Improving the Performance and Endurance of
Encrypted Non-volatile Main Memory through
Deduplicating Writes

Pengfei Zuo, Yu Hua, Ming Zhao*, Wen Zhou, Yuncheng Guo
Huazhong University of Science and Technology (HUST), China
*Arizona State University (ASU), USA

The 51st IEEE/ACM International Symposium on Microarchitecture (MICRO), 2018

Non-volatile Memory (NVM)

» Non-volatile memory is expected to replace or
complement DRAM in memory hierarchy

v Non-volatility, low power, high density, large capacity

Read (ns) 20-70 20-50 10
Write (ns) 150-220 70-140 10 PCM
Non-volatility V V X
Standby Power ~0 ~0 High
Endurance 107~10° 108~10%2 1015
Density (Gb/cm?) 13.5 24.5 9.1

C. Xu et al. “Overcoming the Challenges of Crossbar Resistive Memory Architectures”, HPCA, 2015.
K. Suzuki and S. Swanson. “A Survey of Trends in Non-Volatile Memory Technologies: 2000-2014”", IMW 2015. 2

Endurance and Security in Non-volatile Memory

» NVM typically has limited endurance

— 107~10° for PCM, 108~1012 for ReRAM
— Writes have much higher latency than reads
— Write reduction matters for NVM

However, memory encryption increases writes to NVM }

- MUVVECT UUVVII

— An attacker can directly read data from the stolen NVM
— Memory encryption matters for NVM

Encryption Increases Bit Flips to NVM

» Diffusion property of encryption

— The change of one bit in the original data has to
modify half of bits in the encrypted data

Encryption

l Overwrite l Overwrite
Encryption

1 of 512 bits modified 256 of 512 bits modified

Encryption Increases Bit Flips to NVM

B Data-Comparison-Write B Flip-N-Write
60% ¢
50% [
40% [
30% [4xX

20% f
10% [
ol N

No Encryption Encryption

Bit flips per Write
(%)

Encryption renders existing bit-level write reduction
techniques ineffective

S

Observation and Motivation

100% [
80%
60% f

20% —B-8-8— PR R o o S B
: =
roving performance and endurance of encrypted J

Im
{ NVM through deduplicating entire-line writes

B Duplicate Lines B Zero Lines

'reentage of

=5 plicate Lines

S T TS T T TF T LY T F
S L & 8 & \?" L $ @
E’. . %dﬁ"g \,_so. st-"' '0°b é@

) e % L ~ J_ ~ J
AN g SPEC CPU2006 PARSEC 2.1

» A large number of entire-line duplicates exist in real-world applications

DeWrite

» Lightweight cache-line-level
deduplication for NVMM
— Employ lightweight hashing
— Leverage NVM read/write asymmetry
— Eliminate a write at the cost of a read

» Efficient synergization between
deduplication and encryption
— Opportunistic parallelism
— Metadata storage co-location

Last Level Cache

1-=- Memory Co ntroller

Metadata
Cache

Data

Metadata
Storage

Encrypted NVMM

Hardware Architecture

Prediction-based Parallelism

/ The direct way \

A Write Request

Detect Duplication

s duplicale 2=

No
Encrypt Data

— Cancel the Write

A 4

\ Write to NVM /

» Be inefficient for non-duplicate writes
« Serial execution latency

Prediction-based Parallelism

a The direct way
A Write Request

Detect Duplication

~

s duplicale 2=

<]

Cancel the Write

No
Encrypt Data

A 4

\ Write to NVM

/

» Be inefficient for
« Serial execution latency

/ The parallel way \

A Write Request

I
v v

Detect Duplication Encrypt Data
I |

<t duplical 2>

Write to NVM Yes

\ Discard the Ciphertext « /

> Be inefficient for
* Unnecessary encryption

Prediction-based Parallelism

A Write Request

Detect Duplication

s duplicale 2

<]

/ The direct way \ /

The parallel way

A Write Request
I

v

v

~

Detect Duplication

Encrypt Data

Cancel the Write

<t duplical 2>

Write to NVM

Yes

for non-duplicate writes

imal: use the direct way for duplicate writes and the parallel way

» Be inefficient for non-duplicate writes
« Serial execution latency e Unnecessary encryption

» Be inefficient for duplicate writes

Prediction-based Parallelism

-

A

The direct way \

Write Request

Detect Duplication

<]

No

s duplicale 2

Encrypt Data

\ Write to NVM

es

Cancel the Write

/

A

-

The parallel way

A Write Request
I

v

v

~

Detect Duplication

Encrypt Data

_

|

No
Write to NVM

Discard the Ciphertext

Yes

Duplicate Non-duplicate ‘
Prediction

11

Prediction-based Parallelism

» How to know whether a cache line is duplicate beforenhand?

» Observation: duplication states of most memory writes are the
same as those of their previous ones

» A prediction scheme:
CPU Memory

DEBA | >

| E——

History window

1: duplicate 0O: non-duplicate

12

Prediction-based Parallelism

» How to know whether a cache line is duplicate beforenhand?

» Observation: duplication states of most memory writes are the
same as those of their previous ones

» A prediction scheme:
CPU Memory

History window

1: duplicate 0O: non-duplicate

13

Prediction-based Parallelism

» How to know whether a cache line is duplicate beforenhand?

» Observation: duplication states of most memory writes are the
same as those of their previous ones

» A prediction scheme:
CPU Memory

DCB | > A

0

| E——

History window

1: duplicate 0O: non-duplicate

14

Prediction-based Parallelism

» How to know whether a cache line is duplicate beforenhand?

» Observation: duplication states of most memory writes are the
same as those of their previous ones

» A prediction scheme:
CPU Memory

History window

1: duplicate 0O: non-duplicate

15

Prediction-based Parallelism

» How to know whether a cache line is duplicate beforenhand?

» Observation: duplication states of most memory writes are the
same as those of their previous ones

» A prediction scheme:

a2 L Memory
H]6
l_?_Predict > A

History window

1: duplicate 0O: non-duplicate

16

Prediction-based Parallelism

» How to know whether a cache line is duplicate beforenhand?

» Observation: duplication states of most memory writes are the
same as those of their previous ones

» A prediction scheme:
CPU Memory

][O | > BA
=
0 'l 0.

History window

1: duplicate 0O: non-duplicate

Prediction-based Parallelism

» How to know whether a cache line is duplicate beforenhand?

» Observation: duplication states of most memory writes are the
same as those of their previous ones

» A prediction scheme:
CPU B Memory

.......

History window

1: duplicate 0O: non-duplicate

18

Prediction-based Parallelism

» How to know whether a cache line is duplicate beforenhand?

» Observation: duplication states of most memory writes are the
same as those of their previous ones

» A prediction scheme:

CPU ° Memory
o —%
_tPred ict > BA

- 010;

History window

1: duplicate 0O: non-duplicate

19

Prediction-based Parallelism

» How to know whether a cache line is duplicate beforenhand?

» Observation: duplication states of most memory writes are the
same as those of their previous ones

» A prediction scheme: 92.1% accuracy
CPU Memory

0 010!

L

History window

1: duplicate 0O: non-duplicate

20

Prediction-based Parallelism

» How to know whether a cache line is duplicate beforenhand?

» Observation: duplication states of most memory writes are the
same as those of their previous ones

» A prediction scheme:
CPU Memory

History window

1: duplicate 0O: non-duplicate

21

Prediction-based Parallelism

» How to know whether a cache line is duplicate beforenhand?

» Observation: duplication states of most memory writes are the
same as those of their previous ones

» A prediction scheme:

CPU iy Memory
I X
: _‘!‘_P_rgdict > CBA
10 0 0,

History window

1: duplicate 0O: non-duplicate

22

Prediction-based Parallelism

» How to know whether a cache line is duplicate beforenhand?

» Observation: duplication states of most memory writes are the
same as those of their previous ones

» A prediction scheme: 92.1% =% 93.6%

CPU iy Memory
I X
“‘!‘_P_rgdict > { CBA J
10 0 0,

History window

1: duplicate 0O: non-duplicate

23

Prediction-based Parallelism

» How to know whether a cache line is duplicate beforenhand?

» Observation: duplication states of most memory writes are the
same as those of their previous ones

» A prediction scheme: 92.1% =% 93.6%

{ Why can we achieve such a high prediction accuracy? }

W L PLPT: v J

History window

1: duplicate 0O: non-duplicate

24

Prediction-based Parallelism

» How to know whether a cache line is duplicate beforenhand?

» Observation: duplication states of most memory writes are the
same as those of their previous ones

» A prediction scheme: 92.1% =% 93.6%

{ Why can we achieve such a high prediction accuracy? }

» Rationale: the size of duplicate (non-duplicate) data is usually
much larger than a cache line
— E.g., a page (4KB) is duplicate or non-duplicate: 100% accuracy

25

Lightweight

Deduplication for NVMM

> Traditional ©

eduplication

» Non-duplicate Hash computation latency: >300ns
~ NVM write latency

Y :
— Duplicate

26

Lightweight Deduplication for NVMM

» Traditional deduplication

» Non-duplicate Hash computation latency: >300ns
~ NVM write latency

Y :
— Duplicate

> DeWrite

The latency is 91ns at most

N
— Non-duplicate <

B and compare y

/5ns+1ns

Duplicate

Metadata Colocation

» Encryption metadata: per-line counter

LineAddr Counter

| |

Key —

AES-ctr

Encryption Decryption
Plaintext Plaintext

OTP

v
Ciphertext Ciphertext

28

Metadata Colocation

» Encryption metadata: per-line counter
» Deduplication metadata: address mapping, reverted hash

29

Metadata Colocation

» Encryption metadata: per-line counter

» Deduplication metadata: address mapping, reverted hash
Deduplicated

nitAddr: 0 1 24/3% n

hash: | ho| hi| - | hs| - (-)\‘hn\
(a) The inverted hash table ' empty

InitAddr: 0 1 2 3 4 S n
realAddr: | - R az| - aal as| °° dn
(b) The address mapping table

30

Metadata Colocation

» Encryption metadata: per-line counter
» Deduplication metadata: address mapping, reverted hash

INnitAddr:
hash:

InitAddr:
realAddr:

0 1 2 3 4 5 n
hol hi| c2| hs| cs | Cs Nn
(a) The inverted hash table
0 1 2 3 4 5 n
Co| C1 | Az2| C3| aAa| Aas dn

(b) The address mapping table

31

Metadata Colocation

» Encryption metadata: per-line counter
» Deduplication metadata: address mapping, reverted hash

intkAddr: 0 1 2 3 4 5 i
hash: hollh1 N5 -
(a) The inverted hash table Flc{;/
intAddr: 0 1 2 3 4 5 \ i
realAddr: o axlas| - =

(b) The address mapping table

Evaluation

» Simulation: gem5 + NVMain

Processor
CPU 4 cores, X86-64 processor, 2GHz
Private L1 cache 32KB, 8-way, LRU, 2-CPU-cycle latency
Private L2 cache 128KB, 8-way, LRU, 8-CPU-cycle latency
Shared L3 cache 2MB, 8-way, LRU, 25-CPU-cycle latency
Shared L4 cache 32MB, 8-way, LRU, 50-CPU-cycle latency
Main Memory Using PCM
Capacity 16GB, (16 banks, distributed in 2 ranks)

Read/write latency 75ns/300ns

Metadata cache 2MB, LRU, 25-CPU-cycle latency

> Benchmarks

— 12 Benchmarks from SPEC CPU2006: single-threaded
— 8 benchmarks from m PARSEC 2.1: multiple-threaded

33

NVM Endurance

a3BIdAR

PoTX
sdia

Jjewiuepiny
(ENBE]|
WIsadej
dnpop
yowrjApoq
S3OYISYIE[q
xdrdos

Suals

puieu
oI

Jour
mmyuenbqy
PEISI
wqp
$dBWO0IS
8

JAQVsn}ded
zdizq

100%
80%
60%
40%
20%

0%

uonINPIY LI

» DeWrite reduces 54% writes to secure NVM on average

34

Write Speedup

aguidAe

' T4
sdia

JjewmruepIng
J.113)
WIisadej
dnpop
yoenspoq
sa[oyasyoeIq
xados

duals
puieu
a] L

Jowr
wmuenbqq
PERTSI
wqr
soewoIs
33

A@VSN)Ied
zdizq

WIS rmMTnmMaN—-o

dnpoadg anip Aoud g

» DeWrite speeds up NVM writes by 4.2X on average

S&

Read Speedup

aduoae

P9Tx
sdia

J)ewjuepingy
JILIJY
WIISIILJ
dnpop
yarajApoq
SI[OYISHIT[q
xo[dos

duofs

plueu

(L

Jour
munjuenbqn
PEAISI
wq
SdBWoI3
208

NV Ssned
7dizq

WOl -o

dnpaadg peay Arowmd

» DeWrite speeds up NVM reads by 3.1X on average

36

Instructions per Cycle

JdeIoAe

pyoTx
sdia

JjewiuepiIny
JoLI1d)
wisadej
dnpap
yasvandpoq
safoyasyoelq
x3dos

Suals

pueu
Srux

Jw
wmuenhqy
PEIISI
wqy
soRmoIs

33

NQVS™8d
B cdizq

TN NS
N N - =

OdI 2ANERY

» DeWrite improves the IPC by 80% on average

37

Energy Consumption

80% ¢

70% E

60% E

50% E
40% E
30% E
20% E
10% El-
0% E

LS

Energy Reduction

L~ B Bl o) - o ou 2
%A%gggsgmggiiﬂ.%%.ﬁa:e@ %
S YESR 2 EEESZEEEEESETHY
= s £ =wg=ggu¢.’_ g
g & =% g€ ¢ § :
E 2 g = =

» DeWrite reduces energy consumption by 40% on average

38

Space Overheads of Metadata Storage & Cache

>

Metadata storage
— 6.25%

Metadata cache
— (a) 512KB

— (b) 512KB

— (c) 512KB

— (d) 128KB

— Total <2MB

100%

£95% F
2 90% F
T 85% F
[-*)

S 80% F
]

© 75%

70%

100%

E 96%
=4
= 92%

us

2 88% F

1

S 84%
80% L

\"& ”;ﬁ" ‘c?‘{d@#

EFEFEF SR
The Cache Size (Bytes)
(a) Hash table cache

=16 32 =64 128
#4256 @512 -+-1024

FE S
v 9
The Cache Size (Bytes)

(c) Inverted hash cache

100% ¢
£96% F
=4 F
= 92% =
=
2 88%
S F
U 84%

4256 512 1024

80% G- L :
& E S E S P

The Cache Size (Bytes)
(b) Address mapping cache

100%
98% F
96% F
94% |
92% F

Cache Hit Rate

90% t—— o '
a4 & & & g b&\mcs*@éf

The Cache Size (Bytes)

(d) Free space management cache

39

Conclusion

>

Memory encryption renders the bit-level write reduction
technigues ineffective for secure NVMM

This paper proposes DeWrite, a line-level write reduction
technique to enhance the endurance and performance

— Lightweight cahe-line-level deduplication
— Efficient synergization of deduplication and encryption

Reduce 54% writes, speed up memory writes and reads
of secure NVMM by 4.2X and 3.1X, on average

40

Thanks! Q&A

