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Non-volatile Memory (NVM)

» Non-volatile memory is expected to replace or
complement DRAM in memory hierarchy

v Non-volatility, low power, high density, large capacity

Read (ns) 20-70 20-50 10
Write (ns) 150-220 70-140 10 PCM
Non-volatility V V X
Standby Power ~0 ~0 High
Endurance 107~10° 108~10%2 1015
Density (Gb/cm?) 13.5 24.5 9.1

C. Xu et al. “Overcoming the Challenges of Crossbar Resistive Memory Architectures”, HPCA, 2015.
K. Suzuki and S. Swanson. “A Survey of Trends in Non-Volatile Memory Technologies: 2000-2014”", IMW 2015. 2



Endurance and Security in Non-volatile Memory

» NVM typically has limited endurance

— 107~10° for PCM, 108~1012 for ReRAM
— Writes have much higher latency than reads
— Write reduction matters for NVM

However, memory encryption increases writes to NVM }
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— An attacker can directly read data from the stolen NVM
— Memory encryption matters for NVM



Encryption Increases Bit Flips to NVM

» Diffusion property of encryption

— The change of one bit in the original data has to
modify half of bits in the encrypted data

Encryption

l Overwrite l Overwrite
Encryption

1 of 512 bits modified 256 of 512 bits modified



Encryption Increases Bit Flips to NVM
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Encryption renders existing bit-level write reduction
techniques ineffective
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Observation and Motivation
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» A large number of entire-line duplicates exist in real-world applications




DeWrite

» Lightweight cache-line-level
deduplication for NVMM
— Employ lightweight hashing
— Leverage NVM read/write asymmetry
— Eliminate a write at the cost of a read

» Efficient synergization between
deduplication and encryption
— Opportunistic parallelism
— Metadata storage co-location

Last Level Cache

1-=- Memory Co ntroller

Metadata
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Metadata
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Encrypted NVMM

Hardware Architecture



Prediction-based Parallelism

/ The direct way \

A Write Request

Detect Duplication

s duplicale 2=

No
Encrypt Data

— Cancel the Write

A 4

\ Write to NVM /

» Be inefficient for non-duplicate writes
« Serial execution latency




Prediction-based Parallelism
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/ The parallel way \
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Prediction-based Parallelism

A Write Request

Detect Duplication
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imal: use the direct way for duplicate writes and the parallel way

» Be inefficient for non-duplicate writes
« Serial execution latency e Unnecessary encryption

» Be inefficient for duplicate writes



Prediction-based Parallelism
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Prediction-based Parallelism

» How to know whether a cache line is duplicate beforenhand?

» Observation: duplication states of most memory writes are the
same as those of their previous ones

» A prediction scheme:
CPU Memory

DEBA | >

| E——

History window

1: duplicate 0O: non-duplicate
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Prediction-based Parallelism
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Prediction-based Parallelism
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Prediction-based Parallelism

» How to know whether a cache line is duplicate beforenhand?

» Observation: duplication states of most memory writes are the
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Prediction-based Parallelism

» How to know whether a cache line is duplicate beforenhand?
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Prediction-based Parallelism

» How to know whether a cache line is duplicate beforenhand?

» Observation: duplication states of most memory writes are the
same as those of their previous ones

» A prediction scheme:
CPU B Memory
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Prediction-based Parallelism

» How to know whether a cache line is duplicate beforenhand?

» Observation: duplication states of most memory writes are the
same as those of their previous ones

» A prediction scheme:

CPU ° Memory
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Prediction-based Parallelism

» How to know whether a cache line is duplicate beforenhand?

» Observation: duplication states of most memory writes are the
same as those of their previous ones

» A prediction scheme: 92.1% accuracy
CPU Memory
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History window

1: duplicate 0O: non-duplicate
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Prediction-based Parallelism
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Prediction-based Parallelism

» How to know whether a cache line is duplicate beforenhand?

» Observation: duplication states of most memory writes are the
same as those of their previous ones

» A prediction scheme:
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Prediction-based Parallelism

» How to know whether a cache line is duplicate beforenhand?

» Observation: duplication states of most memory writes are the
same as those of their previous ones

» A prediction scheme: 92.1% =% 93.6%

CPU iy Memory
I X
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Prediction-based Parallelism

» How to know whether a cache line is duplicate beforenhand?

» Observation: duplication states of most memory writes are the
same as those of their previous ones

» A prediction scheme: 92.1% =% 93.6%

{ Why can we achieve such a high prediction accuracy? }

W L PLPT: v J

History window

1: duplicate 0O: non-duplicate
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Prediction-based Parallelism

» How to know whether a cache line is duplicate beforenhand?

» Observation: duplication states of most memory writes are the
same as those of their previous ones

» A prediction scheme: 92.1% =% 93.6%

{ Why can we achieve such a high prediction accuracy? }

» Rationale: the size of duplicate (non-duplicate) data is usually
much larger than a cache line
— E.g., a page (4KB) is duplicate or non-duplicate: 100% accuracy
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Lightweight

Deduplication for NVMM

> Traditional ©

eduplication

» Non-duplicate Hash computation latency: >300ns
~ NVM write latency

Y :
— Duplicate
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Lightweight Deduplication for NVMM

» Traditional deduplication

» Non-duplicate Hash computation latency: >300ns
~ NVM write latency

Y :
— Duplicate

> DeWrite

The latency is 91ns at most

N
— Non-duplicate <

B and compare y

/5ns+1ns

Duplicate




Metadata Colocation

» Encryption metadata: per-line counter

LineAddr Counter

| |

Key —

AES-ctr

Encryption Decryption
Plaintext Plaintext

OTP

v
Ciphertext Ciphertext
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Metadata Colocation

» Encryption metadata: per-line counter
» Deduplication metadata: address mapping, reverted hash

29



Metadata Colocation

» Encryption metadata: per-line counter

» Deduplication metadata: address mapping, reverted hash
Deduplicated

nitAddr: 0 1 24/3% n

hash: | ho| hi| - | hs| - (- )\‘hn\
(a) The inverted hash table ' empty

InitAddr: 0 1 2 3 4 S n
realAddr: | - R az| - aal as| °° dn
(b) The address mapping table
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Metadata Colocation

» Encryption metadata: per-line counter
» Deduplication metadata: address mapping, reverted hash

INnitAddr:
hash:

InitAddr:
realAddr:

0 1 2 3 4 5 n
hol hi| c2| hs| cs | Cs Nn
(a) The inverted hash table
0 1 2 3 4 5 n
Co| C1 | Az2| C3| aAa| Aas dn

(b) The address mapping table
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Metadata Colocation

» Encryption metadata: per-line counter
» Deduplication metadata: address mapping, reverted hash

intkAddr: 0 1 2 3 4 5 i
hash: hollh1 N5 -
(a) The inverted hash table Flc{;/
intAddr: 0 1 2 3 4 5 \ i
realAddr: o axlas| - =

(b) The address mapping table



Evaluation

» Simulation: gem5 + NVMain

Processor
CPU 4 cores, X86-64 processor, 2GHz
Private L1 cache 32KB, 8-way, LRU, 2-CPU-cycle latency
Private L2 cache 128KB, 8-way, LRU, 8-CPU-cycle latency
Shared L3 cache 2MB, 8-way, LRU, 25-CPU-cycle latency
Shared L4 cache 32MB, 8-way, LRU, 50-CPU-cycle latency
Main Memory Using PCM
Capacity 16GB, (16 banks, distributed in 2 ranks)

Read/write latency 75ns/300ns

Metadata cache 2MB, LRU, 25-CPU-cycle latency

> Benchmarks

— 12 Benchmarks from SPEC CPU2006: single-threaded
— 8 benchmarks from m PARSEC 2.1: multiple-threaded
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NVM Endurance

a3BIdAR

PoTX
sdia

Jjewiuepiny
(ENBE]|
WIsadej
dnpop
yowrjApoq
S3OYISYIE[q
xdrdos

Suals

puieu
oI

Jour
mmyuenbqy
PEISI
wqp
$dBWO0IS
8

JAQVsn}ded
zdizq

100%
80%
60%
40%
20%

0%

uonINPIY LI

» DeWrite reduces 54% writes to secure NVM on average
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Write Speedup
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» DeWrite speeds up NVM writes by 4.2X on average
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Read Speedup
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» DeWrite speeds up NVM reads by 3.1X on average
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Instructions per Cycle
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» DeWrite improves the IPC by 80% on average
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Energy Consumption
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» DeWrite reduces energy consumption by 40% on average
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Space Overheads of Metadata Storage & Cache

>

Metadata storage
— 6.25%

Metadata cache
— (a) 512KB

— (b) 512KB

— (c) 512KB

— (d) 128KB

— Total <2MB
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Conclusion

>

Memory encryption renders the bit-level write reduction
technigues ineffective for secure NVMM

This paper proposes DeWrite, a line-level write reduction
technique to enhance the endurance and performance

— Lightweight cahe-line-level deduplication
— Efficient synergization of deduplication and encryption

Reduce 54% writes, speed up memory writes and reads
of secure NVMM by 4.2X and 3.1X, on average
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