

SuperMem: Enabling Applicationtransparent Secure Persistent Memory with Low Overheads

Pengfei Zuo^{1,2}, Yu Hua¹, Yuan Xie² ¹ Huazhong University of Science and Technology, China ² University of California at Santa Barbara, USA

52nd IEEE/ACM International Symposium on Microarchitecture (MICRO), 2019

Images from Internet

DRAM → Persistent Memory

Two Key Challenges for Persistent Memory

Counter Mode Encryption

Counter Mode Encryption

Data and counter cannot reach NVM at the same time

Data and counter cannot reach NVM at the same time

Data and counter cannot reach NVM at the same time

Data and counter cannot reach NVM at the same time

Clflush and mfence cannot operate the counter cache

Existing Solutions (Write-back Counter Cache)

Exploit a write-through counter cache

- No large battery backup
- No software-level modifications
- No need to correct counters
- Double writes

A counter write coalescing scheme

- Reduce the number of write requests
- A cross-bank counter storage scheme
 - Speedup memory writes

Asynchronous DRAM refresh (ADR): cache lines reaching the write queue can be considered durable.

Write-through Counter Cache

- Ensure that data and its counter reach the write queue in the same time
 - Write through counter cache

Write-through Counter Cache

- Ensure that data and its counter reach the write queue in the same time
 - Write through counter cache
 - Add a register

CPU	Flu(A)
Memory Ctrl	Read(Ac) Ac++ Enc(A) Ack(A)
Write Queue	App(Ac+A)
Register	Sto(Ac) Sto(A)

Cross-bank Counter Storage

SingleBank: Counters are stored in a continuous area in NVM [ASPLOS'15, ASPLOS'16, HPCA'18]

Cross-bank Counter Storage

SameBank: Stores the counters of data into their local banks

Cross-bank Counter Storage

XBank: Stores each data and its counter into different banks to leverage bank parallelism

Spatial locality of counter storage

- All counters of a page are stored in a counter line

Spatial locality of counter storage

- All counters of a page are stored in a counter line

An example of writing 4 lines within a page

An example of writing 4 lines within a page

Write Queue

An example of writing 4 lines within a page

Write Queue

Coalescing counter writes in the write queue

26

Coalescing counter writes in the write queue

With CWC

Write Queue

Performance Evaluation

Model NVM using gem5 and NVMain

Comparisons

Unsec: An un-encrypted NVM

WB: An ideal write-back scheme

WT: A write-through scheme

WT+CWC: A write-through scheme with CWC

WT+Xbank: A write-through scheme with XBank

SuperMem

Benchmarks

Array: Randomly swapping entries

Queue: Randomly enqueueing and dequeueing

B-tree: Inserting random KVs

Hash Table: Inserting random KVs

RB-tree: Inserting random KVs

Transaction Execution Latency – Single-core

Transaction size: 256B

Transaction size: 4KB

SuperMem achieves the performance comparable to a secure NVM with an ideal write-back cache (WB)

Transaction Execution Latency – Multi-core

SuperMem achieves the performance comparable to a secure NVM with an ideal write-back cache (WB)

The Number of Write Requests

SuperMem reduces up to 50% of write requests by using the CWC scheme

Conclusion

Problem

Memory encryption incurs crash inconsistency issue

Existing Work

- Using a write-back counter cache
- Large battery backup, software-level modification, or error correction

Our Solution

SuperMem: exploit a write-through counter cache

- Large battery backup, software-level modification, error correction
- Counter write coalescing for reducing writes
- Cross-bank counter storage for speeding up writes

Thanks! Q&A