectively package them into the least number of write units under the power constraints.
Experimental results show the efficiency and performance improvements on MaxPB. For example, four-
core PARSEC and SPEC experimental results show that MaxPB gets 32.0% and 20.3% more read latency
reduction, 26.5% and 16.1% more write latency reduction, 24.3% and 15.6% more running time decrease,
1.32x and 0.92x more speedup, as well as 30.6% and 18.4% more energy consumption reduction on average
compared with the state-of-the-art FNW and two-stage-write write schemes, respectively.

CCS Concepts: ® Information systems — Phase change memory; ® Computer systems organiza-
tion — Architectures; ® Hardware — Emerging technologies;

Additional Key Words and Phrases: PCM, write scheme, power budget, write unit

New paper, not an extension of a conference paper.

This work was supported by the National High Technology Research and Development Program (863 Pro-
gram) No. 2015AA015301, No. 2013AA013203, and No. 2015AA016701; National Key Research and De-
velopment Program of China under Grant 2016YFB1000202; NSFC No. 61303046, No. 61472153, and No.
61173043; State Key Laboratory of Computer Architecture, No. CARCH201505; Wuhan Applied Basic Re-
search Project (No. 2015010101010004). This work was also supported by Key Laboratory of Information
Storage System, Ministry of Education, China.

Authors’ addresses: Z. Li, F. Wang (corresponding author), D. Feng, Y. Hua, J. Liu, and W. Tong (corresponding
author) are with the Wuhan National Laboratory for Optoelectronics, School of Computer Science and
Technology, Huazhong University of Science and Technology, Division of Data Storage System, Wuhan
430074, China; emails: {lizheng, wangfang, dfeng, csyhua, jnliu, Tongwei}@hust.edu.cn.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.

© 2016 ACM 1544-3566/2016/12-ART46 $15.00

DOI: http://dx.doi.org/10.1145/3012007

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 4, Article 46, Publication date: December 2016.

http://dx.doi.org/10.1145/3012007

46:2 Z. Lietal.

ACM Reference Format:

Zheng Li, Fang Wang, Dan Feng, Yu Hua, Jingning Liu, and Wei Tong. 2016. MaxPB: Accelerating PCM write
by maximizing the power budget utilization. ACM Trans. Archit. Code Optim. 13, 4, Article 46 (December
2016), 26 pages.

DOI: http://dx.doi.org/10.1145/3012007

1. INTRODUCTION

Phase Change Memory (PCM) has received extensive attention from institutes and
companies for its better scalability and lower leakage-power consumption compared
with traditional DRAM technology [Lee et al. 2010a, 2010c; Wong et al. 2010; Roadmap
2013; Raoux et al. 2008]. However, PCM has many shortcomings that need solving, such
as high write latency [Lee et al. 2009; Zhou et al. 2009; Qureshi et al. 2009b; Jiang
et al. 2012b; Li et al. 2016a, 2016b] and limited write endurance [Qureshi et al. 2009a;
Seong et al. 2010; Huang et al. 2016; Jiang et al. 2013]. Power restriction is the key
bottleneck of the write performance. Due to the high write energy consumption and
huge power noise in narrow space, the size of write unit is strictly restricted. The size
of write unit refers to the size of concurrent bit-write to the PCM array. The typical
sizes of write units are strictly limited to 4, 8, and 16 bits, and even only 2 bits under
the worst current supply circumstance [Kang et al. 2007; Lee et al. 2008; Cho and Lee
2009; Yue and Zhu 2012, 2013a, 2013b; Li et al. 2016a, 2016b]. If PCM serves as the
main memory, the write limitations lead to long write latency. As a result, long write
latency causes significant delays of more critical read requests [Zhao et al. 2014] and it
also takes time for memory bus to do the read and write switching [Lee et al. 2010b]. If
there are a number of read or write requests within a memory bank, the interference
caused by write requests could be worse. In short, long write latency restricts service
parallelism and causes huge performance degradation.

In order to improve the memory system’s performance, Last-Level Cache (LLC) is
widely used to cache time-hungry write requests [Du et al. 2013a]. However, the size
of LLC is strictly restricted due to energy consumption and cost considerations. Write-
backs to PCM-based main memory still delay the critical read requests and cause
system performance degradation [Zhou et al. 2012; Wang et al. 2013]. Typically, write
unit is much smaller than cache line. Due to the mismatching of the write unit’s size
and cache line’s size, the write operations can only be finished with many successive
operated write units, which results in high cache line write service time. For example,
a 64-byte cache line block should be written back to the main memory in a typical mem-
ory system but only (16 x 4) bits can be written one time with four PCM chips making
up the 64-bit data bus. Due to the restrictions caused by the power supply, it consumes
(64 x 8)/(16 x 4) = 8 write units for writing the data of a cache line [Lee et al. 2008;
Cho and Lee 2009; Yue and Zhu 2012, 2013a, 2013b; Li et al. 2016a, 2016b]. These
almost serially executed write units cause huge long cache line service time and high
write latency as well as overall system performance degradation. Moreover, the size of
the LLC line is growing to 128 bytes or bigger in some of the latest computer systems
[Warnock et al. 2011; Kalla et al. 2010], which leads to the worse write performance.

Existing state-of-the-art PCM write schemes, such as FNW (Flip-N-Write) or two-
stage-write, aim to address the poor performance problem by improving the write
parallelism under the power constraints. The parallelism is obtained via reducing
the data amount with ingenious data encoding and leveraging both power and time
asymmetries, respectively. However, we observe the following:

—FNW is quite simple and effective but faces low power budget utilization problems.

In other words, only a small number of bits is changed and consumes power by “re-
moving the redundant bit-write” method [Zhou et al. 2009], and the power is often

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 4, Article 46, Publication date: December 2016.

http://dx.doi.org/10.1145/3012007

MaxPB: Accelerating PCM Write by Maximizing the Power Budget Utilization 46:3

excessively supplied but underutilized. According to our experimental results of 16
PARSEC and SPEC workloads, the power budget utilization is only 27.4%/14.9%
without/with power asymmetry on average under FNW scheme and the system en-
vironment is shown in Table I.

—two-stage-write is highly efficient but suffers from performance degradation when
the asymmetries are not significant. According to our theoretical analysis shown
in Figure 3, if SET is four times (or more) slower than RESET, two-stage-write gets
significant write service-time reduction over FNW. Otherwise, the write performance
improvement is not that significant. Moreover, two-stage-write needs extra control
circuits and the modified write driver logics to support the separation of writing ones
and zeros.

Based on these key observations, we propose a novel PCM write scheme named
MaxPB (Maximize the Power Budget utilization) based on the SLC PCM for its better
write performance and intuitive power budget model [Lee et al. 2008; Yue and Zhu
2013a]. Our design goals are to maximize the power budget utilization with minimum
changes in the circuits design. MaxPB is a “think before acting” method. The main
idea of MaxPB is to rearrange all data units according to their actual power needs and
package all data units into the least number of write units under the power constraints.
MaxPB can significantly improve the write parallelism and reduce the critical number
of write units.

The main contributions of this article include the following:

—An effective PCM write algorithm called MaxPB. We observe that existing write
schemes are not aware of low power budget utilization and experimental results of
10 multithreaded and six multiprogrammed workloads show that the utilization is
only 27.4% without power asymmetry. With MaxPB, we can maximize power budget
utilization by using the least number of write units.

—A variation of MaxPB named MaxPB-asy. We observe that the power budget uti-
lization decreases to 14.9% considering the power asymmetry of SET and RESET.
By leveraging power asymmetry, MaxPB-asy can obtain more performance improve-
ment and energy consumption reduction compared with the original MaxPB scheme.

—Efficient hardware circuits design to support MaxPB and MaxPB-asy. The circuits
are slightly altered with extremely low overhead compared with FNW and two-stage-
write designs.

The remainder of this article is structured as follows. Section 2 describes the back-
ground, the details of existing write schemes, and motivations of our designs. Section 3
describes the implementation of circuit designs. Section 4 presents and analyzes the
experimental results. Section 5 introduces the related work. Finally, Section 6 con-
cludes our article.

2. BACKGROUND AND MOTIVATION
2.1. PCM Properties and Limitations

PCM takes advantage of the properties in resistance of the storage material (such as
Ge2Sb2Teb, briefly called GST). The material shows great diversity and resistance
gap when the material shows different states, that is, crystalline state and amorphous
state. In general, amorphous-state material shows several orders of magnitude higher
resistance value than crystalline-state material. If given the same voltage level, the
current value adopted by the sense amplifier varies four or more orders of magnitude
when the material shows opposite states. The striking differences in resistance and
current status can be used for presenting binary information, that is, digital “0” and
“1.” A typical mushroom structure of a PCM cell is illustrated in Figure 1(a). A PCM

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 4, Article 46, Publication date: December 2016.

46:4 Z. Lietal.

-------- RESET
c A 2D ser
E Reset_min READ
Ge2Sh2Te5 5 d Reset_min
O >
@ H)
€ H . — . _Set_min
E- R —— s Set_min
! Set,
] vt
glis 4 :
HF \
al s -
Time asymmetry Ti m'e
(a) Cell structure (b) Read and write processes

Fig. 1. Typical mushroom PCM cell architecture and operation mechanisms.

cell typically adopts mushroom architecture including electrodes, heater, and phase
change material. Simplified read and write mechanisms and Current-Time sparkline
of PCM are illustrated in Figure 1(b). PCM has obvious asymmetries [Xia et al. 2015]:

—Asymmetries between read and write. The power needs and the service time of read
and write vary significantly. In general, read operation consumes less power with
shorter service time [Qureshi et al. 2012; Lee et al. 2008].

—Asymmetries between reset and set. The power needs and the write time of reset
and set vary significantly. In general, set operation needs higher current level but
its service time is much shorter than set operation [Qureshi et al. 2012; Sun et al.
2012].

PCM write operation consumes a great deal of current [Lee et al. 2008; Cho and Lee
2009]. However, due to the power noise and limited charge pump area, the maximum
current that can be provided for one chip is highly restricted. It is also difficult and
undesirable to address this problem by enlarging the charge pump, which is the most
area-hungry component inside a PCM chip (usually more than 20% of the chip area
[Oh et al. 2006; Palumbo and Pappalardo 2010]). As a result, the parallelism inside
one chip is constrained and only a small number of bits can be written concurrently
under the power budget. The size of write unit, that is, the size of concurrent bit-write
to the PCM array, is restricted and typical sizes of write unit are 4, 8, and 16 bits [Lee
et al. 2008; Cho and Lee 2009; Yue and Zhu 2013a, 2013b; Li et al. 2016a, 2016b].
Power budget is the key obstacle of the poor PCM write performance. When PCM is
adopted as the main memory, we get huge overall system performance degradation due
to the size gap between write unit and cache line block. PCM’s write operations can
only be finished with many serially executed write units, which results in high write
service time. The almost serially executed write units cause huge long write latency
and overall system performance degradation.

2.2. State-of-the-Art Write Schemes

The conventional write scheme is under pessimistic assumptions about the power
demand of each unit, regardless of the power and time asymmetries in PCM write.
Typically, as shown in Equation (1), it strictly writes Sy iteuni: bits per write unit until
finishing the write service of S bits. As illustrated in Figure 2, the service is finished
at T5 under the parameters presented in Table I.

S, ota
TConvemfionaj = St—tlTset- (1)

writeunit

In order to address the poor write performance problem, FNW [Cho and Lee 2009]
uses a thin read-before-write scheme, encodes the data with an extra bit to reduce the

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 4, Article 46, Publication date: December 2016.

MaxPB: Accelerating PCM Write by Maximizing the Power Budget Utilization 46:5

| The values in brackets are the actual bits-change of each data unit |
Data Units DU (3) DUI (10) DU2 (1) DU3 (2) DU4 (13) DU5 (3) DUG6 (8) DU7 (14)
After Data Inversion DU (3) DUI (6) DU2 (1) DU3 (3) DU4 (3) DU5 (3) DU6 (8) DU7(2)

Service Order

Stage 1

| 2-Stage-W; ”‘em DUIS one | DUiFone i
&:::L:::===4
- Stage 0 (DUO-7 zero) Stage T

! 2 St"g; Write DUO-30ne)_DU4-7 one |
L e Y
| Read ':
| MaxPB Invert DU6DULDU3) pusovspuspuzouz !
L 1

Fig. 2. An example for state-of-the-art PCM write schemes. Assuming 16 bits can be served at the same
time and the values in brackets are the actual bits-change of each data unit.

Sl ;
& Two-stage-write
5 8.000
5 7.000
< 6.000
=

= 5.000
g 4.000
£ 3.000
Q

g 2.000
'g 1.000
[7%3)

Fig. 3. Acceleration of FNW and two-stage-write over conventional scheme.

amount of written data, and improves the write parallelism by writing the different
bits only. In general, the concurrent serviceability is doubled and the write service time
is halved compared with the conventional write scheme, as shown in Equation (2).

SO(I
t—tlTset- (2)

TFNW = Tread +
2 x Swriteunit

In our sample, the cache line service can be finished at T4 as illustrated in Figure 2.
Two-stage-write [Yue and Zhu 2013a] accelerates PCM write parallelism by lever-
aging the asymmetries of writing “0” and “1” (time and power demand) as shown in
Figure 1(b). By adding carefully designed stage control circuits, the write is finished in
two steps, that is, “Stage 0” and “Stage 1.” Assuming the time ratio of writing “0” and
“1”is 1/K, the current ratio is L. The average service time of a cache line is concluded

in Equation (3).

Stotal Stotal
Ttwo—stage—write = WTset + S LTset- (3)
X Ouriteunit 2 x writeunit X

The write service time of two-stage-write is highly relative to the current ratio and
time ratio, as illustrated in Figure 3. When the current ratio L is 2, the time ratio
K is 8, two-stage-write finishes its cache line write service at T2 (two-stage-write I in

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 4, Article 46, Publication date: December 2016.

46:6 Z. Lietal.

Figure 2). However, if the time gap between SET and RESET is not huge, the theoretical
performance of two-stage-write is close to FNW. When the time ratio is 4, the write
service is finished at T3 (two-stage-write II in Figure 2).

2.3. Observations

We give a new metric named power budget utilization to measure the efficiency of
current supply utilization. The definition of power budget utilization is given in Equa-
tion (4) and the term Actual PowerU se without/with power asymmetry is calculated
by Equations (5) and (6), respectively. In general, power budget utilization means the
rate of actual power use per write unit and the maximum power supply provided by
the charge pump. Under the same dataset, higher power budget utilization means that
more data bits are written in one write unit and higher chip-level write parallelism,
which reduces the write service time of PCM-based main memory.

PowerUse
P BudgetUtilization = , 4
owerbudgettinization PowerBudgetPerWriteUnit @
PowerUse = Totalbits x Power/bit, (5)

PowerUseAsy = SETbits x SETPower/bit + RESETbits x RESETPower/bit. (6)

On one hand, FNW is simple and effective but faces low power budget utilization
problems. In general, only a small number of bits is changed compared with original
data (old data) and consumes power, and the power is often excessively supplied but un-
derutilized. Low power budget utilization limits parallelism upgrade and write perfor-
mance improvement. According to our experimental results of multithreaded PARSEC
and multiprogrammed SPEC 2006 workloads illustrated in Figure 4, the power budget
utilization is only 27.4%/14.9% without/with power asymmetry on average with FNW
scheme and the system environment and benchmark details are shown in Table I and
Table II, respectively. On the other hand, two-stage-write is highly efficient but suffers
from performance degradation when the asymmetries are not significant. According
to our theoretical analysis shown in Figure 3, if SET is four times (or more) slower
than RESET, two-stage-write gets huge enhancement over FNW. Otherwise, the per-
formance improvement is not that significant. Moreover, two-stage-write needs extra
control circuits and modified write driver logics to support the separation of writing
ones and zeros.

To address these problems, we propose a novel PCM write scheme named MaxPB
based on the insight that existing PCM write schemes are unaware of their low power
budget utilization. Our design goals are to maximize the power budget utilization with
minimum changes to the circuits design. MaxPB rearranges the executed sequence of
all write units and maximizes the power budget utilization with the least number of
write units. The main idea of MaxPB is “think before acting,” that is, we rearrange all
data units according to their actual power needs and package more data in one write
unit to minimize the number of write units rather than writing down the data directly.

As shown in Figure 2, the values in brackets present the actual number of different
bits of each unit compared with the old data stored in the chip. If the number of bits
changed is more than half of the maximum size under the limitations of the power
budget, the data will be flipped like FNW. After that, the power requirement of each
data unit is no more than half of the power budget size. MaxPB then rearranges all data
units in descending order according to their actual power requirement. After all units
are rearranged, MaxPB writes data units in parallel according to the results of the

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 4, Article 46, Publication date: December 2016.

MaxPB: Accelerating PCM Write by Maximizing the Power Budget Utilization 46:7

Without power asymmetry-
With power asymmetry

Fig. 4. Power budget utilization of FNW scheme.

MaxPB algorithm illustrated in Algorithm 1. After the “think before acting” process,
DUS6, DU1, and DUS3 are chosen to execute concurrently for the number of bits needed
to be written is less than the maximum number, that is, the total power requirement
is smaller than the power limitation (8 + 6 + 2 <= 16). Similarly, all other data units
can be written concurrently under the power constraints (3 +3 +3 + 2+ 1 <= 16).
The cache line write service can be finished in T1, which is shorter than FNW (T4) and
two-stage-write (T2), respectively. However, the overall overhead is higher than FNW
and two-stage-write for the flow path of all units’ rearrangement. According to our
experimental results of designing MaxPB on Xilinx FPFA, the MaxPB write algorithm
causes 25 cycles overhead on average to finish the packaging of all units. However,
compared with the thousands of PCM write cycles, the overhead is extremely low and
acceptable (within 1%). Moreover, MaxPB delivers no extra overhead on the critical
read path, which has no bad influence on critical read performance.

3. IMPLEMENTATION AND OVERHEAD
3.1. Hardware Circuits Support for MaxPB

To meet the proposed design goals of MaxPB, we implement altered hardware circuits
based on an industrial PCM prototype published by Samsung [Lee et al. 2008] and FNW
write scheme [Cho and Lee 2009]. The data path of our design is shown in Figure 5.
The original prototype supports an eight-word prefetch method with a big buffer to
reduce the data transmission overhead.

To support the proposed MaxPB write scheme, we add a middle circuit design, that
is, MaxPB write logic, between the write buffer and S/A write driver compared with the
original design. It is worth noting that we do not increase the read operation overhead
and the length of the read path is the same as the original and FNW designs. Moreover,
the overall length of the write path is similar to FNW and two-stage-write designs. We
extend the write buffer size to 160 bits and the write buffer is composed of eight data
units. Actually, the data are flipped similar to the data conversion of FNW. Extra 8 flip
bits are added to index the data have been flipped or not similar to FNW. To monitor
the actual power consumption of eight data units, 24 Wup bits are used to store the
power requirements of data units, that is, the number in the brackets as shown in
Figure 2. We assume the size of the write unit is 16 and 3 Wup bits (22 equals to 8) are
used for per data unit as the maximum number of bits changed is 8 after the inversion
process. Our design does not need extra PCM array compared with FNW design as we

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 4, Article 46, Publication date: December 2016.

46:8 Z. Lietal.

L B
(| ceblock #0 e Cell block #3
27 e 727
GYDEC .. GYDEC
8-word 34 34—
13" ’-’f"t’fh < S/A Write Driver .o S/A Write Driver
34 34—
MaxPB-Write MaxPB-Write
logic L logic
e V| sl

P ‘ Write buffer(128 bits data + 24 Wup bits + 8 flip bits)

21
1-word '.'.;(20
Sym‘. < DMUX 3 Wup bits + 1 flip bit
Burst 16 Inversion and
domain _ Wup calculation
X16
g

Fig. 5. Data path of MaxPB.

[write bufer(128 bits data + 24 bits Wup + 8 flip bity | i Old data from read buffer | XI7DX |
v
[Finite State machine (FSM) | 2 X17 inputs
Data units selection | Write signal generation |—— XOR DMUX

Multiplexer [PROG enable logic | [SETRESET enable]

vy Vv VvV VvV V Vv Vv V¥ X17 PROG X17 RESET/SET
| Do “ D1 “ D2 “ D3 “ D4 “ D5 “ D6 I D7 | enable 2)(17""1”‘m enable
0 16+1 3242 48+3 64+4 80+5 96+6 112+7 127+8 AND

Offset of each 16bits data unit

Fig. 6. MaxPB write logic.

just need to extend the write buffer size, which can be easily implemented in the PCM
chip.

MaxPB write logic gets the data to be written together with flip bits and Wup bits,
and then decides which data units should be packaged into one write unit. The write
control logic is illustrated in Figure 6. The shared Finite State Machine (FSM) is the
key component of our MaxPB write logic design. FSM consists of data units selection
logic and write signal generation logic. In detail, FSM decides which data units should
be packaged into one write unit to get the maximum power budget utilization with
the minimum number of write units. In order to boost the accessing efficiency, all data
units, that is, DX in Figure 6, are indexed by fixed offsets. Offset O corresponds to data
unit 0 (DO) and D1-D7 are indexed by 17, 34, 51, 68, 85, 102, and 119 considering
the flip bits, respectively. The units packaging and choosing processes deliver extra
overhead when finishing a cache line write service.

The data units packaging algorithm is shown in Algorithm 1. The key idea behind
the MaxPB algorithm is to decide which data units should be executed in parallel under
power constraints to earn better power budget utilization and lower number of write
units. MaxPB is a greedy algorithm and the key working processes are as follows:

(1) Calculating the actual power requirements based on the number of bits that have
to be written, that is, the number of different bits between new and old data.

(2) Rearranging all data units in descending order according to their actual power
requirement. Since there are only a few data units (eight data units in our study),
the ordering and selection process is fast and efficient.

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 4, Article 46, Publication date: December 2016.

MaxPB: Accelerating PCM Write by Maximizing the Power Budget Utilization 46:9

ALGORITHM 1: MaxPB Algorithm

Require:
The quantity of existing data units, Qdu;
The number of bits changed of each data unit, Diffbits[Qdul;
The power consumption of each data unit, Pcons|[@Qdul;
The actual power use of each write unit, Pwu,[Qdul;
Power budget limitation, P Blimitmax;
The power demand for writing one bit, P Dj;;;
Ensure:
The write order of all data units;
1: Initial Pwu,[Qdu] = {0}, Writeunitnum = 0, findtag = false;
2: for each i € [1, Qdu] do
3: Pconsli] = Diffbits|Qdul x P Dy;;
4: end for
5. fori=1;i <= Qdu;i ++ do
6: Find unprocessed Pcons[i] with highest value;
7: findtag = false;
8
9

if Pconsli] > W then

findtag = true;
10: Writeunitnum + +;
11: Pwu,[Writeunitnuml+ = Pconsli];
12: Marking dataunitli] is written in writeunit[Writeunitnuml;
break;
13: end if
14: for j =1; j <= Writeunitnum; j + + do
15: if Pconsli] + Pwu,lj]l < PBlimitmax then
16: findtag = true;
17: Pwu,[jl4+ = Pconsli];
18: Marking dataunitli] is written in writeunit j;
break;
19: end if
20: if findtag == false then
21: Writeunitnum + +;
22: Pwu,[Writeunitnum]+ = Pcons[i];
23: Marking dataunitli] is written in writeunit[Writeunitnum);
24: end if
25: end for
26: end for

(3) From the data unit with the highest power requirement to the data unit with the
least power need, trying to put a current data unit into an existing write unit and
recording the power budget residue of each existing write unit.

(4) If the remaining power supply of one write unit is enough, the data unit is marked
that it should be written into this write unit. If all write units cannot satisfy the
processing data unit, another write unit is enabled and the data unit is marked
with the new write unit.

After the preceding process, we get the total number of write units and keep in mind
which data units should be packaged in one write unit, respectively. According to the
process results, FSM selectively sends the write control signals to each data unit’s
write driver using a simple multiplexer as illustrated in Figure 6.

The write driver logic is shown in Figure 6. Like FNW and two-stage-write design,
an extra control signal, called PROG-enable, is used for individual bit control. Once
FSM sends a writing signal to a data unit DX, the write driver logic compares the data

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 4, Article 46, Publication date: December 2016.

46:10 Z. Lietal.

e 0o 0 o o0
(| Cettbiock #0 tee Cell block #3
272 27
GYDEC GYDEC
e o0
S-word 34 3
prefeich < | /4 Wiite Driver | |, , | /A Wite Driver
34 34
MaxPB-asy- MaxPB--asy-
Weite logic LU Write logic
0 T
_ Write buffer(128 bits data + +
e + 8 flip bits)
_—
1-word X20 +
Sync. < DMUX + 1 flip bit
domail Wup calculati
lomain =
~

Fig. 7. Data path of MaxPB-asy.

| Write buffer(128 bits data + + |
& + 8 flip bits)

[0ld data from read buffer | X17 DX |
[Finite State machine (FSM)] 2 X17 inputs
Data units s election Write signal generation |—> XOR DMUX

Multiplexer [PROG enable logic | [SETRESET enable |

vy VvV Vv VvV Vv VvV V V¥ X17 PROG X17 RESET/SET
| Do “ D1 “ D2 “ D3 “ D4 “ D5 “ D6 I D7| enable 2X17i"P" enable
0 I6+1 3242 48+3 G4+4 80+5 96+6 112+7 127+8 AND

Fig. 8. MaxPB-asy write logic.

DX with the data already stored in the PCM array, that is, 16 bits old DX, by leveraging
a simple XOR gate logic. A DMUX gate logic is used for deciding the stage of writing
“0” or “1,” that is, reset and set enable, respectively.

MaxPB circuit designs do not deliver any extra overhead on the critical read path,
which is the key bottleneck of the system performance. Moreover, MaxPB can signifi-
cantly reduce the number of the write units and improve the write performance with
extremely low overhead.

3.2. MaxPB with PCM Asymmetries

Based on the PCM power asymmetry, we propose a new method called MaxPB-asy to
further improve the write parallelism. The primary difference between MaxPB-asy and
MaxPB is the statistical approach of “actual power use.” There exists power asymmetry
in PCM write that RESET operation consumes much more current than SET operation.
The data path and write control logic of MaxPB-asy are illustrated in Figures 7 and
8. Compared with 24 Wup bits overhead in MaxPB, the buffer of MaxPB-asy needs 24
Wup_reset bits and 24 Wup_set bits to store the number of RESET and SET operations
of all data units. Wup calculation module is modified to count the number of RESET
and SET operations of all data units after data inversion. Only the buffer is extended
compared with the original FNW design and it is not necessary to write down all Wup
bits to PCM array. The write control logic of MaxPB-asy is virtually identical to MaxPB
design and the only difference is the algorithm inside the finite state machine.

The algorithm of MaxPB-asy is shown in Algorithm 2. The algorithm input is ex-
tended for some necessary information such as the number of SET and RESET bits

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 4, Article 46, Publication date: December 2016.

MaxPB: Accelerating PCM Write by Maximizing the Power Budget Utilization 46:11

ALGORITHM 2: MaxPB-asy Algorithm
Require:
The quantity of existing data units, Qdu;
The number of SET bits changed of each data unit, Diffbitsgy, [Qdul;
The number of RESET bits changed of each data unit, Diffbitszpspr | Qdul;
The power consumption of each data unit, Pcons[Qdul;
The actual power use of each write unit, Pwu,[Qdul;
Power budget limitation, P Blimitmax;
The power demand for SET one bit, PDgsgr;
The power demand for RESET one bit, PDrgsgr;
Ensure:
The write order of all data units;
: Initial Pwu,[Qdu] = {0}; Writeunitnum = 0; findtag = false;
: for each i € [1, Qdu] do
Pcons [l] = Difﬂ)itSRESET [Qdu] X PDRESET + DiffbitSSET [Qdu] X PDSET
end for
The remaining content is the same as Algorithm 1.

SNl

changed of each data unit and power demand for SET and RESET one bit. MaxPB-
asy uses fine-grained power demand calculation and the power consumption of each
data unit is counted by leveraging the power asymmetry of SET and RESET. After the
fine-grained power consumption calculation, the dealing processes are the same with
MaxPB.

3.3. Overhead Discussions

As we mentioned, MaxPB and MaxPB-asy modified the conventional circuits and in-
troduce extra data inversion and rearrangement processes, which deliver extra time,
space, area, and power overhead. According to our experimental results on Xilinx FPGA
(xc7z045ffv900-1) [Xilinx 2015b], the overhead is about 25 cycles on average. However,
compared with the thousands of PCM write cycles, the overhead is extremely low
and acceptable (within 1%). Moreover, MaxPB does not deliver any extra overhead on
the critical read path, which is the key bottleneck of the system performance [Qureshi
et al. 2010a]. The implementation of FSM only modifies the write datapath without the
changes of read datapath. In other words, our designs accelerate the write operations
while remaining the short latency of read operations. The space overheads of MaxPB
and MaxPB-asy are almost the same. For each 16-bit data unit, one flip bit is needed,
and the storage is 6.25%. The other critical information, such as Wup bits in our design,
only consumes additional buffer size. In other words, MaxPB and MaxPB-asy extend
the size of write buffer only and it is easy to be implemented. Moreover, the added
write control logic is not in the list of cost-sensitive designs. The write driver, as well
as FSM, are less complicated than the complex charge pump design, which consumes
up to 20% of the chip area [Oh et al. 2006; Palumbo and Pappalardo 2010]. The area
and power overheads are low and acceptable according to our experimental results.
The FSM of MaxPB and MaxPB-asy only takes 237 LUTSs (Look-Up Tables) in Xilinx
FPGA (xc7z045ffv900-1) whose available LUTs are 218,600 (less than 0.1%). Moreover,
MaxPB adds an extra data comparison logic to generate “PROG enable” signals, which
can be easily implemented with a XOR gate and a counter. Compared with the original
write driver, “SET/RESET” signal for one bit is AND-gated with the “PROG enable”
signal. According to the results of VIVADO 2015.2 tools [Xilinx 2015a], the total power
overhead of MaxPB/MaxPB-asy circuits is near to 2mW. The voltage of write is 5V in
the original PCM prototype [Lee et al. 2008], and the current level is about 25mA at
the same time, where the write current level for RESET cells is from 0.6mA to 1mA,

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 4, Article 46, Publication date: December 2016.

46:12 Z. Lietal.

Table I. Parameters of Simulation

‘ Parameter Value ‘
CPU Four-Core CMP, 2GHz, ALPHA-architecture processor
Memory Bus 64 bits, 800MT/s LPDDR

Memory Controller FRFCFS-WQF scheduling, 32-entry R/W queues
Memory Organization | 4GB, 64 bits data width, single rank with eight banks

PCM Organization Four PCM chips, 8B write unit size

Cache Organization 64-byte line size, write back, LRU replacement

L1 Cache 32KB I-cache, 32KB D-cache, two cycles access latency
L2 Cache Eight-way, 2MB, 20 cycles access latency

L3 Cache 16-way, 32MB, 50 cycles access latency

Memory Timing Read 53ns, RESET 50ns, and SET 430ns

typically. The efficiency of current switch during the write operation is only about
20%, so we assume that one write should consume 5 x 25 = 125mW power. Compared
with the original design, the power overhead delivered by our MaxPB and MaxPB-asy
designs is relatively low.

4. EVALUATION

In this section, we evaluate the effectiveness and efficiency of MaxPB and MaxPB-
asy write schemes and analyze the experimental results. MaxPB and MaxPB-asy can
significantly improve the power budget utilization and reduce the number of write
units, that is, significantly improve the write performance of PCM. The experimental
results include power budget utilization, the number of write units, read latency, write
latency, CPI speedup, running time, and energy consumption.

4.1. Experimental Environment

We first introduce the experimental environment, which is shown in Table I. We use the
event-driven GEM5 simulator [Binkert et al. 2011] combined with NVmain [Poremba
and Xie 2012] module and all parameters are from the prototype published by Samsung
[Lee et al. 2008] and previous works [Cho and Lee 2009; Yue and Zhu 2013a; Li et al.
2015; Choi et al. 2012; Meza et al. 2012a; Nair et al. 2015]. Specifically, we adopt
the read and write latency parameters from an enterprise-class prototype [Lee et al.
2008] to provide the same test environment with compared state-of-the-art PCM write
schemes [Cho and Lee 2009; Yue and Zhu 2013a; Li et al. 2015]. We use 10 workloads
from the multithreaded PARSEC benchmark suite [Bienia 2011] and six workloads
from the multiprogrammed SPEC 2006 benchmark suite [Henning 2006] with different
memory Read Per Kilo Instructions (RPKI) and memory Write Per Kilo Instructions
(WPKI) rates, as shown in Table IT and Table III. All of these benchmarks are collected
from different areas and we use the DCW write scheme as the baseline scheme [Yang
et al. 2007].

4.2. Power Budget Utilization

The experimental results of power budget utilization are shown in Figure 9. MaxPB
and MaxPB-asy show much higher utilization than FNW. MaxPB earns 46.9% power
budget utilization and MaxPB-asy shows more than 40.2% utilization on average. In
comparison, FNW gets only 27.4%/14.9% power budget utilization without/with power
asymmetry on average. One workload shows more than 80% utilization (facesim) when
using the MaxPB method and five workloads indicate more than 70% utilization (dedup,
ferret, freqmine, streamcluster, and vips). One workload exhibits more than 70% power
budget utilization (facesim) when using MaxPB-asy write scheme. The reason is that

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 4, Article 46, Publication date: December 2016.

MaxPB: Accelerating PCM Write by Maximizing the Power Budget Utilization 46:13

Table Il. Multithreaded Benchmarks

‘ Benchmark ‘ Introduction ‘ RPKI ‘ WPKI ‘
bodytrack Animation physics 0.13 0.17
canneal Chip design 1.89 1.31
dedup Data deduplication 0.34 0.33
facesim Computer vision 0.86 0.71
ferret Computer server 0.22 0.15
fluidanimate Animation physics 0.13 0.11
freqmine Data mining 0.32 0.33
streamcluster | Video encoding 0.03 0.02
vips Image processing 1.33 1.21
x264 Video encoding 0.18 0.20

Table Ill. Multiprogrammed Benchmarks

Benchmark Introduction RPKI | WPKI
bwaves Four copies of bwaves 11.7 11.0

gobmk Four copies of gobmk 1.63 1.49
leslie3d Four copies of leslie3d 5.60 8.72
libquantum Four copies of libquantum 6.80 6.94
wrf Four copies of wrf 2.54 2.32
zeusmp Four copies of zeusmp 10.62 6.86

<
)
x
U
j
=
P4
=
©
i
<
)
x
=
Y
©
»
<

A

R

>

X

b

Power Budget Utilization

Fig. 9. Power budget utilization of compared write schemes.

our designs package more data units into one write unit and the power supply is fully
used in these benchmarks. Under the same dataset, higher power budget utilization
means more data bits are written in parallel with higher current use efficiency and
write parallelism, which reduces the write service time of PCM-based main memory.

4.3. The Number of Write Units

The number of sequentially executed write units is one of the key metrics of PCM write
latency and write performance, and less write units mean less write time consumption.
We measure the average number of write units among 16 different workloads under
the MaxPB and MaxPB-asy write schemes, as shown in Figure 10. In general, the
number of write units, that is, the number of write-executed times to finish a cache line
service, varies from 1.2 to 3.1 and is 2.0 on average under MaxPB write scheme. When

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 4, Article 46, Publication date: December 2016.

46:14 Z. Lietal.

e e S S S : — ——
MaxPB | | MaxPB-asy === 2-stage-write = = FNW

N
o
N\

7%

@
=}

The Average Number of Write Units
o

2.0
1.0
0.5
0.0
NS) > @ @ & @ > o & WD @

& é\e;b ®b°Q @%\@\0@ @,5\ &S oé@ R -{J? »° 606\ ,\\éb (\0& §\&@Q &
S & T TS O 2 &
© %\}\ ,\g@rb \s\o

3

Fig. 10. The average number of write units.

Jel 7 7L 7L L L L L7 L7 L 7L 7L L YTy
gg Y| | 7 bew ,FN 2-stage-write[[[[ll MaxPB
30.7 - /
S 0.6 -
20 hoth |
© 0.5 7R .
5os =
. A an 4
2040 ISIE
[T’ 4 4 #
B I {7 H‘ A /)
0.2 iR OHETE
0.1 E1IE AHE A
0.0 ALEALE L AWHE
X > x> @ & DS
& L ;N0 € S
F& e ¢S
S [©) Ib(\ <@ &
& RSN
> P
A &8

Fig. 11. Read latency.

adopting MaxPB-asy write scheme, the number of write units can be further reduced.
The average number of write units is 1.4 when using MaxPB-asy write scheme. In
comparison, the average number of write units when implementing FNW is almost 4
while two-stage-write’s average number of write units is close to 3. MaxPB and MaxPB-
asy can maximize the power budget utilization and minimize the number of write units,
hence improving the overall system performance.

4.4. Read Latency

Read is on the critical path of the whole system performance and short read latency
could deliver good system corresponding time. MaxPB and MaxPB-asy can minimize
the number of write units and hence reduce the read latency under conventional mem-
ory scheduling algorithms, such as FCFRFS-WQF in our experimental environment
[Hay et al. 2011; Jiang et al. 2012a]. Figure 11 shows the read latency results of 16
benchmarks. In general, MaxPB outperforms DCW, FNW, and two-stage-write in all
benchmarks. However, the improvements of dedup, facesim, vips, and zeusmp are not
significant because the power budget utilization is already high in those benchmarks
as shown in Figure 4 and there is not much room for parallelism improvement. Overall,
MaxPB can get 67.7% read latency reduction compared with the baseline DCW on av-
erage, and shows 24.6% and 12.9% more read latency reduction on average compared

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 4, Article 46, Publication date: December 2016.

MaxPB: Accelerating PCM Write by Maximizing the Power Budget Utilization 46:15

‘MaxPB-asy

Write Latency
OO0 OOOOO0O -~

oadvwhuONDOO=N

Fig. 12. Write latency.

with the FNW and two-stage-write, respectively. Moreover, by leveraging power asym-
metry of SET and RESET, MaxPB-asy can get 32.0% and 20.3% more read latency
reduction on average compared with the FNW and two-stage-write schemes.

4.5. Write Latency

MaxPB can significantly reduce the total number of write units and the overall write
service time of a cache line can be reduced. The results of write latency of all workloads
are illustrated in Figure 12. In general, MaxPB outperforms 44.9% more write latency
reduction compared with conventional DCW on average. Moreover, MaxPB also shows
21.4% and 10.7% more write latency reduction compared with the state-of-the-art FNW
and two-stage-write, respectively. MaxPB-asy shows 26.5% and 16.1% more write la-
tency reduction on average compared with FNW and two-stage-write, respectively.
One workload (streamcluster) gets little improvement or even performance degrada-
tion. There are two reasons that lead to this result. On one hand, streamcluster is not
a memory-intensive workload; there are fewer memory read or write operations. There
are only a small number of write requests in this workload. On the other hand, read
requests are prior to write requests under the high-performance schedule algorithm.
All these reasons result in the longer write latency compared with the baseline.

4.6. Speedup

We use the CPI (Cycles Per Instruction) to perform the system performance mea-
surement. We use the DCW’s CPI as the baseline and define variable Speedup as the
following equation:

CPIpcw
CcPI -

Compared with existing well-known PCM write schemes, MaxPB and MaxPB-asy show
significant improvements in terms of CPI Speedup. As shown in Figure 13, similar to
the results of read latency and write latency, MaxPB earns very good CPI improvement
compared with state-of-the-art DCW, FNW, and two-stage-write write schemes. In
general, MaxPB exhibits almost 2.6 x CPI improvement and MaxPB-asy shows 2.9x
CPI improvement compared with the baseline scheme. In comparison, FNW and two-
stage-write have 1.6 x and 1.9x speedup, respectively, compared with DCW on average.
CPI improves due to the service time reduction of a cache line write. Benefiting from
the read and write latency reduction, memory-access instructions finish faster than

Speedup = (7

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 4, Article 46, Publication date: December 2016.

46:16 Z. Lietal.

Fig. 14. Running time.

the baseline. Under the circumstances, more memory access instructions are sent and
finished, and hence we can get better CPI improvement, especially in those workloads
with heavy memory accesses (see all SPEC 2006 benchmarks used in this study).

4.7. Running Time

Workloads completion time is one of the key metrics to measure the whole system
performance. As MaxPB and MaxPB-asy can significantly reduce the number of write
units and shorten the write service time of a cache line under the power constraints,
the workload running time can be also shortened. As shown in Figure 14, the exper-
imental results show that MaxPB can get 45.5% running time reduction compared
with DCW. More importantly, MaxPB outperforms the state-of-the-art schemes FNW
and two-stage-write by 19.3% and 9.6% on average, respectively. By leveraging power
asymmetry, MaxPB-asy can further shorten the running time. MaxPB-asy outperforms
the state-of-the-art schemes FNW and two-stage-write by 24.3% and 15.6% on average,
respectively.

4.8. Energy Consumption

Energy consumption is an important issue in both current big data centers and smart
devices, such as smartphones, pads, etc.. In data centers, high-energy consumption

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 4, Article 46, Publication date: December 2016.

MaxPB: Accelerating PCM Write by Maximizing the Power Budget Utilization 46:17

1.0
508
€ 0.7
3 06
505
O 04
50.3
o 0.2
5 0.1

0.0

Fig. 15. Energy consumption.

put servers into security risks caused by heat, and numerous refrigerating devices are
deployed to cool down the whole data center, which uses millions of watts of power
per year. In smart devices, high-energy consumption leads to the reduction of use time
and we have to charge the devices anytime anywhere, which leads to the decline of
usability. Energy consumption reduction can bring significant benefits both to the en-
vironment and the economy. Even though MaxPB and MaxPB-asy do not reduce the
amount of written data, that is, decrease the dynamic write energy consumption com-
pared with FNW, our design can significantly reduce the cache line service time, the
queueing time of each request, and hence reduce the standby power of the main mem-
ory system. As shown in Figure 15, MaxPB shows potential in energy consumption
reduction. Compared with the DCW baseline, MaxPB shows 73.7% energy consump-
tion reduction. Compared with the state-of-the-art FNW and two-stage-write schemes,
MaxPB outperforms them by 23.3% and 11.1% on average, respectively. Moreover,
MaxPB-asy outperforms the FNW and two-stage-write by 30.6% and 18.4% on average,
respectively.

4.9. Sensitivity

To evaluate the effectiveness and efficiency of our designs under different memory
configurations, we explored the design space of read latency, write latency, speedup,
and running time based on a state-of-the-art server system. In general, modern systems
contain four channels of memory, each channel containing two ranks of memory, each of
which contains eight banks of memory, with a standard LPDDR memory bus (800MT/s).
In general, our designs still show much good read latency optimization compared with
the baseline. On average, MaxPB shows 72.5% read latency reduction and MaxPB-asy
presents 77.1% read latency reduction compared with the scheme without any opti-
mizations, as shown in Figure 16. The result of the write latency is similar to that of
the read latency. As shown in Figure 17, MaxPB gains 40.4% write latency reduction
compared with the baseline. In comparison, MaxPB-asy gets 52.3% write latency de-
crease. The result of CPI improvement is shown in Figure 18. MaxPB shows 3.63 x CPI
improvements, while MaxPB-asy can earn 3.95x CPI improvements compared with
the baseline. As for the running time of applications, the running time under MaxPB
scheme is 27.5% that of the baseline as shown in Figure 19. On the other side, the
running time under MaxPB-asy scheme is 25.2% that of the baseline. In short, our
designs, including MaxPB and MaxPB-asy, are proven to be scalable. In other words,
our proposed approaches are efficient and effective when memory scalability grows.

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 4, Article 46, Publication date: December 2016.

46:18 Z. Lietal.

— 0" 1.0 "
0.9
0.8}
7 - —3 0.7 7 "
V) Baseline §O N ¥ Baseline
MaxPB B E e MaxPB | |
MaxPB-asy g 05 MaxPB-asy[|
_ £04
o SRR =03 h
H = 0.2 I —
| ﬂ]’ 01 7“ ﬂ
1l il il fl il fl 1] i n i) i 1l 00 n 1] i 1] fl n n
@ @D & ad & @ * o &ad & @
Q" 2 . & Q & N
@ 0@\(\\&} & _\rf;(bge‘éo@e\\éb Q\O $\{9@ 0@@ & Q;@Q’éoé\é\\éb Q\\\ «l‘\\%@ d\fb‘)
%) 6\0 & O\@ 0\}@ AN oé* I O\¢ 0?0 127
i N4 ° N4
&
Fig. 16. Read latency sensitivity. Fig. 17. Write latency sensitivity.
B e
0ol N T
n 8 | = _
0.7 i " 777 Baseline
EOG ' MaxPB
et) 'I MaxPB-asy|
I £0onl »
] € Nl | il
- S04l |
=1 A 17 U0 A
2 st | R
0.3 1111 S
il | .
0.2 111
il |
0-1EHT
A . x X
S @R @ P8 P P NEAS & S
P 7@ & LTS S
()ob & @ A&,(\\@ #\ N NS phas
N & N
Fig. 18. IPC improvement sensitivity. Fig. 19. Running time sensitivity.

5. RELATED WORK
5.1. Read and Write Optimizations

PCM faces many challenges such as poor endurance and unsatisfactory performance.
Currently, numerous works focus on the read and write optimizations on PCM.
Hoseinzadeh et al. [2014, 2016] try to reduce the access latency of MLC PCMs by
leveraging the circumstance that the read latency of MSB (most significant bit) is al-
most the same to SLC’s. By using striped bit mapping, consecutive data blocks are
rearranged into different cell groups. The data blocks with odd address have lower
read latency (the same to the latency of SLC) compared with data blocks with even
address. As a result, the critical read latency of MLC PCM is highly optimized. Nair
et al. [2015] proposed two mechanisms, that is, early read and turbo read, to reduce
the read latency of PCM. Early read reduces the typical sensing time of target cell to
reduce the read latency. However, it causes a potential data error problem. In order to
address this problem, the authors implement a simple error correction method with
the help of Berger Codes. Turbo read reduces the read latency by taking advantage of
higher sensing voltage. Xia et al. [2014] proposed a write method named DWC (Dy-
namic Write Consolidation) based on the observation that only a small fraction of data
are modified in a cache line. On one hand, DWC ignores the burst writes with unmodi-
fied data bits. On the other hand, DWC consolidates multiple burst write into one bus
operation to reduce the write service time. Luo et al. [2015] migrated the DWC to ML.C
PCM considering the write asymmetries between different states. Qureshi et al. [2012]

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 4, Article 46, Publication date: December 2016.

MaxPB: Accelerating PCM Write by Maximizing the Power Budget Utilization 46:19

proposed PreSET method to address the slow write problem of PCM by leveraging the
asymmetries between RESET and SET operations. In general, RESET is much faster
than SET. The key idea of the design is to send a PreSET request to the memory line
if data is dirty in the last-level cache. The function of PreSET request is to SET all
cells and thus the write latency decreases to Trrsegr when written to this memory
line next time. Zhang et al. [2015] proposed a TriState-SET on MLC PCM. Similar to
PreSET, TriState-SET utilizes the asymmetries between different MLC states. There
are also some works aimed at read and write boosted based on FPC (Frequent Data
Compression) & BAI coding [Palangappa and Mohanram 2016] and WoM (write once
memory) coding [Zhang et al. 2013; Li and Mohanram 2014].

5.2. Parallelism Improvement

A lot of work tries to fix the slow write problem by improving the write parallelism.
In general, these papers mainly focus on some critical factors related to the memory
requests scheduling, such as the hierarchical architecture of memory, address mapping
schemes, workload’s access patterns and locality as well as the cache locality. Zhao et al.
[2014] proposed a novel memory scheduler design for the persistent memory. In order
to maintain the data persistence, a lot of methods are adopted to ensure the ordering of
write requests. Persistent applications exhibit special access characteristics and intro-
duce a number of read or write requests to contiguous memory regions, which results in
low bank-level parallelism and low system throughout. The authors proposed FIRM to
overcome this problem. The key ideas of FIRM are to distribute the president requests
to many individual banks and reschedule the read and write requests to minimize the
overhead caused by the write drain. Yue and Zhu [2013b] take advantage of subarray
level parallelism to hide the long write latency caused by the existence of write units
based on the insights that read can be executed with write if there are no subarray
conflicts since the power need of read is much less than write’s. Stuecheli et al. [2010]
proposed Virtual Write Queue to address the bottleneck of memory bus utilization,
especially in multicore architecture. By exploring the LLC and memory codesigned
architecture, the memory characteristics are visible to the cache-level policies. In other
words, the cache policies are memory-centric rather than memory-ignored. Lee et al.
[2010Db] provided a simple but effective LLC write back policy to relieve the perfor-
mance degradation caused by write-caused interference. Write-caused interference is
a phenomenon that (1) long write latency causes significant delays of more critical read
requests and it also takes time for memory bus to do the read and write switching. By
exploiting DRAM row buffer locality, more write requests hit in the row buffer and the
service time is hence reduced. Yoon et al. [2015] presented a method to boost the perfor-
mance of multilevel cell phase-change memories. By exploiting the asymmetries of MSB
(Most Significant Bit) and LSB (Least Significant Bit) in MLC PCM, the memory is
decoupled and divided into a FR (Fast Read) region and a FW (Fast Write) region. More-
over, a prediction technique is also proposed to map read-intensive pages to the FR re-
gion and write-intensive pages to the FW region. Zhou et al. [2016] proposed an effective
requests scheduler based on the multipartition PCM architecture. The key idea of this
design is to take advantage of the partition-level parallelism with some certain restric-
tions to improve the overall system performance and reduce application running time.
Qureshi et al. [2010a] proposed write cancellation and write pausing methods to reduce
the interference in read operation. MLLC PCM uses multiple iterative operations and
it provides an opportunity to pause and restart write operations within a physical cell.
In short, write requests are paused if a read request arrives within the same memory
bank, and the read request will be served first. After that, the paused write is restarted
again. Qureshi et al. [2010b] proposed a morphable memory system based on the con-
vertible property of MLLC PCM that MLC cells can be treated as SLC cells with storing

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 4, Article 46, Publication date: December 2016.

46:20 Z. Lietal.

fewer bits per cell. Observing that the memory capacity is often in excess of the require-
ment, more cells can be set to SLC-mode to get better memory performance. When the
application is memory-hungry, it can be stored in MLC cells to get full memory capacity.

5.3. Related to Power Budget Utilization

There are many schemes focusing on the write performance improvement of PCM
especially based on the power budget model. FNW [Cho and Lee 2009] is designed for
write performance improvement on PCM. FNW uses a lightweight read-before-write
scheme to reduce the amount of written data. FNW first reads the data to be written
and encodes the data with an extra bit if the number of different bits is more than
half compared with the original data. Under the same power limitation, two times
the amount of data can be written in parallel, that is, the size of the write unit is
doubled. Two-stage-write [Yue and Zhu 2013a] splits the PCM write process by taking
into account the PCM write properties. The write is formed by two independent stages:
stage “0” and stage “1.” In stage “0,” all zero bits in every unit are processed very
quickly for RESET is much faster than SET. In stage “1,” all ones are served with
improved parallelism since the current need of SET a cell is only half of RESET a cell.
To further enhance the parallelism of stage “1,” new data are inverted if the number
of “1” bits is more than half of bits to be served. Thus, the number of units that served
in parallelism at stage “1” is doubled again under the same power constraint. There is
no extra read operation overhead compared with the FNW scheme. Power-token-based
method [Hay et al. 2011] improves the write concurrency by leveraging fine-grained
power tokens management. Under the power limitations of one chip or a set of PCM
chips, memory controllers can send more write commands to PCM by leveraging the
bank-level parallelism, and the overall latency can be significantly reduced. To monitor
the actual power consumption of each write back operation, the LLC is modified to
record the count of different bits compared with data stored in PCM. FPB [Jiang
et al. 2012a] tries to migrate the power-token-based write scheme to MLC PCM. By
combining with the special program-and-verify iterations, the write parallelism can
be significantly improved and FPB can improve the overall throughput of MLC PCM.
Bit-Mapping [Du et al. 2013b] tries to make the data distribution among cell groups
in a balanced way in order to get almost identical service time among different cell
groups. Three-stage-write [Li et al. 2015] tries to combine FNW with two-stage-write
to get further parallelism improvement as well as write latency reduction.

Comparisons of existing PCM write schemes are concluded in Table IV. In general,
DCW, Flip-N-Write, two-stage-write, three-stage-write, power-token-based, MaxPB,
and MaxPB-asy methods are designed for SLC PCM devices. FPB is designed for
MLC PCM and the bit-mapping method can be used for SLC and MLC PCM. Power-
token-based, FPB, and bit-mapping methods are designed at the memory controller
level; they focus on write concurrency to pursue more write commands or requests be
executed in parallel. However, other methods, like FNW, two-stage-write, MaxPB, and
MaxPB-asy, are focusing on how to finish the chip-level write parallelism and how to
write data from the on-chip buffer to PCM physical array quickly.

Unlike the state-of-the-art chip-level PCM write schemes, such as FNW, two-stage-
write, and three-stage-write, MaxPB aims at different design goals. The differences are
observed in Table IV. The key idea of FNW is to utilize the dissimilarity between stored
and to-be-written data. If more than half of the total bits have to be written, the new
data will be flipped with an extra bit to index it. FNW can double the write unit size
and improve the write parallelism. Two-stage-write focuses on both the time and power
asymmetry of writing zero and one to accelerate write. MaxPB exploits insights that
the number of bits changed in each data unit is little and the power is often excessively
supplied. MaxPB tries to write more data in one write unit to maximize the power

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 4, Article 46, Publication date: December 2016.

46:21

MaxPB: Accelerating PCM Write by Maximizing the Power Budget Utilization

SOLIJOWWASE SULIOPISU0D UOT)BZI[IIN

OUII) 9JTAIOS 9JLIM [9AS]-dAITD 91} 9oNpPay 103pnq 1omod [049] dIYd 9} 9ZIWIXBIA OIS dgp Ase-gJxenN
uoryezimn

QUIT) 9ITAISS 9ILIM [9AS]-dIUD o1} 9onpay 108pnq 10 mod [oas] AIYd o1} SZTWIXBI\ OIS diyp gdxeiN

1senbax 9j1Im Jo Aoueje| Kem poouereq e ut sdnoid [9€T03% ‘Te 3 n(]

90Npad PuB JUNOUWR B)RP 9Y) dur[eyg [[90 Suowre UOTINLI)STPAL SIq BIR(] OTIN 10 OIS I9[[0IJU0)) Surddep-1g

douruLIOfIod sorpredord ojam NOJ [e3T0g ‘Te 30 Suelp)

we)sAs pue ndysnoay) 9uim aroxdw] DTN Uo paseq uorjedo[[e temod ageur OTIN I9[[0IU0)) dd4

sysenbau Arowaw Jo Aous)e] 9} 99Npat Ayurenueas [TT0Z Te 70 AeH]

pue souruLIofrod wresAs o) aroxdwy I9Ul Je Uoredo[e emod aSeury OIS I9[[0I)UO0)) poseq-uay03}-10M0J

uorpdwnsuod remod ot} Suronpax LA -03B)G-0M, [ST0Z T8 70 I'T]

oYM AOUa)e] 9JLIM 9} SUISBAIS(] M LI -N-dI,] Suturquo)) OIS digp QLI -05B)S-00aY],

[B€T0G NYZ pue ong|

aouruLIofIod 931Im a1} dAa0xdwy soLIjoWwASe NDJ SurSeraror| OIS diyp LI -03B)G-0M,

uonndwnsuod ASI9Ue 9Y) 8onpor 9ZTS JIUN 9ILIM [600g @01 pue oy

pue souruLIofIod 9LIm oY) saoxdwuy 9]} 9[qNOpP pUE $S800.1d UOISIOAUT BIRD PPY OIS dig) oI -N-dI[

[L00g 'Te 10 Suex]

uonrpduwnsuoo ASI9Ud 93} 9anpay ATUO S1q JUSIBIITP) SJLIMN OIS diyp MDA
s[eox) Seap] Urej 103ae], [@Ao] usise(q

SewayoS sl INDJ Bunsix3 jo uosuedwo) ‘Al 8|qeL

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 4, Article 46, Publication date: December 2016.

46:22 Z. Lietal.

budget utilization and hence reduces the total number of write units, which is the key
performance bottleneck of PCM write.

5.4. Optimizations in Other NVMs

There are also some related works that provide ways to handle read or write problems
in other NVMs such as STT-RAM and RRAM. Some issues can be migrated to PCM.
Kiltirsay et al. [2013] explored the designs of pure STT-RAM-based main memory.
Experimental results show that it gets near performance and much lower energy con-
sumption with DRAM-based memory with the help of some optimization technologies
(partial write and row buffer write bypass). Smullen et al. [2011] presented a novel
STT-RAM cache design to address the problems of high dynamic energy and long write
time. By lowering the write current, the dynamic write energy is reduced. To address
the potential problem raised by retention time reduction, a DRAM-like refresh method
is proposed. Yoon et al. [2012] presented a novel hybrid memory design by leveraging
both row buffer locality and data access patterns. Based on the observations that the
access latency in PCM is as fast as DRAM if row buffer hits and is much slower if row
buffer misses, the authors presented a row buffer locality-aware caching policy. It puts
data most likely to have row buffer hits in PCM to reduce the performance degradation
and improve energy efficiency. Meza et al. [2012b] explored the opportunities and chal-
lenges in adopting a row buffer in the NVMs architectural designs. With the increasing
amount of data and improved parallel architecture, the data accesses locality becomes
weaker and the energy consumption is increased due to the large row buffer area. The
authors evaluate that a small row buffer in emerging NVM can achieve better energy
efficiency without significant performance degradation. Zhang et al. [2016] proposed a
novel requests scheduler based on the observation that the crossbar array of RRAM
can be divided into many virtual regions with different access latency. By remapping
memory requests into “fast” regions, the access performance of RRAM array can be sig-
nificantly improved. Maddah et al. [2015] presented a data inversion method named
CAFO for energy and endurance-asymmetric memories such as STT-RAM and PCM.
By exploring the least cost of data inversion model, CAFO selectively selects the flip
method of “lowest” energy or latency cost.

6. CONCLUSION

PCM is one of the most promising technologies for some outstanding characteristics
(e.g., better technology scalability and low idle power consumption). However, it still
suffers from a low write performance problem because the size of concurrent bit-writes
are limited, which is caused by the high power requirement of write and results in
many sequentially executed write units. In this article, we propose a novel PCM scheme
named MaxPB, which tries to accelerate write by maximizing the power budget utiliza-
tion with the least number of write units. MaxPB explores and exploits the key insights
that existing state-of-the-art write schemes, such as FNW and two-stage-write, are un-
aware of low power budget utilization and still need many continuously executed write
units to finish a cache line write back, which results in high write latency and overall
system performance degradation. The main idea of MaxPB is to rearrange all original
data units according to their actual power needs and write more data in one write unit.
MaxPB can significantly reduce the number of write units in a cache line write ser-
vice, which is the key bottleneck of the poor write performance of PCM. Experimental
results of 16 PARSEC and SPEC workloads show that MaxPB gets 32.0% and 20.3%
more read latency reduction, 26.5% and 16.1% more write latency reduction, 24.3%
and 15.6% more running time decrease, 1.32x and 0.92x speedup, as well as 30.6%
and 18.4% more energy consumption reduction on average compared with the state-
of-the-art FNW and two-stage-write write schemes, respectively. Our future work is to

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 4, Article 46, Publication date: December 2016.

MaxPB: Accelerating PCM Write by Maximizing the Power Budget Utilization 46:23

migrate MaxPB to the MLLC PCM, which has quite different read and write properties
compared with SLC PCM.

ACKNOWLEDGMENTS

We thank the anonymous reviewers and editors for their positive and constructive comments and suggestions.
We also thank anyone who helped us improve this article.

REFERENCES

Christian Bienia. 2011. Benchmarking Modern Multiprocessors. Ph.D. dissertation. Princeton University.

Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali Saidi, Arkaprava Basu, Joel
Hestness, Derek R. Hower, Tushar Krishna, Somayeh Sardashti, and others. 2011. The gem5 simulator.
ACM SIGARCH Computer Architecture News 39, 2 (2011), 1-7.

Sangyeun Cho and Hyunjin Lee. 2009. Flip-n-write: A simple deterministic technique to improve PRAM write
performance, energy and endurance. In Proceedings of the 2009 42nd Annual IEEE /| ACM International
Symposium on Microarchitecture. IEEE, 347-357.

Youngdon Choi, Ickhyun Song, Mu-Hui Park, Hoeju Chung, Sanghoan Chang, Beakhyoung Cho, Jinyoung
Kim, Younghoon Oh, Duckmin Kwon, Jung Sunwoo, and others. 2012. A 20nm 1.8 V 8Gb PRAM with
40MB/s program bandwidth. In Proceedings of the 2012 IEEE International Solid-State Circuits Confer-
ence. IEEE, 46-48.

Yu Du, Miao Zhou, Bruce Childers, Rami Melhem, and Daniel Mossé. 2013a. Delta-compressed caching for
overcoming the write bandwidth limitation of hybrid main memory. ACM Transactions on Architecture
and Code Optimization (TACO) 9, 4 (2013), 55.

Yu Du, Miao Zhou, Bruce R. Childers, Daniel Mossé, and Rami Melhem. 2013b. Bit mapping for balanced
PCM cell programming. ACM SIGARCH Computer Architecture News 41, 3 (2013), 428-439.

Andrew Hay, Karin Strauss, Timothy Sherwood, Gabriel H. Loh, and Doug Burger. 2011. Preventing PCM
banks from seizing too much power. In Proceedings of the 2011 44th Annual IEEE/ACM International
Symposium on Microarchitecture. ACM, 186—-195.

John L. Henning. 2006. SPEC CPU2006 benchmark descriptions. ACM SIGARCH Computer Architecture
News 34, 4 (2006), 1-17.

Morteza Hoseinzadeh, Mohammad Arjomand, and Hamid Sarbazi-Azad. 2014. Reducing access latency of
MLC PCMs through line striping. ACM SIGARCH Computer Architecture News 42, 3 (2014), 277-288.

Morteza Hoseinzadeh, Mohammad Arjomand, and Hamid Sarbazi-Azad. 2016. SPCM: The striped phase
change memory. ACM Transactions on Architecture and Code Optimization (TACO) 12, 4 (2016), 38.

Fangting Huang, Dan Feng, Wen Xia, Wen Zhou, Yucheng Zhang, Min Fu, Chuntao Jiang, and Yukun Zhou.
2016. Security RBSG: Protecting phase change memory with security-level adjustable dynamic mapping.
In Proceedings of the 2016 IEEE International Parallel and Distributed Processing Symposium (IPDPS).
IEEE, 1081-1090.

Lei Jiang, Yu Du, Bo Zhao, Youtao Zhang, Bruce R. Childers, and Jun Yang. 2013. Hardware-assisted
cooperative integration of wear-leveling and salvaging for phase change memory. ACM Transactions on
Architecture and Code Optimization (TACO) 10, 2 (2013), 7.

Lei Jiang, Youtao Zhang, Bruce R. Childers, and Jun Yang. 2012a. FPB: Fine-grained power budgeting to
improve write throughput of multi-level cell phase change memory. In Proceedings of the 2012 45th
Annual IEEE/ACM International Symposium on Microarchitecture. IEEE, 1-12.

Lei Jiang, Bo Zhao, Youtao Zhang, Jun Yang, and Bruce R. Childers. 2012b. Improving write operations in
MLC phase change memory. In Proceedings of the 2012 IEEE 18th International Symposium on High
Performance Computer Architecture (HPCA 2012). IEEE, 1-10.

Ron Kalla, Balaram Sinharoy, William Starke, and Michael Floyd. 2010. POWER7TM: IBM’s next generation
server processor. IEEE Micro 30, 2 (2010), 7-15.

Sangbeom Kang, Woo Yeong Cho, Beak-Hyung Cho, Kwang-Jin Lee, Chang-Soo Lee, Hyung-Rok Oh, Byung-
Gil Choi, Qi Wang, Hye-Jin Kim, Mu-Hui Park, and others. 2007. A 0.1-um 1.8-v 256-mb phase-change
random access memory (pram) with 66-mhz synchronous burst-read operation. IEEE Journal of Solid-
State Circuits 42, 1 (2007), 210-218.

Emre Kiiltiirsay, Mahmut Kandemir, Anand Sivasubramaniam, and Onur Mutlu. 2013. Evaluating STT-
RAM as an energy-efficient main memory alternative. In Proceedings of the 2013 IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS). IEEE, 256-267.

Benjamin C. Lee, Engin Ipek, Onur Mutlu, and Doug Burger. 2009. Architecting phase change memory as a
scalable dram alternative. ACM SIGARCH Computer Architecture News 37, 3 (2009), 2—13.

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 4, Article 46, Publication date: December 2016.

46:24 Z. Lietal.

Benjamin C. Lee, Engin Ipek, Onur Mutlu, and Doug Burger. 2010a. Phase change memory architecture and
the quest for scalability. Communications of the ACM 53, 7 (2010), 99-106.

Benjamin C. Lee, Ping Zhou, Jun Yang, Youtao Zhang, Bo Zhao, Engin Ipek, Onur Mutlu, and Doug Burger.
2010c. Phase-change technology and the future of main memory. IEEE Micro 30, 1 (2010), 143-143.

Chang Joo Lee, Veynu Narasiman, Eiman Ebrahimi, Onur Mutlu, and Yale N. Patt. 2010b. DRAM-Aware
Last-Level Cache Writeback: Reducing Write-Caused Interference in Memory Systems. HPS Technical
Report, TR-HPS-2010-002. Carnegie Mellon University.

Kwang-Jin Lee, Beak-Hyung Cho, Woo-Yeong Cho, Sangbeom Kang, Byung-Gil Choi, Hyung-Rok Oh, Chang-
Soo Lee, Hye-Jin Kim, Joon-Min Park, Qi Wang, and others. 2008. A 90 nm 1.8 V 512 Mb diode-switch
PRAM with 266 MB/s read throughput. IEEE Journal of Solid-State Circuits 43, 1 (2008), 150-162.

Jiayin Li and Kartik Mohanram. 2014. Write-once-memory-code phase change memory. In Proceedings of
the 2014 Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE, 1-6.

Yanbin Li, Xin Li, Lei Ju, and Zhiping Jia. 2015. A three-stage-write scheme with flip-bit for PCM main
memory. In Proceedings of the 2015 20th Asia and South Pacific Design Automation Conference (ASP-
DAC). IEEE, 328-333.

Zheng Li, Fang Wang, Dan Feng, Yu Hua, Wei Tong, Jingning Liu, and Xiang Liu. 2016a. Tetris write: Explor-
ing more write parallelism considering PCM asymmetries. In Proceedings of the 2016 45th International
Conference on Parallel Processing (ICPP). IEEE, 159-168.

Zheng Li, Fang Wang, Yu Hua, Wei Tong, Jingning Liu, Yu Chen, and Dan Feng. 2016b. Exploiting more
parallelism from write operations on PCM. In Proceedings of the 2016 Design, Automation & Test in
Europe Conference & Exhibition (DATE). IEEE, 768-773.

Huizhang Luo, Liang Shi, Mengying Zhao, Qingfeng Zhuge, and Chun Jason Xue. 2015. Improving MLC
PCM write throughput by write reconstruction. In Proceedings of the 2015 IEEE Non-Volatile Memory
System and Applications Symposium (NVMSA). IEEE, 1-6.

Rakan Maddah, Seyed Mohammad Seyedzadeh, and Rami Melhem. 2015. Cafo: Cost aware flip optimization
for asymmetric memories. In Proceedings of the 2015 IEEE 21st International Symposium on High
Performance Computer Architecture (HPCA). IEEE, 320-330.

Justin Meza, Jichuan Chang, HanBin Yoon, Onur Mutlu, and Parthasarathy Ranganathan. 2012a. En-
abling efficient and scalable hybrid memories using fine-granularity DRAM cache management. IEEE
Computer Architecture Letters 11, 2 (2012), 61-64.

Justin Meza, Jing Li, and Onur Mutlu. 2012b. Evaluating Row Buffer Locality in Future Non-Volatile Main
Memories. SAFARI Technical Report, TR-SAFARI-2012-002. Carnegie Mellon University.

Prashant J. Nair, Chiachen Chou, Bipin Rajendran, and Moinuddin K. Qureshi. 2015. Reducing read la-
tency of phase change memory via early read and Turbo read. In Proceedings of the 2015 IEEE 21st
International Symposium on High Performance Computer Architecture (HPCA). IEEE, 309-319.

Hyung-Rok Oh, Beak-hyung Cho, Woo Yeong Cho, Sangbeom Kang, Byung-gil Choi, Hye-jin Kim, Ki-sung
Kim, Du-eung Kim, Choong-keun Kwak, Hyun-geun Byun, and others. 2006. Enhanced write perfor-
mance of a 64-Mb phase-change random access memory. IEEE Journal of Solid-State Circuits 41, 1
(2006), 122-126.

Poovaiah M. Palangappa and Kartik Mohanram. 2016. CompEx: Compression-expansion coding for energy,
latency, and lifetime improvements in MLC/TLC NVM. In 2016 IEEE International Symposium on High
Performance Computer Architecture (HPCA). IEEE, 90-101.

Gaetano Palumbo and Domenico Pappalardo. 2010. Charge pump circuits: An overview on design strategies
and topologies. IEEE Circuits and Systems Magazine 10, 1 (2010), 31-45.

Matt Poremba and Yuan Xie. 2012. NVMain: An architectural-level main memory simulator for emerging
non-volatile memories. In Proceedings of the 2012 IEEE Computer Society Annual Symposium on VLSI
(ISVLSI). IEEE, 392-397.

Moinuddin K. Qureshi, Michele M. Franceschini, Ashish Jagmohan, and Luis A. Lastras. 2012. PreSET: Im-
proving performance of phase change memories by exploiting asymmetry in write times. ACM SIGARCH
Computer Architecture News 40, 3 (2012), 380-391.

Moinuddin K. Qureshi, Michele M. Franceschini, and Luis A. Lastras-Monta. 2010a. Improving read perfor-
mance of phase change memories via write cancellation and write pausing. In Proceedings of the 2010
IEEE 16th International Symposium on High Performance Computer Architecture (HPCA). IEEE, 1-11.

Moinuddin K. Qureshi, Michele M. Franceschini, Luis A. Lastras-Montano, and John P. Karidis. 2010b.
Morphable memory system: A robust architecture for exploiting multi-level phase change memories.
Acm Sigarch Computer Architecture News 38, 3 (2010), 153—-162.

Moinuddin K. Qureshi, John Karidis, Michele Franceschini, Vijayalakshmi Srinivasan, Luis Lastras, and
Bulent Abali. 2009a. Enhancing lifetime and security of PCM-based main memory with start-gap wear

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 4, Article 46, Publication date: December 2016.

MaxPB: Accelerating PCM Write by Maximizing the Power Budget Utilization 46:25

leveling. In Proceedings of the 2009 42nd Annual IEEE | ACM International Symposium on Microarchi-
tecture. ACM, 14-23.

Moinuddin K. Qureshi, Vijayalakshmi Srinivasan, and Jude A. Rivers. 2009b. Scalable high performance
main memory system using phase-change memory technology. ACM SIGARCH Computer Architecture
News 37, 3 (2009), 24-33.

Simone Raoux, Geoffrey W. Burr, Matthew J. Breitwisch, Charles T. Rettner, Yi-Chou Chen, Robert M.
Shelby, Martin Salinga, Daniel Krebs, S.-H. Chen, Hsiang-Lan Lung, and others. 2008. Phase-change
random access memory: A scalable technology. IBM Journal of Research and Development 52, 4.5 (2008),
465-479.

ITRS Roadmap. 2013. International technology roadmap for semiconductors. Semiconductor Industry Asso-
ciation (2013).

Nak Hee Seong, Dong Hyuk Woo, and Hsien-Hsin S. Lee. 2010. Security refresh: Prevent malicious wear-out
and increase durability for phase-change memory with dynamically randomized address mapping. ACM
SIGARCH Computer Architecture News 38, 3 (2010), 383-394.

Clinton W. Smullen, Vidyabhushan Mohan, Anurag Nigam, Sudhanva Gurumurthi, and Mircea R.
Stan. 2011. Relaxing non-volatility for fast and energy-efficient STT-RAM caches. In Proceedings of
the 2011 IEEE 17th International Symposium on High Performance Computer Architecture. IEEE,
50-61.

Jeffrey Stuecheli, Dimitris Kaseridis, David Daly, Hillery C. Hunter, and Lizy K. John. 2010. The virtual
write queue: Coordinating DRAM and last-level cache policies. ACM SIGARCH Computer Architecture
News 38, 3 (2010), 72-82.

Guangyu Sun, Yaojun Zhang, Yu Wang, and Yiran Chen. 2012. Improving energy efficiency of write-
asymmetric memories by log style write. In Proceedings of the 2012 ACM/IEEE International Sym-
posium on Low Power Electronics and Design. ACM, 173-178.

Zhe Wang, Shuchang Shan, Ting Cao, Junli Gu, Yi Xu, Shuai Mu, Yuan Xie, and Daniel A. Jiménez.
2013. WADE: Writeback-aware dynamic cache management for NVM-based main memory system. ACM
Transactions on Architecture and Code Optimization (TACO) 10, 4 (2013), 51.

J. Warnock, Y. Chan, W. Huott, S. Carey, M. Fee, Huajun Wen, M. J. Saccamango, Frank Malgioglio, P.
Meaney, D. Plass, and others. 2011. A 5.2 GHz microprocessor chip for the IBM zenterprise system. In
Proceedings of the 2011 IEEE International Solid-State Circuits Conference Digest of Technical Papers
(ISSCC). IEEE, 70-72.

H. S. Philip Wong, Simone Raoux, SangBum Kim, Jiale Liang, John P. Reifenberg, Bipin Rajendran, Mehdi
Asheghi, and Kenneth E. Goodson. 2010. Phase change memory. Proceedings of the IEEE 98, 12 (2010),
2201-2227.

Fei Xia, Dejun Jiang, Jin Xiong, Mingyu Chen, Lixin Zhang, and Ninghui Sun. 2014. DWC: Dynamic write
consolidation for phase change memory systems. In Proceedings of the 28th ACM International Confer-
ence on Supercomputing. ACM, 211-220.

Fei Xia, De-Jun Jiang, Jin Xiong, and Ning-Hui Sun. 2015. A survey of phase change memory systems.
Journal of Computer Science and Technology 30, 1 (2015), 121-144.

Xilinx. 2015a. Vivado Design Suite User Guide. (June 2015). http:/www.xilinx.com/support/documentation/
sw_manuals/xilinx2015_2/ug973-vivado-release-notes-install-license.pdf.

Xilinx. 2015b. Zyng-7000 All Programmable SoC. (November 2015). http:/www.xilinx.com/support/
documentation/data_sheets/ds191-XC7Z030-XC7Z045-data-sheet.pdf.

Byung-Do Yang, Jae-Eun Lee, Jang-Su Kim, Junghyun Cho, Seung-Yun Lee, and Byoung-Gon Yu. 2007. A
low power phase-change random access memory using a data-comparison write scheme. In Proceedings
of the 2007 IEEE International Symposium on Circuits and Systems. IEEE, 3014-3017.

HanBin Yoon, Justin Meza, Rachata Ausavarungnirun, Rachael A. Harding, and Onur Mutlu. 2012. Row
buffer locality aware caching policies for hybrid memories. In Proceedings of the 2012 IEEE 30th Inter-
national Conference on Computer Design (ICCD). IEEE, 337-344.

Hanbin Yoon, Justin Meza, Naveen Muralimanohar, Norman P. Jouppi, and Onur Mutlu. 2015. Efficient
data mapping and buffering techniques for multilevel cell phase-change memories. ACM Transactions
on Architecture and Code Optimization (TACO) 11, 4 (2015), 40.

Jianhui Yue and Yifeng Zhu. 2012. Making write less blocking for read accesses in phase change memory.
In Proceedings of the 2012 IEEE 20th International Symposium on Modeling, Analysis & Simulation of
Computer and Telecommunication Systems (MASCOTS). IEEE, 269-277.

Jianhui Yue and Yifeng Zhu. 2013a. Accelerating write by exploiting PCM asymmetries. In Proceedings of
the 2013 IEEE 19th International Symposium on High Performance Computer Architecture (HPCA’13).
IEEE, 282-293.

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 4, Article 46, Publication date: December 2016.

http://www.xilinx.com/support/documentation/swmanuals/xilinx20152/ug973-vivado-release-notes-install-license.pdf
http://www.xilinx.com/support/documentation/swmanuals/xilinx20152/ug973-vivado-release-notes-install-license.pdf
http://www.xilinx.com/support/documentation/datasheets/ds191-XC7Z030-XC7Z045-data-sheet.pdf
http://www.xilinx.com/support/documentation/datasheets/ds191-XC7Z030-XC7Z045-data-sheet.pdf

46:26 Z. Lietal.

Jianhui Yue and Yifeng Zhu. 2013b. Exploiting subarrays inside a bank to improve phase change mem-
ory performance. In Proceedings of the Conference on Design, Automation and Test in Europe. EDA
Consortium, 386-391.

Hang Zhang, Nong Xiao, Fang Liu, and Zhiguang Chen. 2016. Leader: Accelerating ReRAM-based main
memory by leveraging access latency discrepancy in crossbar arrays. In Proceedings of the 2016 Design,
Automation & Test in Europe Conference & Exhibition (DATE). IEEE, 756-761.

XianWei Zhang, Le Jang, Youao Zhang, Chuanjun Zhang, and Jun Yang. 2013. WoM-SET: Low power
proactive-SET-based PCM write using WoM code. In Proceedings of the 2013 IEEE International Sym-
posium on Low Power Electronics and Design (ISLPED). IEEE, 217-222.

Xianwei Zhang, Youtao Zhang, and Jun Yang. 2015. TriState-SET: Proactive SET for improved performance
of MLC phase change memories. In Proceedings of the 2015 33rd IEEE International Conference on
Computer Design (ICCD). IEEE, 659-665.

Jishen Zhao, Onur Mutlu, and Yuan Xie. 2014. FIRM: Fair and high-performance memory control for per-
sistent memory systems. In Proceedings of the 2014 47th Annual IEEE /ACM International Symposium
on Microarchitecture. IEEE, 153-165.

Miao Zhou, Yu Du, Bruce Childers, Rami Melhem, and Daniel Mossé. 2012. Writeback-aware partitioning
and replacement for last-level caches in phase change main memory systems. ACM Transactions on
Architecture and Code Optimization (TACO) 8, 4 (2012), 53.

Ping Zhou, Bo Zhao, Jun Yang, and Youtao Zhang. 2009. A durable and energy efficient main memory using
phase change memory technology. ACM SIGARCH Computer Architecture News 37, 3 (2009), 14-23.

Wen Zhou, Dan Feng, Yu Hua, Jingning Liu, Fangting Huang, and Yu Chen. 2016. An efficient parallel
scheduling scheme on multi-partition PCM architecture. In Proceedings of the 2016 International Sym-
posium on Low Power Electronics and Design. ACM, 344-349.

Received May 2016; revised October 2016; accepted October 2016

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 4, Article 46, Publication date: December 2016.

