
Improving the Performance and Endurance of
Encrypted Non-volatile Main Memory through

Deduplicating Writes

Pengfei Zuo, Yu Hua, Ming Zhao*, Wen Zhou, Yuncheng Guo
Huazhong University of Science and Technology (HUST), China

*Arizona State University (ASU), USA

The 51st IEEE/ACM International Symposium on Microarchitecture (MICRO), 2018

Non-volatile Memory (NVM)

Non-volatile memory is expected to replace or
complement DRAM in memory hierarchy

Non-volatility, low power, high density, large capacity

PCM ReRAM DRAM
Read (ns) 20-70 20-50 10
Write (ns) 150-220 70-140 10

Non-volatility √ √ ×

Standby Power ~0 ~0 High
Endurance 107~109 108~1012 1015

Density (Gb/cm2) 13.5 24.5 9.1

PCM

ReRAM
2K. Suzuki and S. Swanson. “A Survey of Trends in Non-Volatile Memory Technologies: 2000-2014”, IMW 2015.

C. Xu et al. “Overcoming the Challenges of Crossbar Resistive Memory Architectures”, HPCA, 2015.

Endurance and Security in Non-volatile Memory

NVM typically has limited endurance
– 107~109 for PCM, 108~1012 for ReRAM
– Writes have much higher latency than reads
– Write reduction matters for NVM

3

NVM is vulnerable to stolen DIMM attack
– NVM still retains data after systems power down
– An attacker can directly read data from the stolen NVM
– Memory encryption matters for NVM

However, memory encryption increases writes to NVM

44

Encryption Increases Bit Flips to NVM

Diffusion property of encryption
– The change of one bit in the original data has to

modify half of bits in the encrypted data

4

00000000…000000000000

10000000…000000000000

01011010…000010110100

10101100…000100101001
Encryption

Encryption

1 of 512 bits modified 256 of 512 bits modified

Old data in NVM:

New data:

Overwrite Overwrite

Encryption Increases Bit Flips to NVM

5

Young et al. “DEUCE: Write-efficient encryption for non-volatile memories”, in Proc. of ASPLOS, 2015.

4X

Encryption renders existing bit-level write reduction
techniques ineffective

Observation and Motivation

A large number of entire-line duplicates exist in real-world applications
6

SPEC CPU2006 PARSEC 2.1

Improving performance and endurance of encrypted
NVM through deduplicating entire-line writes

DeWrite

Lightweight cache-line-level
deduplication for NVMM
– Employ lightweight hashing
– Leverage NVM read/write asymmetry
– Eliminate a write at the cost of a read

7

Last Level Cache

Metadata
Cache

AES-ctr

Memory Controller

Dedup Logic

Metadata:
Direct encryption

Metadata
Storage Encrypted NVMM

Data:
CME

Data

OTP
Non-duplicate

Hardware Architecture

Efficient synergization between
deduplication and encryption
– Opportunistic parallelism
– Metadata storage co-location

Prediction-based Parallelism

8

Detect Duplication

Is duplicate ?

Encrypt Data

Write to NVM

Cancel the Write

No

Yes

A Write Request

The direct way

Be inefficient for non-duplicate writes
• Serial execution latency

Prediction-based Parallelism

9

Detect Duplication

Is duplicate ?

Encrypt Data

Write to NVM

Cancel the Write

No

Yes

A Write Request

The direct way

Detect Duplication

Is duplicate ?

Write to NVM

Discard the Ciphertext

No

Encrypt Data

Yes

A Write Request

The parallel way

Be inefficient for non-duplicate writes
• Serial execution latency

Be inefficient for duplicate writes
• Unnecessary encryption

Prediction-based Parallelism

10

Detect Duplication

Is duplicate ?

Encrypt Data

Write to NVM

Cancel the Write

No

Yes

A Write Request

The direct way

Detect Duplication

Is duplicate ?

Write to NVM

Discard the Ciphertext

No

Encrypt Data

Yes

A Write Request

The parallel way

Be inefficient for non-duplicate writes
• Serial execution latency

Be inefficient for duplicate writes
• Unnecessary encryption

Optimal: use the direct way for duplicate writes and the parallel way
for non-duplicate writes

Prediction-based Parallelism

11

Detect Duplication

Is duplicate ?

Encrypt Data

Write to NVM

Cancel the Write

No

Yes

A Write Request

The direct way

Detect Duplication

Is duplicate ?

Write to NVM

Discard the Ciphertext

No

Encrypt Data

Yes

A Write Request

The parallel way

Prediction
Duplicate Non-duplicate

Prediction-based Parallelism

How to know whether a cache line is duplicate beforehand?
Observation: duplication states of most memory writes are the
same as those of their previous ones
A prediction scheme:

12

MemoryCPU

ABCD

1: duplicate 0: non-duplicate

History window

Prediction-based Parallelism

13

MemoryCPU
A

BCD

1: duplicate 0: non-duplicate

History window

How to know whether a cache line is duplicate beforehand?
Observation: duplication states of most memory writes are the
same as those of their previous ones
A prediction scheme:

Prediction-based Parallelism

14

MemoryCPU

1: duplicate 0: non-duplicate

A

0

BCD

History window

How to know whether a cache line is duplicate beforehand?
Observation: duplication states of most memory writes are the
same as those of their previous ones
A prediction scheme:

Prediction-based Parallelism

15

MemoryCPU

1: duplicate 0: non-duplicate

A

0

B

CD

History window

How to know whether a cache line is duplicate beforehand?
Observation: duplication states of most memory writes are the
same as those of their previous ones
A prediction scheme:

Prediction-based Parallelism

16

MemoryCPU

1: duplicate 0: non-duplicate

A

0

B

CD

History window

Predict

How to know whether a cache line is duplicate beforehand?
Observation: duplication states of most memory writes are the
same as those of their previous ones
A prediction scheme:

Prediction-based Parallelism

17

MemoryCPU

1: duplicate 0: non-duplicate

A

0

BCD

History window
0

How to know whether a cache line is duplicate beforehand?
Observation: duplication states of most memory writes are the
same as those of their previous ones
A prediction scheme:

Prediction-based Parallelism

18

MemoryCPU

1: duplicate 0: non-duplicate

ABD

History window
00

C

How to know whether a cache line is duplicate beforehand?
Observation: duplication states of most memory writes are the
same as those of their previous ones
A prediction scheme:

Prediction-based Parallelism

19

MemoryCPU

1: duplicate 0: non-duplicate

AB

C

D

History window

Predict
00

How to know whether a cache line is duplicate beforehand?
Observation: duplication states of most memory writes are the
same as those of their previous ones
A prediction scheme:

Prediction-based Parallelism

20

MemoryCPU

1: duplicate 0: non-duplicate

ABCD

History window

92.1% accuracy

000

How to know whether a cache line is duplicate beforehand?
Observation: duplication states of most memory writes are the
same as those of their previous ones
A prediction scheme:

Prediction-based Parallelism

21

MemoryCPU

1: duplicate 0: non-duplicate

ABCD

History window
0 00

How to know whether a cache line is duplicate beforehand?
Observation: duplication states of most memory writes are the
same as those of their previous ones
A prediction scheme:

Prediction-based Parallelism

22

MemoryCPU

1: duplicate 0: non-duplicate

ABC

D

History window
0 00

Predict

How to know whether a cache line is duplicate beforehand?
Observation: duplication states of most memory writes are the
same as those of their previous ones
A prediction scheme:

Prediction-based Parallelism

23

MemoryCPU

1: duplicate 0: non-duplicate

ABC

D

History window
0 0

92.1% 93.6%

0
Predict

How to know whether a cache line is duplicate beforehand?
Observation: duplication states of most memory writes are the
same as those of their previous ones
A prediction scheme:

Prediction-based Parallelism

24

MemoryCPU

1: duplicate 0: non-duplicate

ABC

D

History window
0 0

92.1% 93.6%

0
Predict

How to know whether a cache line is duplicate beforehand?
Observation: duplication states of most memory writes are the
same as those of their previous ones
A prediction scheme:

Why can we achieve such a high prediction accuracy?

Prediction-based Parallelism

How to know whether a cache line is duplicate beforehand?
Observation: duplication states of most memory writes are the
same as those of their previous ones
A prediction scheme:

Rationale: the size of duplicate (non-duplicate) data is usually
much larger than a cache line
– E.g., a page (4KB) is duplicate or non-duplicate: 100% accuracy

25

Why can we achieve such a high prediction accuracy?

92.1% 93.6%

Lightweight Deduplication for NVMM

Traditional deduplication

26

SHA1/
MD5

SHA1/
MD5

Non-duplicate

Duplicate

Hash computation latency: >300ns
≈ NVM write latencyMatch?Match?

Y

N

Lightweight Deduplication for NVMM

Traditional deduplication

27

SHA1/
MD5

SHA1/
MD5

Non-duplicate

Duplicate

Hash computation latency: >300ns
≈ NVM write latency

DeWrite

CRC-32CRC-32 Match?Match?

Non-duplicate

Read data
and compare

Read data
and compare Match?Match? Duplicate

Match?Match?

15ns
75ns+1ns

Y

N

Y Y

N
N

The latency is 91ns at most

Metadata Colocation

Encryption metadata: per-line counter

28

AES-ctr

LineAddr Counter

Key +
Plaintext Plaintext

+
Ciphertext Ciphertext

Encryption Decryption

OTP

Metadata Colocation

Encryption metadata: per-line counter

Deduplication metadata: address mapping, reverted hash

29

Metadata Colocation

30

- - a2 - a4 a5 an…

0 1 2 3 4 5 ninitAddr:
realAddr:

h0 h1 - h3 - - hn…

0 1 2 3 4 5 ninitAddr:
hash:

(b) The address mapping table

(a) The inverted hash table

Deduplicated

Encryption metadata: per-line counter

Deduplication metadata: address mapping, reverted hash

‘-’: empty

Metadata Colocation

31

c0 c1 a2 c3 a4 a5 an…

0 1 2 3 4 5 ninitAddr:
realAddr:

h0 h1 c2 h3 c5 hn…

0 1 2 3 4 5 ninitAddr:

c4hash:

Encryption metadata: per-line counter

Deduplication metadata: address mapping, reverted hash

(b) The address mapping table

(a) The inverted hash table

Metadata Colocation

32

c0 c1 a2 c3 a4 a5 an…

0 1 2 3 4 5 ninitAddr:
realAddr:

h0 h1 c2 h3 c5 hn…

0 1 2 3 4 5 ninitAddr:

c4

Flag

hash:

Encryption metadata: per-line counter

Deduplication metadata: address mapping, reverted hash

(b) The address mapping table

(a) The inverted hash table

Evaluation

Benchmarks
– 12 Benchmarks from SPEC CPU2006: single-threaded
– 8 benchmarks from m PARSEC 2.1: multiple-threaded

33

Simulation: gem5 + NVMain

NVM Endurance

DeWrite reduces 54% writes to secure NVM on average

34

Write Speedup

35

DeWrite speeds up NVM writes by 4.2X on average

Read Speedup

36

DeWrite speeds up NVM reads by 3.1X on average

Instructions per Cycle

37

DeWrite improves the IPC by 80% on average

Energy Consumption

38

DeWrite reduces energy consumption by 40% on average

Space Overheads of Metadata Storage & Cache

39

Metadata storage
– 6.25%

Metadata cache
– (a) 512KB
– (b) 512KB
– (c) 512KB
– (d) 128KB
– Total <2MB

Conclusion
Memory encryption renders the bit-level write reduction
techniques ineffective for secure NVMM

This paper proposes DeWrite, a line-level write reduction
technique to enhance the endurance and performance
– Lightweight cahe-line-level deduplication
– Efficient synergization of deduplication and encryption

Reduce 54% writes, speed up memory writes and reads
of secure NVMM by 4.2× and 3.1×, on average

40

Thanks! Q&A

