
Data Similarity-Aware Computation
Infrastructure for the Cloud

Yu Hua, Senior Member, IEEE, Xue Liu, Member, IEEE, and Dan Feng, Member, IEEE

Abstract—The cloud is emerging for scalable and efficient cloud services. To meet the needs of handling massive data and

decreasing data migration, the computation infrastructure requires efficient data placement and proper management for cached data.

In this paper, we propose an efficient and cost-effective multilevel caching scheme, called MERCURY, as computation infrastructure of

the cloud. The idea behind MERCURY is to explore and exploit data similarity and support efficient data placement. To accurately and

efficiently capture the data similarity, we leverage a low-complexity locality-sensitive hashing (LSH). In our design, in addition to the

problem of space inefficiency, we identify that a conventional LSH scheme also suffers from the problem of homogeneous data

placement. To address these two problems, we design a novel multicore-enabled locality-sensitive hashing (MC-LSH) that accurately

captures the differentiated similarity across data. The similarity-aware MERCURY, hence, partitions data into the L1 cache, L2 cache,

and main memory based on their distinct localities, which help optimize cache utilization and minimize the pollution in the last-level

cache. Besides extensive evaluation through simulations, we also implemented MERCURY in a system. Experimental results based

on real-world applications and data sets demonstrate the efficiency and efficacy of our proposed schemes.

Index Terms—Cloud computing, multicore processor, cache management, data similarity
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1 INTRODUCTION

WE are entering the era of the cloud that contains
massive and heterogeneous data. The data sets have

the salient feature of a volume of Petabytes or Exabytes and
data streams with a speed of Gigabits per second. These data
sets often have to be processed and analyzed in a timely
fashion. According to a recent International Data Corpora-
tion (IDC) study, the amount of information created and
replicated is more than 1.8 Zettabytes (1.8 trillion Gigabytes)
in 2011 [1]. From 1700 responses to Science poll [2], about
20 percent respondents often use more than 100 GB data
sets, over 63 percent have ever asked colleagues for data
sharing. Unfortunately, about half of those polled store the
data only in their own labs due to no funding to support
archiving. Moreover, from small hand-held devices to huge
data centers, we are collecting and analyzing ever-greater
amounts of information. Some commercial companies, like
Google, Microsoft, Yahoo!, and Facebook, generally handle
Terabytes and even Petabytes of data everyday [3], [4], [5],.
For the computation infrastructure of the cloud, it is
important and challenging to perform efficient processing
and analysis upon these data.

The computation infrastructure typically consists of
multicore processors. The increasing number of cores on a
chip and the different degrees of data similarity exhibited
within the workloads present the challenges to the design of
cache hierarchies in Chip multi processors (CMPs). These

include the organization and the policies associated with
the cache hierarchy to meet the needs of system perfor-
mance improvements and scalability. Cache organization
presents multiple levels in the cache hierarchy as well as the
size, associativity, latency and bandwidth at each level.
Suitable policies help minimize the latency to frequently
accessed data [6], [7], [8], [9]. Moreover, CMPs are prevalent
these days. Vendors already ship CMPs with four to twelve
cores and have the roadmaps to release hundreds of cores
to the market. For example, in the commercial markets,
there are Tilera TILE64, Ambric Am2045 and Nvidia
GeForce GT200. They are widely used in cloud applications.
Despite the popularity, it is still a daunting task to
accurately and efficiently perform the multicore caching
for high performance cloud systems. The focus of this paper
is to optimize the data placement of the multilevel cache
hierarchy (e.g., L1, L2 caches and main memory) to improve
the overall cloud system performance.

Efficient cache hierarchy in the cloud needs to answer the
questions, such as “how to significantly improve the cache
utilization and how to efficiently support the data placement?”
These problems are more difficult and challenging to
address, especially in the case of large core count. Specifi-
cally, we need to address the following challenges.

Challenge 1: inconsistency gap between CPU and operating
system caches. To bridge the speed gap between CPU and
memory, CPU caches (e.g., L1 and L2) and operating
system (OS) buffer cache are widely used in a multilevel
cache hierarchy. Since the CPU caches are at the hardware
level, while the buffer cache is a part of the OS, these two
layers are conventionally designed independently without
the awareness of each other. This possibly works for
small-scale systems. However, with the increments of
multicore amounts and increasingly large capacity of main
memory, severe performance degradation may occur
once the inconsistency gap exists. These two layers hence
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become inefficient to work cooperatively. Moreover, by
leveraging a shared cache, a thread, which cooperatively
works with multiple corunning threads, can influence each
other. This generally leads to severe performance degra-
dation. In the near future, a cache will be shared by many
cores, and the gap may degrade the performance even
more seriously [10], [11].

Challenge 2: performance bottleneck shift in high performance
cloud systems. Multicore-based hardware advancements
bring new challenges to the design and the implementa-
tion of high-performance cloud systems [12]. This is
because the performance bottleneck has been shifted from
slow I/O access speeds to high memory access latency.
The performance bottleneck of accelerating the execution is
correlated with the placement problem of cached data. The
optimization of cached data placement hence becomes
important to improve the overall cloud system perfor-
mance. Unfortunately, the existing policies in the multicore
processors become neither efficient nor scalable to address
the data placement problem. To efficiently address this
problem, we need to carefully explore and exploit the data
similarity that generally hides behind access behaviors.
We also need to optimize the capacity utilization of a
private cache, while alleviating uncontrolled interference
in a shared cache.

Challenge 3: exacerbation of the LLC pollution. The last-level
cache (LLC) [6] is dynamically shared among the cores
while each core has its lowest level of the cache hierarchy.
Cache pollution refers to the replacement of a cache element
by a less useful one. It occurs when a non-reusable cache
line is installed into a cache set. The installed line displaces
a reusable cache line. To alleviate the LLC pollution,
conventional approaches have the premise that recent
ordering serves as the good prediction for subsequent
behaviors of cache accesses [10], [13]. In practice, although
leveraging the access patterns helps predict future accesses,
the caches have to install all cache lines that are accessed.
Since performing the identification on the access patterns
incurs heavy temporal and spatial overheads, the existing
approaches generally demonstrate unsatisfactory perfor-
mance. Long latency and information staleness further
exacerbate the LLC pollution. What we need is a new
scheme that simplifies the identification of access locality
without the loss of accuracy.

Our proposed MERCURY alleviates the limitations in
the hardware solutions and the OS-based schemes. The
rationale comes from the observation that performing
the state maintenance and reference pattern analysis at
page granularity generally incurs less overhead than at
block [6], [10], [13]. Moreover, learning dynamic reference
patterns at page granularity requires less state and storage
space compared with the already studied block-grain
policies. Our research work hence is related with two areas:
system architecture and data-intensive cloud. The two areas
are traditionally distinct, but the gap on common system
concerns between them has been narrowed recently.
The similarity-aware MERCURY meets the needs of suitable
data placement in the multilevel cache hierarchy. We
implement MERCURY and manage the similarity at a
granularity of pages by leveraging the operating system
mechanisms. MERCURY is compatible with the existing
cloud computing systems and can further improve upon
them by providing a scalable and efficient caching scheme.

MERCURY plays a significant and fruitful role in
managing the multilevel cache hierarchy. Specifically, we
make the following contributions.

First, (for Challenge 1), to narrow the inconsistency gap
and quantify the data correlation, MERCURY employs
multitype, rather than conventional homogeneous, mem-
bership management. Here, the membership refers that an
item belongs to a given data set. The data in the similarity-
aware multicore caches are judiciously classified into three
types, i.e., Family, Friend, and Foreigner, to respectively
represent frequently accessed and correlated, frequently accessed
but not correlated, and infrequently accessed memberships. To
guarantee the data consistency and integrity, we further
quantify these memberships using a new coding technique.

Second, (for Challenges 2 and 3), to address the
performance bottleneck and alleviate the LLC pollution,
MERCURY explores and exploits the access locality by
improving a multicore-enabled locality-sensitive hashing
(MC-LSH). The MC-LSH uses a self-contained and space-
efficient signature vector, rather than many hash tables in a
standard locality-sensitive hashing (LSH), to accomplish the
significant space savings and meanwhile accurately mea-
sure the data similarity. Since MERCURY minimizes cache
conflicts and reduces the amounts of the migrated data, it
significantly reduces the low-speed memory accesses.
MERCURY can accurately identify the data similarity and
mitigate the staleness of cached data to meet the needs of
high-performance cloud systems.

Third, we have implemented the components and the
functionalities of MERCURY in a software layer, which is
compliant with the existing hardware devices. To further
examine and evaluate the efficacy and efficiency of the
proposed scheme, we not only examine MERCURY in a
multicore simulation [7], [14], [15], but also implement it in a
production system by patching PostgreSQL [16]. The
extensive experiments use real-world traces and data sets,
and examine the performance in multiple evaluation metrics.

The remainder of this paper is organized as follows:
Section 2 presents the data sets analysis and problem
statement. Section 3 describes the proposed MERCURY
architecture and caching schemes. Section 4 shows the cached
data management schemes in the multilevel hierarchy.
Sections 5 and 6, respectively, demonstrate the performance
evaluation results in simulations and implementations. We
present the related work in Section 7. Finally, we conclude our
paper in Section 8 with summaries of findings.

2 PROBLEM STATEMENT

In this section, we first study workload characteristics to
show the existence of data similarity and demonstrate its
performance impacts on caching schemes. We also present
the problem statement and basic ideas of our work.

2.1 Analysis of Real-World Traces

It is well recognized that the property of data similarity is
helpful to perform an efficient and scalable caching [7], [11],
[17], [18], [19], [20], [21]. Main benefits include throughput
improvements and the reduction of the LLC cache miss
rates, query latency, and data migration overheads. Hence,
the motivation of MERCURY design comes from the
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observations of data similarity widely existing in the real-

world applications. Furthermore, we present the definition

of data similarity. For two data with point representations

as a and b, we assume that they have d-dimensional

attributes that are represented as vectors ~ad and ~bd. If the

geometric distance between vectors ~ad and ~bd is smaller than

a predefined threshold, they are similar. The data similarity

often hides behind the locality of access patterns [8].
We study typical large-scale applications [22], [23], [24]

and the main benchmarks from the SPEC2000 evaluation

[25], i.e., 175.vpr and 300. twolf. The properties of used traces

and data sets are listed:

1. The CoverType data set [22] contains 581,012 data
points, each of which has 54D attributes.

2. The EECS NFS server at Harvard [23] collected I/O
accesses. This data set contains concurrent requests
with a total of 4.4 million operations.

3. The HP file system provides a 10-day 500-GB trace
[24] that records the accesses from 236 users.

4. The 175.vpr and 300.twolf benchmarks show the
CPU performance in the SPEC2000 evaluation [25].
175.vpr leverages combinatorial optimization tech-
nique to automatically synthesize the mapped
circuits. The 300.twolf makes use of TimberWolfSC
placement and global routing package.

To obtain explicit demonstration, we intensify the above
traces and benchmarks into larger scales by a combination
of spatial scale-up and temporal scale-up. Specifically, the
scale-up method needs to first decompose a trace into
subtraces, where the timing relationships are preserved to
faithfully maintain the semantic dependences among trace
records. These subtraces are replayed concurrently by
setting the same start time. Note that, the combined trace
maintains the same histogram of system calls as the original
trace, but presents a heavier workload (higher intensity).
As a result, data can be both spatially and temporally scaled
up by different factors, depending upon the number of
subtraces replayed simultaneously. We intensify experi-
mental data to be scaled up to 2,000 million accesses.

We use locality ratio as a measure to represent the locality
in the access pattern. Fig. 1 shows the results of locality ratio
that is the percentage of the times accessing data within
defined time interval to those in the entire data set. The time
interval comes from the used traces, in which all accesses
are listed in the order of time. For instance, a data set
contains a 20-hour trace record and we select a 25 percent
interval, i.e., 5-hour access record. For a file, if it has
8 accesses within a randomly selected 25 percent time
interval, and the accessed times during the entire running
trace is also 8 (i.e., all accesses to this file occur within
this 25 percent interval), the locality ratio becomes
8=8 ¼ 100%. We observe that there exists a strong data
access locality within certain number of instances. The
observations also conform to the conclusions in [7].
According to our experimental results and observations,
similar data generally demonstrate the locality of access
patterns. If they are placed together, we can improve cache
utilization and decrease the complexity and execution costs
of data access operations.

2.2 Basic Idea

The hardware design of cloud computation infrastructure
still works for scenarios they are designed for, but the lack
of flexibility can be an unavoidable issue and inherent
weakness, particularly for multicore or many-core proces-
sors with an increasingly large number of cores. In contrast
cache optimization and cache resource management at
different levels of software, such as operating systems,
compilers, and application programs have shown their
effectiveness to address the limitations of hardware solu-
tions. With a software approach, long-term memory access
patterns of most cloud applications can be analyzed or
predicted, cache management and optimization decisions
can be made more effectively. There have been several
successful examples on uniprocessors with simple LRU
cache replacement policies [18], [26], [27], [28]. However,
using a software scheme to manage cache resources in
multicore processors is much more challenging than in
uniprocessors, since hardware resources are almost not
shared and coordinated for multithreads. Researchers have
evaluated OS-based cache partitioning methods in multi-
core processors without any additional hardware support
[29]. The OS-based method offers the flexibility in imple-
menting various resource allocation policies. However,
since hardware caches are not in the scope of OS manage-
ment, the OS-based methods can inevitably cause nontrivial
software overhead, and are not ready to be used as
computation infrastructure of the cloud.

To offer efficient computation infrastructure for the cloud,
we investigate the problem of the cached data placement in
the multilevel cache hierarchy when executing multiple
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parallel instances as shown in Fig. 2. We term this problem as
“cache-member,” which determines the data memberships in
each cache based on the given constraints. The constraints
include migration costs and data access latency.

Fig. 2a shows the cache-member problem. Specifically,
we need to first identify and aggregate similar data into the
same or adjacent private L1 caches, and then allocate the
data accessed by more than one core into a shared L2 cache.
We, hence, can manage the cached data in both L1 and
L2 caches. Moreover, an ideal multicore architecture is
scalable and flexible to allow dynamic and adaptive
management on the cached data. The premise is to
accurately capture the similar data [7], [17], which unfortu-
nately is nontrivial due to expensive operation costs of
comparing arriving data with all the existing cache lines.

We identify the problem of homogeneous data placement
that overlooks the distinct properties and multitype mem-
berships of cached data. To alleviate the homogeneous data
management, we leverage a differentiated placement policy,
in which the cache memberships are classified into three
types as shown in Fig. 2b. We place frequently accessed and
correlated data into L1 cache, called “in-cache Family,”
frequently accessed but loosely correlated data into L2 cache,
called “shared-cache Friend” and infrequently accessed data
into main memory, called “in-memory Foreigner.” In this way,
we can differentiate the strength of access locality to facilitate
the efficient placement of cached data.

In practice, capturing data similarity is timeconsuming
and computation-intensive work due to high dimensions
and heterogeneous types. Hence, to accomplish a suitable
tradeoff between similarity accuracy and operation com-
plexity, we propose to use a hash-based approach, for
example, the LSH [30], due to its locality-aware property
and ease of use. The LSH can identify and place similar data
together with low complexity. The rationale is that similar
data contain strong locality to match access patterns of
multiple threads. The LSH-based scheme, thus can improve
system performance. Unfortunately, it is well recognized
that a standard LSH suffers from heavy space overhead due
to the use of too many hash tables [31], [32], [33]. Moreover,
data placement policy depends upon both access frequency
and correlation, which is currently difficult to be repre-
sented quantitatively and measured accurately.

The basic idea behind MERCURY is to leverage the MC-
LSH to identify similar data and carry out differentiated data
placement. MERCURY represents the strength of data
similarity as Family, Friend, and Foreigner, respectively, as
shown in Fig. 2b. Specifically, the private L1 caches contain
Family members, which are tightly correlated and frequently
used data to facilitate the fast access and maintain the access
locality in each cache. Furthermore, a shared L2 cache
contains Friend members, which in fact consist of two parts.
One is the data frequently accessed by multiple cores and the
other is the data evicted from correlated L1 caches due to
space limitation or staleness. Finally, the main memory
contains Foreigner members that are not included in the L1 or
L2 caches. Differentiated data placement comprehensively
considers both the strength of data similarity and access
frequency, while allowing the flexible adjustments to
support dynamic operations (e.g., insertion/deletion). The

similar data that are placed closely can also significantly

reduce the migration costs. MERCURY, hence, offers

scalable, flexible, and load-balanced caching schemes in a

multilevel cache hierarchy.
MERCURY is implemented in a hybrid scheme to

address the limitations of both hardware solutions and
OS-based methods. Specifically, our multicore shared-
cache-management framework consists of two low cost
and effective components: a lightweight mechanism for
allocating cache resources and providing cache usage
information; and OS-based resource allocation policies for
dynamic cache allocation. With a simple and low-overhead
component, we enable direct OS control over shared caches,
and the software system overhead is minimized. With an
OS-based management, we are able to design and imple-
ment multiple policies to deal with complicated, difficult
caching scenarios in multicore systems.

3 MERCURY ARCHITECTURE

MERCURY uses the MC-LSH to identify similar data and

leverages an LRU replacement in each cache to update stale

data. Fig. 3 shows the MERCURY architecture in the

multilevel hierarchy. We assume that each core has one

private L1 cache and all processor cores share an L2 cache.

The MERCURY scheme is tightly associated with two parts.

One is the processor architecture and the other is the

operating system. Furthermore, to explicitly represent the

differentiated memberships identified by the MC-LSH,

we use different flags to label each cache line and obtain

holistic optimization in the multilevel cache hierarchy.

3.1 Caches in a Multicore Processor

The caching schemes in a multicore processor include L1

and L2 cache management, and virtual-physical address

translation.
L1 cache management. Each core has one associated cache

that contains frequently visited data to increase the access

speed and decrease the required bandwidth. We need to

update the stale and infrequently accessed data.
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L2 cache management. To partition the shared L2 cache, we
leverage the well-known page color [34] due to its simplicity
and flexibility. Page coloring is an extensively used OS
technique for improving cache and memory performance. A
physical address contains several common bits between the
cache index and the physical page number, which is
indicated as a page color. One can divide a physically
addressed cache into nonintersecting regions (cache color)
by page color, and the pages with the same page color are
mapped to the same cache color. A shared cache is divided
into N colors, where N comes from the architectural
settings. The cache lines are represented by using one of
N cache colors. We assign the cache colors of the virtual
pages by using the virtual-to-physical page mapping.

Address translation. The address translation can translate
the virtual address into the physical address by reading
page table. The cache color is tightly associated with the
number of page colors in the L2 cache. A virtual Tag (v-Tag)
helps to identify similar data by using the results from the
MC-LSH computation.

3.2 Operating System

The operating system functionalities support the MC-LSH
computation and update the locality-aware data.

MC-LSH. A standard LSH helps identify similar data and
unfortunately incurs heavy space overhead, i.e., consuming
too many hash tables, to identify the locality-aware data.
The space inefficiency often results in the overflowing from
a limited-size cache. MERCURY proposes to use an MC-
LSH to offer efficiency and scalability to the multicore
caching. Specifically, the MC-LSH uses a space-efficient
signature vector to maintain the cached data and utilizes a
coding technique to support a differentiated placement
policy for the multitype data. We will describe the design
details of the MC-LSH in Section 4.

Updating locality-aware data. To execute fast and accurate
updates, a key function in MERCURY is to identify similar
data with low operation complexity. In practice, many high-
performance computing applications demonstrate the iden-
tical data at the same virtual address, but different physical
addresses [7]. All relevant virtual addresses thus need to be
mapped to the same cache set. We make use of the MC-LSH
to identify similar data and avoid brute-force checking
between arriving data and all valid cache lines. The similar
data are then placed in the same or close-by caches to
facilitate multicore computation and efficiently update data.
Since the cached data are locality-aware, MERCURY, hence,
decreases migration costs and minimizes cache conflicts.

To satisfy query requests and provide flexible use, we
design an interface between high-performance applications
and operating system as shown in Fig. 3. Its main function
is to wrap high-level operation requests to low-level system
calls with the aid of the page coloring technique [34]. Page
color manages the bits between the cache index and the
physical page number in the physical memory address.
Specifically, the applications need to specify the required
space in their requests. The requests help decide how to
partition available cache space among query requests.
Query execution processes indicate partitioning results by
updating a page color table. The operating system then
reads the page color table to know the cache partitions
among the query requests.

Although the operating system cannot directly allocate
on-chip cache space, it can make use of virtual-physical
address mapping to control how to allocate pages in the
main memory. The memory pages of the same color can be
mapped to the same cache region. To efficiently partition
the cache space, we allocate different page colors to
memory threads. MERCURY can hence leverage the page
coloring technique to complete cache partitioning among
different processes and support the queries.

4 CACHED DATA MANAGEMENT IN MERCURY

To capture the data similarity, we propose an MC-LSH
design in MERCURY. A space-efficient signature vector and
a simple coding technique help maintain and represent the
multitype memberships. We finally describe the scheme of
updating data in MERCURY.

4.1 The MC-LSH Scheme

The MC-LSH is a multicore-enabled scheme that consists of
the LSH-based computation, a signature vector structure
and the multitype membership coding technique. It offers a
deterministic membership for each data item. Compared
with the conventional classification schemes for exact
results, the MC-LSH provides an approximate and fast
scheme to obtain significant time and space-savings. The
MC-LSH employs the LSH functions to identify similar data
based on the access patterns. To address the problem of
space inefficiency (i.e., too many hash tables) in the standard
LSH, we employ a signature vector structure. Furthermore,
to offer differentiated data placement, we use a multitype
membership coding technique.

Limitations of the standard LSH. An LSH [30] captures
similar data by allowing them to be placed into the same
hash buckets with a high probability.

Definition 1. Given a distance function k�k, a data domain S,
and some universe U , an LSH function family, i.e., IH ¼
fh : S ! Ug is called ðR; cR; P1; P2Þ-sensitive, if for
8p; q 2 S:

. If kp; qk � R then PrIH½hðpÞ ¼ hðqÞ� � P1,

. If kp; qk > cR then PrIH½hðpÞ ¼ hðqÞ� � P2,

where c > 1 and P1 > P2.

In IH, ha;bðvÞ ¼ ba�vþb! c. a is a d-dimensional random vector
with chosen entries following an s-stable distribution and b
is a real number chosen uniformly from the range ½0; !Þ,
where ! is a constant. By using the LSH functions, similar
data have a higher probability of colliding than the data that
are far apart [35].

Although the LSH has been recently used in many
applications, it is difficult to be used in the multicore
systems due to heavy space overhead and homogeneous
data placement. These limitations have severely hampered
the use of the multicore benefits for high-performance
systems. Unlike the existing work, MERCURY enables the
LSH to be space-efficient by leveraging signature vectors.

Space-efficient signature vector. The MC-LSH leverages
space-efficient signature vectors to store and maintain the
locality of access patterns. Specifically, a signature vector is
an m-bit array where each bit is initially set to 0. There are
totally L LSH functions, gið1 � i � LÞ, to hash a data point
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into bits, rather than its original buckets in hash tables, to
significantly decrease space overhead. A data point as an
input of each hash function gi is mapped into a bit that is
thus set to 1 possibly more than once and only the first
setting takes effect.

A signature vector is able to maintain the data similarity
as shown in Fig. 4. A centralized bit is the bit that receives
more hits than its left and right neighbors. The hit numbers
as shown in this figure are also much larger than a
predefined threshold value. The centralized bits become
the centers of correlated data and are further selected to be
mapped and stored in the L1 caches. When hashing data
into the signature vector, we count the hit numbers of bits
and carefully select the centralized bits. Moreover, the
threshold demonstrates the clustering degree of data
distribution, thus depending upon the access patterns of
the real-world applications. After selecting the centralized
bits, we can construct a mapping between the centralized
bits and L1 caches to facilitate the data placement. It is
worth noting that the number of centralized bits is
unnecessarily equal to that of the L1 caches. If the number
of centralized bits is larger than that of L1 caches, an
L1 cache may contain the data from more than one adjacent
centralized bits.

The MC-LSH computation can guarantee similar data to
be hashed into one bit with very high probability that
however is not 100 percent, meaning that similar data are
still possible to be placed into adjacent bits. False negative,
hence, occurs when the hit bit is 0 and one of its neighbors is
1. To avoid potential false negatives, a simple solution is to
check extra neighboring bits besides the hit one. Although
extra checking on neighboring bits possibly incurs false
positives, in practice, a miss from the false negative
generally incurs the larger penalty than the false positive.

A reasonable size of checking extra bits is acceptable to
obtain a suitable tradeoff between false negatives and false
positives. MERCURY probes more than one hit bit, i.e.,
checking left and right neighbors, besides the hashed bit.
Note that, the extra checking occurs only when the hit bit is
“0”. Our result conforms to the conclusion of sampling data
in the multiprobe LSH [31].

To efficiently update the signature vectors, MERCURY
offers scalable and flexible schemes based on the char-
acteristics of the real-world workloads. Specifically, if the
workloads exhibit an operation-intensive (e.g., write-
intensive) characteristic, we can carry out the operations
on the signature vectors and allow the (re)-initialization in

the idle time. Moreover, if the workloads become uniform,

MERCURY makes use of 4-bit counters, rather than bits, as
the summary of Bloom filters [36]. Each indexed counter

increases when adding an item and decreases when
removing an item. In practice, a 4-bit counter can satisfy

the requirements for most applications.
Multitype membership coding. The memberships in the

MC-LSH include Family, Friend, and Foreigner, which
respectively represent different similarities among cached

data. The MC-LSH identifies data memberships and places

data into L1 cache, L2 cache, or main memory, respectively.
One key issue in the data placement is how to determine

whether the hits in multiple LSH vectors indicate a single

cache. To address this problem, we use a coding technique
to guarantee membership consistency and integrity.

We use an example to illustrate the differentiated

membership coding as shown in Fig. 5. Given an item, we

first compute its hashed values by using hash functions in
the signature vector to determine whether it is correlated to

one of the existing L1 caches. Based on the conclusion in
[31], if the hit bit is any of the centralized bit, its left and

right neighbors, the item is considered to be correlated with

the corresponding cache and further obtains an M ¼ 1

indicator (i.e., in the memory), together with FF (Family/

Friend) code (e.g., the location) of that centralized bit in an

LSH array.
We construct a mapping table between arriving data and

multicore caches to facilitate differentiated data placement.

If all M indicators from L LSH arrays show 1 for an item by

using a bit-based AND operation, we determine that this
item is correlated with multicore caches to execute further

checking on the data mapping table. Otherwise, the item is

not considered to be correlated and directly inserted into
the main memory. The checking on the table allows to

determine whether the item is a Family or Friend. Since
performing direct searching on the entire table consumes

too much time, we first hash the concatenated code of that

item into a standard Bloom filter [37] that has already stored
the code indicators. If a hit occurs, we continue to perform

the checking on the mapping table. Otherwise, the item is

considered as a Friend, and then inserted into the shared
L2 cache. Furthermore, since the table contains too many

code indicators, the linearly brute-force searching will lead
to unacceptable costs, possibly becoming the performance

bottleneck. To address this issue, we make use of a hash

table to maintain these code indicators and decrease the
searching latency. When a hit occurs in the mapping hash

table, we insert this item into the corresponding L1 cache.
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Fig. 4. Signature vector for maintaining page-level data similarity.

Fig. 5. Differentiated membership coding technique.



4.2 Updating Data

In the multilevel hierarchy of MERCURY, we need to
update cached data and their memberships in the
signature vector.

For updating cached data. To update actual data, we make
use of a label-based technique to update stale data in
multilevel caches. The reason comes from the fact that
similar data are potentially reused by corresponding caches
in the near future. To decrease recaching costs, we
temporarily label stale data for certain time. When the time
expires, we update the caches and replace these labeled
stale data. Moreover, the L1 caches belonging to multiple
cores possibly contain different amounts of similar data.
Performing the load balance within multiple L1 caches is
hence important to obtain performance improvements. Due
to the limited-size capacity in each L1 cache, MERCURY
temporarily places excess, but correlated data into the
shared L2 cache. These correlated data have been inserted
into corresponding counting Bloom filters [37]. In the
shared L2 cache, we label the data by using page colors of
the correlated cores to update caches. Once free space is
available in an L1 cache, MERCURY reloads these labeled
data into the corresponding L1 cache.

The operations of updating data are actually a multilevel
migration process from the L1 cache, then the L2 cache,
finally to the main memory. The workflow steps are
described below.

1. Updating cache in MERCURY needs to replace stale
data in both L1 and L2 caches, while guaranteeing
high hit rates and low maintenance costs. MERCURY
makes use of the MC-LSH to identify similar data
that are then placed into the L1 caches.

2. The L1 caches employ the simple LRU replacement
to update stale data.

3. When the data in the L1 caches become stale, they
are transferred into the shared L2 cache among
multiple cores.

4. When the data in the L2 cache become stale, they
move to the main memory.

For updating memberships. To update the data member-
ship in the signature vectors, we leverage counting Bloom
filters to facilitate the data deletion and maintain the
membership of the data that have been identified to be
correlated and placed into the corresponding L1 caches. The
counting Bloom filters help maintain the membership of
cached data in a space-efficient way, carry out the
initialization of the L1 caches and keep the load balance
among multiple L1 caches. Each counting Bloom filter is
associated with one L1 cache.

When an item is inserted into the L1 cache, it is
meanwhile inserted into the counting Bloom filter, in which
the hit counters are increased by 1. Since each counting
Bloom filter only needs to maintain the items existing in the
corresponding L1 cache and the number of stored data is
relatively small, thus not requiring too much storage space.
Moreover, when deleting an item, the hit counters are
decreased by 1. If all counters become 0, meaning that there
are no cached data, we initialize the associated caches by
sampling data to determine the locality-aware representa-
tion in the signature vector. Note that, the size of a signature

vector depends on not only the amounts of data to be
inserted, but also their distribution. We, hence, leverage
well-recognized sampling methods [31], [35], [38], [39] to
obtain the suitable size.

5 PERFORMANCE EVALUATION

This section presents the performance evaluation of our
proposed scheme by describing simulation framework and
examining the scalability of MERCURY compared with the
state-of-the-art work.

5.1 Experiment Configuration

We use simulation study primarily for the evaluation of
MERCURY’s scalability. Our simulation is based on
PolyScalar that is widely used in the multicore simulation
[7], [14], [15]. We add page tables into PolyScalar for each
process to enhance its virtual-to-physical address transla-
tion functionality. We further improve PolyScalar by
adding the similarity-aware functionalities that are de-
scribed in Sections 3 and 4. The size of each OS page is
8 KB. Since our study focuses on the last-level cache
(L2 cache) that has strong interaction with the main
memory, we extend PolyScalar to simulate DDR2 DRAM
systems. The simulated memory transactions are pipelined.

MERCURY leverages the MC-LSH to identify similar
data that are placed into L1 and L2 caches, respectively,
with an LRU replacement policy. Specifically, each
processor has its own private L1 cache. An L2 cache is
shared by multiple cores. We evaluate the scalability of
MERCURY by increasing the number of cores. In the page
color policy of the L2 cache, each core has eight colors and
each color has 128 cache sets. We, hence, allocate 1-MB
cache for 4-core system, 2-MB cache for 8-core system, and
4-MB cache for 16-core system. Table 1 shows the
parameter settings in the simulations.

The used traces and data sets include Forest CoverType
data set [22], EECS NFS server at Harvard [23], HP file
system trace [24], and 175.vpr and 300.twolf in SPEC2000
[25]. Moreover, by using the proposed sampling approach
[31], [35], [38], [39] described in Section 4.2, the suitable
sizes of signature vectors are 7.6 KB in 175.vpr, 7.9 KB
in 300.twolf, 8.3 KB in CoverType, 8.7 KB in EECS, and
9.2 KB in HP.
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We use the multiple metrics to evaluate the perfor-
mance, including Throughput, Weighted speedup, and Fair
speedup as shown in Table 2. Specifically, the Throughput
refers to the absolute IPC numbers to evaluate the system
utilization. The Weighted speedup is the sum of speedups of
all programs over a baseline scheme to indicate the
decrease of execution time. The Fair speedup is the harmonic
mean of the speedups over a baseline scheme to obtain the
balance between fairness and performance. We also
examine the performance in terms of cache update latency,
migration cost, hit rate and time, and space overheads.

5.2 Results

We compare MERCURY with baseline approaches, i.e.,
private and shared caches, and the state-of-the-work, PCM
[12] and Mergeable [7] schemes, which we reimplemented
for the experiments.

5.2.1 Throughput

Fig. 6 shows the throughput results from executing the real-
world applications with the increase of multicore number
from 4 to 16. The average throughputs on 4-core systems
with private cache, shared cache, PCM, Mergeable, and
MERCURY are 1.352, 1.563, 1.815, 1.925, and 2.162,
respectively. For 8-core systems, the average throughputs
are 2.481, 2.572, 2.953, 3.104, and 3.305. For 16-core systems,
they are 3.281, 3.469, 3.957, 4.152, and 4.452.

We observe that two typical SPEC2000 benchmarks
obtain the larger throughputs on average by 15.7 percent
increase than other applications. The main reason is that the
SPEC2000 benchmarks have better similarity in the access
pattern, thus allowing the LSH to accurately and efficiently
capture correlated data. In addition, MERCURY executes
constant-scale hashing computation to quickly and accu-
rately identify correlated data, thus obtaining the larger
throughput than the PCM and Mergeable schemes.

5.2.2 Weighted Speedup

We take into account the changes of the relative IPC that is
the ratio of absolute IPC to the baseline as the metric of the
weighted speedup. The weighted speedups are normalized

to those with the private caches as shown in Fig. 7. The
shared cache obtains better performance than the private
cache due to the ability to adapt to the demands of competing
processes. Compared with the private cache, the improve-
ments of the shared cache are 9.87, 17.52, and 23.67 percent,
respectively, on 4-core, 8-core, and 16-core systems.

The PCM, Mergeable, and MERCURY have much better
performance than the shared cache. The average normal-
ized weighted speedups of the PCM scheme are 1.263,
1.376, and 1.482, respectively, on 4-core, 8-core, and 16-core
systems. Mergeable obtains 1.372, 1.493, and 1.718 weighted
speedups. MERCURY obtains 1.527, 1.634, and 1.928
weighted speedups, demonstrating better performance.
With the increase of cores, MERCURY further exhibits its
effectiveness and scalability since it leverages simple
hashing to adapt to the workload changes.

5.2.3 Fair Speedup

Fair speedup computes the harmonic mean of the normal-
ized IPCs, while taking into account both fairness and
performance. Fig. 8 shows the results of comparing
MERCURY with baseline schemes and PCM in terms of
fair speedups. The fair speedups are normalized to those
with the private cache.

Compared with the PCM scheme, Mergeable, and
MERCURY improve the performance on this metric,
respectively, by 7.16 and 8.35 percent (4-core), 8.31 and
9.52 percent (8-core), and 8.67 and 9.96 percent (16-core).
The main reason is that MERCURY leverages the differ-
entiated placement policy that efficiently allocates the data
into the correlated caches and improves the utilization of the
multicore processor based on the multitype memberships.

5.2.4 Cache Update Latency

Cache management needs to update stale and infrequently
accessed data to guarantee high hit rates. We evaluate the
update efficiency of private and shared, PCM, Mergeable,
and MERCURY in terms of operation latency. Fig. 9 shows
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Fig. 6. Throughput (sum of IPCs).

Fig. 7. Normalized weighted speedup.

Fig. 8. Normalized fair speedup.

TABLE 2
Performance Evaluation Metrics



the update latencies that are normalized to those in the
PCM scheme. We observe that the average normalized
latencies of private and shared caches are 1.22 and 1.14,
respectively. Mergeable requires a little larger latency than
PCM mainly due to merged writebacks. Compared with the
PCM and Mergeable schemes, MERCURY using the simple
hash computation requires the smallest time than others
and decreases the update latency on average by 48.26,
46.57, and 43.82 percent, respectively, on 4-core, 8-core, and
16-core systems.

5.2.5 Migration Cost

Hit misses or updates in caches often lead to data migration
among multiple caches, which incurs relatively high costs
in terms of data transmission and replacement in the caches
of other cores. Fig. 10 shows the percentage of migrated
data in PCM, Mergeable, and MERCURY. Mergeable is able
to detect and merge similar data to guarantee that many
correlated data are stored in a single cache, thus producing
the smaller number of the migrated data than PCM.

We observe that the average percentages of migrated
data are 13.2 and 11.9 percent, respectively, in private and
shared caches. Compared with Mergeable, MERCURY can
obtain better performance in this metric and decrease the
number of migrated data on average by 35.26, 32.57, and
31.73 percent on 4-core, 8-core, and 16-core systems. The
main reasons are twofold. One is that the MC-LSH provides
high accuracy of identifying correlated data, thus reducing
the number of migrated data. The other is that the fast
identification of similar data in MERCURY produces low
computation complexity.

5.2.6 Hit Rate

One of the key metrics to evaluate cache efficiency is the hit
rate that defines the probability of obtaining queried data
within limited cache space for requests. Fig. 11 shows the
cache hit rate of the MERCURY scheme compared with
private, shared, PCM and Mergeable. The average hit rates
in private, shared, MERCURY, Mergeable, and PCM are

respectively 65.22, 67.15, 86.92, 77.48, and 69.27 percent on
the 4-core system, 61.68, 63.73, 83.87, 74.16, and 65.12 percent
on the 8-core systems, and 59.51, 61.34, 81.73, 70.52, and
62.35 percent on the 16-core systems. MERCURY has the
better performance in this metric than Mergeable and PCM
since the MC-LSH accurately identifies correlated data
within constant-scale execution complexity. The improved
accuracy significantly decreases potential migration costs
that possibly occur due to hit misses. The quick identifica-
tion also alleviates the effects of staleness in the caches.

5.2.7 Time and Space Overheads

The execution time in our performance evaluation includes
the identification and placement of the correlated data in the
L1 caches. We evaluate the MERCURY, PCM, Mergeable,
and standard LSH schemes in terms of time overhead as
shown in Fig. 12a. The time overhead is normalized to those
in Mergeable scheme. MERCURY makes use of hashing
computation to identify correlated data, thus requiring
smaller execution time than Mergeable that needs to carry
out the extra operations of merging cache blocks. Compared
with Mergeable, MERCURY decreases the execution time by
28.73, 21.84, and 19.56 percent on 4-core, 8-core, and 16-core
systems.

MERCURY needs to use the signature vector to reveal the
similarity of correlated data and leverage counting Bloom
filters to maintain the memberships of cached data, while
Mergeable requires temporary storage space, for example,
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Fig. 10. Percentage of migrated data.

Fig. 11. Hit rates in multicore caches.

Fig. 12. Normalized time and space overheads.

Fig. 9. Normalized update latency.



content-addressable memory to find similar data. Fig. 12b
shows the comparisons among the MERCURY, PCM,
Mergeable, and standard LSH schemes in terms of space
overhead. We observe that compared with the Mergeable
scheme, MERCURY obtains significant space savings and
decreases the space overhead by 47.35, 45.26, and 40.82 per-
cent, respectively, on 4-core, 8-core, and 16-core systems.
The main reason is that MERCURY leverages the simple bit-
aware signature and space-efficient Bloom filters to demon-
strate and maintain the memberships of correlated data,
thus obtaining space savings.

6 SYSTEM IMPLEMENTATION STUDY

We present the experimental results of running standard
workloads provided by both TPC-H and TPC-C bench-
marks [40]. Specifically, we set up 100 clients (i.e., the
maximum number of clients allowed in PostgreSQL) to
send out queries concurrently. For each client, queries are
randomly drawn from the pool of all TPC-H queries. We
repeat the same experiments under three different data set
sizes: 500 MB, 1 GB, and 10 GB for TPC-H; and 1 GB, 5 GB,
and 10 GB for TPC-C. Due to space limitation, the
evaluation mainly shows the results of the TPC-H work-
load. We run all experiments in the cloud. Each cloud server
has two Intel Core2Quad 2.66-GHz CPUs, 8-GB memory,
and four 250-GB disks. Each processor has four cores, and
every two cores share a 4-MB L2 cache. The DBMS used in
our experiments is the PostgreSQL 8.3.1 running on Linux
kernel 2.6.14.1. We measured the performance by three
metrics, L2 cache miss rate, query execution time (cycles per
instruction), and patching costs.

For a given data set, the hash functions come from the
random selection of the LSH function family. More hash

functions provide higher accuracy of identifying similar
data, which however incurs higher computation complexity
and space overhead. In our experiments, we select L ¼ 7
hash functions based on the presample estimation, in which
we randomly extract a subset from the used trace and make
the estimation, which has been successfully used in the real-
world applications [31], [35], [39], [41]. Moreover, for the data
with different types or dimensionalities, we use the normal-
ization method to compute data similarity in the same metric
measure. Normalized value is equal to the measure:
(ActualValue-Minimum)/(Maximum-Minimum). For instance,
for the attribute of file size, we assume that the size range is
from 10 KB to 200 KB, (i.e., range: 10-200). For a file with
120 KB, its normalized value is ð120-10Þ=ð200-10Þ ¼ 0:58.

We evaluate the real implementation performance by
comparing with MCC-DB [17]. MCC-DB exploits access and
caching patterns from query analysis. The reason for making
this comparison is threefold. First, both MCC-DB and
MERCURY work well as patches to PostgreSQL [16] for
concurrent queries. Second, the essential property behind
two techniques is to use cache partitioning in multi-core
processors to enhance system performance. Third, MCC-DB
has provided standard experimental results by using TPC-H
[40] to facilitate fair comparisons with other methods. TPC-H
[40] benchmarks have large volumes of data for decision
support systems when executing 22 different types of
queries. We perform extensive experiments on a physical
testbed based on the PostgreSQL system using the workloads
generated from the TPC benchmarks.

6.1 L2 Cache Miss Rate

Figs. 13 and 14, respectively, show the L2 miss rates when
using TPC-H and TPC-C workloads with different data set
sizes. We first examine the rates of three typical queries, i.e.,
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Fig. 13. L2 miss rates of TPC-H workload under three data set sizes.

Fig. 14. L2 miss rates of TPC-C workload under three data set sizes.



Q5, Q8, and Q20, in both MCC-DB and MERCURY schemes.
Q5 and Q8 are dominated by multiway hash joins and Q20
is dominated by nested subquery executions. We observe
that MERCURY obtains on average 42.6, 48.1, and 51.2 per-
cent miss decrease compared with MCC-DB in the TPC-H
workload with 500 MB, 1 GMB, and 10 GB sizes. These
benefits come from the fast and accurate hashing-based
computation to identify similar data to efficiently support
concurrent queries. We further examine the L2 miss rates by
executing all 22 queries in TPC-H. Compared with MCC-
DB, MERCURY has the decrease of miss rates from 16.1 to
26.7 percent, on average 21.8 percent for all 22 queries as
shown in Fig. 15. In addition, it is also observed that Q1, Q4,
Q14, and Q21 show the comparable values with MCC-DB
due to their relatively weak locality characteristic.

6.2 Query Execution Time

Shared L2 cache plays a key role in determining query
execution performance. When concurrent query execution
processes access common tuples and index data, MERCURY
enables multiple cores for data sharing to reduce unneces-
sary memory accesses. In MERCURY, a query execution
process reuses cache lines. We evaluate query execution
time by using cycles per instruction, which is examined by
using the performance tool to check hardware counters.
Figs. 16a and 16b, respectively, show the executing time of

queries in 1 GB and 10 GB data set sizes. Due to different
functionalities of all 22 queries in TPC-H, the execution time
shows significant fluctuation. MERCURY also obtains on
average 21.7 and 23.1 percent improvements upon MCC-DB
in 1-GB and 10-GB sizes.

6.3 Patching Cost

Both MCC-DB and MERCURY are implemented as a patch
in PostgreSQL. The new component may introduce extra
patching costs. We examine these costs in terms of time
and space as shown in Table 3 by being normalized to
MCC-DB when taking into account both TPC-C and TPC-H
data sets under different sizes. MERCURY requires less
time and space costs than MCC-DB because MERCURY
makes use of the fast MC-LSH hashing computation to
place similar data together. We also observe that with the
increase of data set sizes, MERCURY obtains more benefits
in terms of time and space overheads over MCC-DB. In the
meantime, this observation demonstrates the scalability of
the MERCURY scheme.

7 RELATED WORK

Multilevel cache hierarchy has been studied in the high-
performance cloud architecture and software communities.
There exists a wide range of proposals to improve caching
performance (e.g., hit rate, access latency, and space over-
head) [11], [19], [20], [42], [43], [44]. We argue that suitable
management of the multilevel cache hierarchy is becoming
more important to deliver high performance in the cloud.

Locality-based optimization. The state-of-the-art work,
R-NUCA [45], obtains near-optimal cache block placement
by classifying blocks online and placing data close to the core.
To mitigate the loss of reusing cached states when reschedul-
ing a process, affinity scheduling [46] helps reduce cache
misses by judiciously scheduling a process on a recently
used CPU. To improve the performance in “multiexecution”
applications, Mergeable [7] captures data similarities and
merges duplicate cache lines owned by different processes to
obtain substantial capacity savings. Nevertheless, perform-
ing the explicitly merging operations on cache blocks
demands relatively longer execution time and increases
computation complexity. The process-level cache manage-
ment policy (PCM) [12] has the assumption that all memory
regions belonging to a running process exhibit the same
access pattern. MCC-DB [17] makes use of different locality
strengths and query execution patterns to minimize cache
conflicts. This improvement works under the assumption
when there are multiple candidate plans that are accurately
estimated in advance. However, this assumption does not
always hold in many practical applications because perform-
ing accurate estimate generally requires high-computation
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Fig. 16. Execution time of queries.

Fig. 15. L2 miss rates in 10-GB data set with 4-MB L2 cache.

TABLE 3
Normalized Time and Space Costs as a Patch



overheads. Unlike them, MERCURY explores and exploits
the locality property by lightweight hashing approach, thus
obtaining significant performance improvements.

Hardware acceleration. To reduce the cache pollution
caused by LRU that inserts non-reusable items into the
cache while evicting reusable ones, ROCS [6] employs
hardware counters to characterize cache behaviors and
introduces a pollute buffer to host non-reused cache lines of
pages before eviction. Moreover, to address the problems of
increased capacity interference and longer L2 access latency,
CloudCache [47] leverages fine-grained hardware monitor-
ing and control to dynamically expand and shrink L2 caches
for working threads by using dynamic global partitioning,
distance-aware data placement, and limited target broad-
cast. Hardware-assisted execution throttling [48] helps
regulate fairness in modern multicore processors, while
demonstrating the relative benefits of the various resource
control mechanisms. Moreover, to reduce the large amounts
of misses in the LLC between the eviction of a block and its
reuse, Scavenger [49] divides the total cache storage into a
conventional cache and a victim file architecture to identify
and retain high-priority cache blocks that are more likely to
be reused. MERCURY bridges the gap between a multicore
architecture and an operating systems. The existing hard-
ware acceleration approaches can use MERCURY to
simplify operations and optimize system calls.

Operations enhancements. MergeSort [50] performed an
efficient multiway merge without being constrained by the
memory bandwidth for high-throughput database applica-
tions. The parallel skyline computation could benefit from
multicore architectures, such as parallel version of the
branch-and-bound algorithm. Park et al. [51] presented a
parallel algorithm based on parallel programming that was
evaluated as a case study of parallelizing database opera-
tions. A cooperation-based locking paradigm [52] was
proposed for efficient parallelization of frequency counting
and top-k over multiple streams in the context of multicore
processors. In addition, adaptive aggregation [53] demon-
strated that a chip multiprocessor with new dimensions
could enhance concurrent sharing of aggregation data
structures and contentious accesses to frequently used
values. Qiao et al. [54] introduced a scheduling technique
to cooperate multiple memory scans to reduce the overhead
on memory bandwidth. These research projects aim to make
a single query benefit from the cache, which is orthogonal to
our work. Mining locality can improve parallel queries in
multicore CPU [55] and tree-structured data [56]. Two
popular join algorithms, such as hash join and sort-merge
join, was re-examined in [57] to use multicore cache blocking
to minimize access latency, increase compute density and
balance load amongst cores, even for heavily skewed input
data sets. CATCH [58] can store unique contents in
instruction cache by means of hashing, but their proposed
system does not support modifications in cached data. In
addition, the cache compression technique [59] compresses
the L2 data results to reduce the cache space and the off-chip
accesses, thus obtaining bandwidth savings. The coopera-
tive caching technique [60] in a multiprocessor can reduce
off-chip access through using a cooperative private cache
either by storing a single copy of clean blocks or providing a
cache-like, spill-over memory for storing evicted cache lines.
MERCURY can improve the query performance by using
locality-aware data placement strategy.

Workloads awareness. An OS-based cache partitioning
mechanism [29] presents execution and measure-based
strategies for multicore cache partitioning upon multiple
representative workloads. A nonuniform cache architecture
(NUCA) [61] takes advantage of proximity of data from the
accessing processor. To further address the problem of
onchip data locality in large shared NUCA, PageNUCA [8]
proposed a fully hardwired coarse-grain data migration
mechanism that dynamically monitored the access patterns
of the cores at the granularity of a page. Subsequently, the
NuRAPID proposal [62] decoupled the tag and data
placement in a NUCA by augmenting each tag and data
block with a forward and reverse pointer to the correspond-
ing data block and tag, respectively. NUcache [63] makes use
of the DelinquentPC-Next-Use characteristic to improve the
performance of shared caches in multi-cores. The NUcache
organization logically partitions the associative ways of a
cache set into MainWays and DeliWays. MERCURY is
orthogonal to the existing schemes. It leverages the light-
weight LSH-based computation and obtains significant
performance improvements on the LLC by accurately
capturing the differentiated locality across data.

Scheduling. Age-based scheduling for heterogeneous
multiprocessor [64] allows a thread with the larger remain-
ing execution time to run in a faster core given the prediction
of remaining execution time. A thread-based preloading
technique for simultaneous multithreading processors was
proposed in [65] to use the helper thread to perform
aggressive data preloading. To improve the utilization of
on-chip memory and reduce the impact of expensive DRAM
and remote cache accesses, O2 scheduling [66] schedules
objects and operations to caches and cores. To decrease the
unnecessary sharing of network control state at all stack
layers, the IsoStack architecture [67] offloads network stack
processing to a dedicated processor core. Moreover, inte-
grated processor-cache partitioning [9] divides both the
available processors and the shared cache in a chip multi-
processor among different multithreaded applications. The
existing scheduling strategies can further help optimize
MERCURY performance.

8 CONCLUSION

MERCURY, as an infrastructure of the cloud, plays a
significant role in managing the multilevel cache hierarchy.
By exploring and exploiting data similarity that is derived
from locality-aware access patterns, MERCURY alleviates
homogeneous data placement and improves system per-
formance by the low-complexity MC-LSH computation.
The cost-effective MERCURY is able to provide hybrid
functionalities. One is to provide a lightweight mechanism
for allocating cache resources. The other is to support the
OS-based dynamic cache allocation and capture data
similarity with the aid of space-efficient structures. MER-
CURY, hence, allows the OS control over the shared LLCs,
while minimizing software overheads. Experiments using
the real-world data sets demonstrate the MERCURY’s
efficiency.

Since modern microprocessors increasingly incorporate
multiple memory controllers [68], [69], our future work will
consider the locality-aware schemes for implementing effi-
cient data placement in multiple memory controllers.
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