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Non-volatile Memory (NVM)

Non-volatile memory is expected to replace or 
complement DRAM in memory hierarchy

Non-volatility, low power, high density, large capacity

PCM ReRAM DRAM
Read (ns) 20-70 20-50 10
Write (ns) 150-220 70-140 10

Non-volatility √ √ ×

Standby Power ~0 ~0 High
Endurance 107~109 108~1012 1015

Density (Gb/cm2) 13.5 24.5 9.1

PCM

ReRAM
2K. Suzuki and S. Swanson. “A Survey of Trends in Non-Volatile Memory Technologies: 2000-2014”, IMW 2015.

C. Xu et al. “Overcoming the Challenges of Crossbar Resistive Memory Architectures”, HPCA, 2015.



Endurance and Security in Non-volatile Memory

NVM typically has limited endurance
– 107~109 for PCM, 108~1012 for ReRAM
– Writes have much higher latency than reads
– Write reduction matters for NVM
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NVM is vulnerable to stolen DIMM attack
– NVM still retains data after systems power down
– An attacker can directly read data from the stolen NVM 
– Memory encryption matters for NVM

However, memory encryption increases writes to NVM 
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Encryption Increases Bit Flips to NVM

Diffusion property of encryption
– The change of one bit in the original data has to 

modify half of bits in the encrypted data
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00000000…000000000000

10000000…000000000000

01011010…000010110100

10101100…000100101001
Encryption

Encryption

1 of 512 bits modified 256 of 512 bits modified

Old data in NVM:

New data:

Overwrite Overwrite



Encryption Increases Bit Flips to NVM
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Young et al. “DEUCE: Write-efficient encryption for non-volatile memories”, in Proc. of ASPLOS, 2015.

4X

Encryption renders existing bit-level write reduction 
techniques ineffective



Observation and Motivation

A large number of entire-line duplicates exist in real-world applications
6

SPEC CPU2006 PARSEC 2.1

Improving performance and endurance of encrypted 
NVM through deduplicating entire-line writes



DeWrite

Lightweight cache-line-level 
deduplication for NVMM
– Employ lightweight hashing
– Leverage NVM read/write asymmetry
– Eliminate a write at the cost of a read
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Last Level Cache

Metadata
Cache

AES-ctr

Memory Controller

Dedup Logic

Metadata:
Direct encryption

Metadata
Storage Encrypted NVMM

Data: 
CME

Data

OTP
Non-duplicate

Hardware Architecture

Efficient synergization between 
deduplication and encryption 
– Opportunistic parallelism
– Metadata storage co-location



Prediction-based Parallelism
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Detect Duplication

Is duplicate ?

Encrypt Data

Write to NVM

Cancel the Write

No

Yes

A Write Request

The direct way 

Be inefficient for non-duplicate writes
• Serial execution latency



Prediction-based Parallelism
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Detect Duplication

Is duplicate ?

Encrypt Data

Write to NVM

Cancel the Write

No

Yes

A Write Request

The direct way 

Detect Duplication

Is duplicate ?

Write to NVM

Discard the Ciphertext

No

Encrypt Data

Yes

A Write Request

The parallel way 

Be inefficient for non-duplicate writes
• Serial execution latency

Be inefficient for duplicate writes
• Unnecessary encryption



Prediction-based Parallelism
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Detect Duplication

Is duplicate ?

Encrypt Data

Write to NVM

Cancel the Write

No

Yes

A Write Request

The direct way 

Detect Duplication

Is duplicate ?

Write to NVM

Discard the Ciphertext

No

Encrypt Data

Yes

A Write Request

The parallel way 

Be inefficient for non-duplicate writes
• Serial execution latency

Be inefficient for duplicate writes
• Unnecessary encryption

Optimal: use the direct way for duplicate writes and the parallel way 
for non-duplicate writes



Prediction-based Parallelism
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Detect Duplication

Is duplicate ?

Encrypt Data

Write to NVM

Cancel the Write

No

Yes

A Write Request

The direct way 

Detect Duplication

Is duplicate ?

Write to NVM

Discard the Ciphertext

No

Encrypt Data

Yes

A Write Request

The parallel way 

Prediction
Duplicate Non-duplicate



Prediction-based Parallelism

How to know whether a cache line is duplicate beforehand?
Observation: duplication states of most memory writes are the 
same as those of their previous ones
A prediction scheme:
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MemoryCPU

ABCD

1: duplicate    0: non-duplicate

History window



Prediction-based Parallelism
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MemoryCPU
A

BCD

1: duplicate    0: non-duplicate

History window

How to know whether a cache line is duplicate beforehand?
Observation: duplication states of most memory writes are the 
same as those of their previous ones
A prediction scheme:



Prediction-based Parallelism
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MemoryCPU

1: duplicate    0: non-duplicate

A

0

BCD

History window

How to know whether a cache line is duplicate beforehand?
Observation: duplication states of most memory writes are the 
same as those of their previous ones
A prediction scheme:



Prediction-based Parallelism
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MemoryCPU

1: duplicate    0: non-duplicate

A

0

B

CD

History window

How to know whether a cache line is duplicate beforehand?
Observation: duplication states of most memory writes are the 
same as those of their previous ones
A prediction scheme:



Prediction-based Parallelism
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MemoryCPU

1: duplicate    0: non-duplicate

A

0

B

CD

History window

Predict

How to know whether a cache line is duplicate beforehand?
Observation: duplication states of most memory writes are the 
same as those of their previous ones
A prediction scheme:



Prediction-based Parallelism
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MemoryCPU

1: duplicate    0: non-duplicate

A

0

BCD

History window
0

How to know whether a cache line is duplicate beforehand?
Observation: duplication states of most memory writes are the 
same as those of their previous ones
A prediction scheme:



Prediction-based Parallelism
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MemoryCPU

1: duplicate    0: non-duplicate

ABD

History window
00

C

How to know whether a cache line is duplicate beforehand?
Observation: duplication states of most memory writes are the 
same as those of their previous ones
A prediction scheme:



Prediction-based Parallelism
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MemoryCPU

1: duplicate    0: non-duplicate

AB

C

D

History window

Predict
00

How to know whether a cache line is duplicate beforehand?
Observation: duplication states of most memory writes are the 
same as those of their previous ones
A prediction scheme:



Prediction-based Parallelism
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MemoryCPU

1: duplicate    0: non-duplicate

ABCD

History window

92.1% accuracy

000

How to know whether a cache line is duplicate beforehand?
Observation: duplication states of most memory writes are the 
same as those of their previous ones
A prediction scheme:



Prediction-based Parallelism
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MemoryCPU

1: duplicate    0: non-duplicate

ABCD

History window
0 00

How to know whether a cache line is duplicate beforehand?
Observation: duplication states of most memory writes are the 
same as those of their previous ones
A prediction scheme:



Prediction-based Parallelism
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MemoryCPU

1: duplicate    0: non-duplicate

ABC

D

History window
0 00

Predict

How to know whether a cache line is duplicate beforehand?
Observation: duplication states of most memory writes are the 
same as those of their previous ones
A prediction scheme:



Prediction-based Parallelism
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MemoryCPU

1: duplicate    0: non-duplicate

ABC

D

History window
0 0

92.1%         93.6%

0
Predict

How to know whether a cache line is duplicate beforehand?
Observation: duplication states of most memory writes are the 
same as those of their previous ones
A prediction scheme:



Prediction-based Parallelism

24

MemoryCPU

1: duplicate    0: non-duplicate

ABC

D

History window
0 0

92.1%         93.6%

0
Predict

How to know whether a cache line is duplicate beforehand?
Observation: duplication states of most memory writes are the 
same as those of their previous ones
A prediction scheme:

Why can we achieve such a high prediction accuracy?



Prediction-based Parallelism

How to know whether a cache line is duplicate beforehand?
Observation: duplication states of most memory writes are the 
same as those of their previous ones
A prediction scheme:

Rationale: the size of duplicate (non-duplicate) data is usually 
much larger than a cache line 
– E.g., a page (4KB) is duplicate or non-duplicate: 100% accuracy
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Why can we achieve such a high prediction accuracy?

92.1%         93.6%



Lightweight Deduplication for NVMM

Traditional deduplication
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SHA1/
MD5

SHA1/
MD5

Non-duplicate

Duplicate

Hash computation latency: >300ns 
≈ NVM write latencyMatch?Match?

Y

N



Lightweight Deduplication for NVMM

Traditional deduplication
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SHA1/
MD5

SHA1/
MD5

Non-duplicate

Duplicate

Hash computation latency: >300ns 
≈ NVM write latency

DeWrite

CRC-32CRC-32 Match?Match?

Non-duplicate

Read data 
and compare

Read data 
and compare Match?Match? Duplicate

Match?Match?

15ns
75ns+1ns

Y

N

Y Y

N
N

The latency is 91ns at most



Metadata Colocation

Encryption metadata: per-line counter
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AES-ctr

LineAddr Counter

Key +
Plaintext Plaintext

+
Ciphertext Ciphertext

Encryption Decryption

OTP



Metadata Colocation

Encryption metadata: per-line counter

Deduplication metadata: address mapping, reverted hash
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Metadata Colocation
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- - a2 - a4 a5 an…

0 1 2 3 4 5 ninitAddr:
realAddr:

h0 h1 - h3 - - hn…

0 1 2 3 4 5 ninitAddr:
hash:

(b) The address mapping table 

(a) The inverted hash table

Deduplicated

Encryption metadata: per-line counter

Deduplication metadata: address mapping, reverted hash

‘-’: empty



Metadata Colocation
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c0 c1 a2 c3 a4 a5 an…

0 1 2 3 4 5 ninitAddr:
realAddr:

h0 h1 c2 h3 c5 hn…

0 1 2 3 4 5 ninitAddr:

c4hash:

Encryption metadata: per-line counter

Deduplication metadata: address mapping, reverted hash

(b) The address mapping table 

(a) The inverted hash table



Metadata Colocation
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c0 c1 a2 c3 a4 a5 an…

0 1 2 3 4 5 ninitAddr:
realAddr:

h0 h1 c2 h3 c5 hn…

0 1 2 3 4 5 ninitAddr:

c4

Flag

hash:

Encryption metadata: per-line counter

Deduplication metadata: address mapping, reverted hash

(b) The address mapping table 

(a) The inverted hash table



Evaluation

Benchmarks
– 12 Benchmarks from SPEC CPU2006: single-threaded
– 8 benchmarks from m PARSEC 2.1: multiple-threaded
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Simulation: gem5 + NVMain



NVM Endurance

DeWrite reduces 54% writes to secure NVM on average
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Write Speedup
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DeWrite speeds up NVM writes by 4.2X on average



Read Speedup
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DeWrite speeds up NVM reads by 3.1X on average



Instructions per Cycle
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DeWrite improves the IPC by 80% on average



Energy Consumption
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DeWrite reduces energy consumption by 40% on average



Space Overheads of Metadata Storage & Cache
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Metadata storage
– 6.25%

Metadata cache
– (a) 512KB
– (b) 512KB
– (c) 512KB
– (d) 128KB
– Total <2MB 



Conclusion
Memory encryption renders the bit-level write reduction 
techniques ineffective for secure NVMM

This paper proposes DeWrite, a line-level write reduction 
technique to enhance the endurance and performance
– Lightweight cahe-line-level deduplication 
– Efficient synergization of deduplication and encryption

Reduce 54% writes, speed up memory writes and reads 
of secure NVMM by 4.2× and 3.1×, on average 
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