
SuperMem: Enabling Application-
transparent Secure Persistent Memory

with Low Overheads

Pengfei Zuo1,2, Yu Hua1, Yuan Xie2

1 Huazhong University of Science and Technology, China
2 University of California at Santa Barbara, USA

52nd IEEE/ACM International Symposium on Microarchitecture (MICRO), 2019

DRAM Persistent Memory

2

Low power

Images from Internet

Two Key Challenges for Persistent Memory

3

Persistence Security

Volatile:

Non-volatile:

Core

Cache

Persistent Memory

Inconsistency

Clflush, mfence & logging for crash consistency Memory encryption for data security

username,
password

Persistent MemoryGap between persistence and security:
Encryption incurs new inconsistency problem

Counter Mode Encryption

4

DataCounter

AES Engine

One-time pad
XOR

Encrypted Data

Counter CacheWrite
Back CPU Cache Write

Back

Counter Mode Encryption

5

Counter Cache CPU Cache

Encrypted
Data

Updated
Counter

Write
Back

Write
Back

Crash Inconsistency Caused by Encryption

6

Counter Cache CPU Cache

Encrypted
Data

Updated
Counter

Data and counter cannot reach NVM at the same time

Write
Back

Write
Back

Crash Inconsistency Caused by Encryption

7

Counter Cache CPU Cache

Encrypted
Data

Updated
CounterCASE 1:

Data and counter cannot reach NVM at the same time

Write
Back

Write
Back

Crash Inconsistency Caused by Encryption

8

Counter Cache CPU Cache

Encrypted
Data

Updated
CounterCASE 2:

Data and counter cannot reach NVM at the same time

Write
Back

Write
Back

Crash Inconsistency Caused by Encryption

9

Counter Cache CPU Cache

Data and counter cannot reach NVM at the same time
Clflush and mfence cannot operate the counter cache

Encrypted
Data

Updated
Counter

Write
Back

Write
Back

Clflush

Existing Solutions (Write-back Counter Cache)

10

Large Battery Backup
[Awad et al., ASPLOS’16]

[Zuo et al., MICRO’18]

Software-level Modification
[Liu et al., HPCA’18]

Error Correction
[Ye et al., MICRO’18]

Counter
Cache

CPU
Cache

Battery

New programming primitives
•counter_cache_writeback()
•CounterAtomic

App

EncryptedUnencrypted

Check

Expensive Portability limitation Long recovery time

SuperMem: Secure and Persistent Memory

Exploit a write-through counter cache
– No large battery backup
– No software-level modifications
– No need to correct counters
– Double writes
A counter write coalescing scheme
– Reduce the number of write requests
A cross-bank counter storage scheme
– Speedup memory writes

11

Asynchronous DRAM refresh (ADR):
cache lines reaching the write queue

can be considered durable.

SuperMem: Secure and Persistent Memory

12

Asynchronous DRAM refresh (ADR):
cache lines reaching the write queue

can be considered durable.

Write-through counter cache
(Guarantee consistency)

Counter write coalescing
(Reduce writes)

Cross-bank counter storage
(Speedup writes)

Application-transparent

SuperMem: Secure and Persistent Memory

13

Asynchronous DRAM refresh (ADR):
cache lines reaching the write queue

can be considered durable.

Write-through counter cache
(Guarantee consistency)

Counter write coalescing
(Reduce writes)

Cross-bank counter storage
(Speedup writes)

Write-through Counter Cache

Ensure that data and its counter reach the write
queue in the same time
– Write through counter cache

14

Memory Ctrl
CPU

Write Queue

Flu(A)

Read(Ac) Ac++ Enc(A) Ack(A)

Ret(A)

App(Ac) App(A)

Register

Write-through Counter Cache

Ensure that data and its counter reach the write
queue in the same time
– Write through counter cache
– Add a register

15

Memory Ctrl
CPU

Write Queue

Flu(A)

Read(Ac) Ac++ Enc(A)

Sto(Ac) Sto(A)

App(Ac+A)

Ack(A)

Ret(A)

SuperMem: Secure and Persistent Memory

16

Asynchronous DRAM refresh (ADR):
cache lines reaching the write queue

can be considered durable.

Write-through counter cache
(Guarantee consistency)

Counter write coalescing
(Reduce writes)

Cross-bank counter storage
(Speedup writes)

Cross-bank Counter Storage

SingleBank: Counters are stored in a continuous
area in NVM [ASPLOS’15, ASPLOS’16, HPCA’18]

17

Data0 Data1 Data2 Ctr0, Ctr1, Ctr2

0 1 2 3 4 5 6 7Bank ID:

Data Area

Ctr Area

Bottleneck

Cross-bank Counter Storage

SameBank: Stores the counters of data into their
local banks

18

0 1 2 3 4 5 6 7Bank ID:

Data Area

Ctr Area

0 1 2 3 4 5 6 7

Ctr0, Data0 Ctr1, Data1 Ctr2, Data2 2X write latency

Cross-bank Counter Storage

XBank: Stores each data and its counter into
different banks to leverage bank parallelism

19

0 1 2 3 4 5 6 7Bank ID:

Data Area

Ctr Area

4 5 6 7 0 1 2 3

Data0 Data1 Data2 Ctr0 Ctr1 Ctr2

SuperMem: Secure and Persistent Memory

20

Asynchronous DRAM refresh (ADR):
cache lines reaching the write queue

can be considered durable.

Write-through counter cache
(Guarantee consistency)

Counter write coalescing
(Reduce writes)

Cross-bank counter storage
(Speedup writes)

Locality-aware Counter Write Coalescing

Spatial locality of counter storage
– All counters of a page are stored in a counter line

21

Line1 Line2 Line3 Line4 Line64… … … …

M m1 m2 m3 m4 m64…

A page:
(64 lines)

A counter line:
(64B)

Locality-aware Counter Write Coalescing

Spatial locality of counter storage
– All counters of a page are stored in a counter line

22

Line1 Line2 Line3 Line4 Line64… … … …A page:
(64 lines)

Spatial locality of log and data writes
A log entry or the transaction data

Locality-aware Counter Write Coalescing

23

Line1 Line2 Line3 Line4 Line64… … … …A page:
(64 lines)

An example of writing 4 lines within a page

AAcBBcCCcDDc

Locality-aware Counter Write Coalescing

24

A B C D

Write Queue

An example of writing 4 lines within a page

Cache

AAcBBcCCcDDc

Locality-aware Counter Write Coalescing

25

Write Queue

An example of writing 4 lines within a page
Ac: M m1

' m2 m3 m4 m64…
Bc: M m1

' m2
' m3 m4 m64…

Cc: M m1
' m2

' m3
' m4 m64…

Dc: M m1
' m2

' m3
' m4

' m64…

AAcBBcCCcDDc

Locality-aware Counter Write Coalescing

26

Write Queue

Ac: M m1
' m2 m3 m4 m64…

Bc: M m1
' m2

' m3 m4 m64…
Cc: M m1

' m2
' m3

' m4 m64…
Dc: M m1

' m2
' m3

' m4
' m64…

Coalescing counter writes in the write queue

AAcBBcCCcDDc

Locality-aware Counter Write Coalescing (CWC)

27

Write Queue

Coalescing counter writes in the write queue

Without CWC

ABCDDc

With CWC

Performance Evaluation

Model NVM using gem5 and NVMain

Comparisons
Unsec: An un-encrypted NVM
WB: An ideal write-back scheme
WT: A write-through scheme
WT+CWC: A write-through scheme
with CWC
WT+Xbank: A write-through
scheme with XBank
SuperMem

Benchmarks
Array: Randomly swapping entries
Queue: Randomly enqueueing and
dequeueing
B-tree: Inserting random KVs
Hash Table: Inserting random KVs
RB-tree: Inserting random KVs

28

Transaction Execution Latency – Single-core

29

Array Queue B-tree Hash Table RB-tree
0.0

0.5

1.0

1.5

2.0
 Unsec WB WT WT+CWC WT+XBank SuperMem

No
rm

al
ize

d
Ex

ec
ut

io
n

La
te

nc
y

Array Queue B-tree Hash Table RB-tree
0.0

0.5

1.0

1.5

2.0

No
rm

al
ize

d
Ex

ec
ut

io
n

La
te

nc
y Unsec WB WT WT+CWC WT+XBank SuperMem

SuperMem achieves the performance comparable to a secure
NVM with an ideal write-back cache (WB)

Transaction size: 256B Transaction size: 4KB

WT+CWC

Array Queue B-tree Hash Table RB-tree
0.0

0.5

1.0

1.5

2.0

No
rm

al
ize

d
Ex

ec
ut

io
n

La
te

nc
y Unsec WB WT WT+CWC WT+XBank SuperMem

Transaction Execution Latency – Multi-core

30

Array Queue B-tree Hash Table RB-tree
0.0

0.5

1.0

1.5

2.0
 Unsec WB WT WT+CWC WT+XBank SuperMem

No
rm

al
ize

d
Ex

ec
ut

io
n

La
te

nc
y

SuperMem achieves the performance comparable to a secure
NVM with an ideal write-back cache (WB)

2 programs 8 programs

WT+XBank

The Number of Write Requests

31

Array
Queue

B-tre
e

Hash Table
RB-tre

e
0.0

0.5

1.0

1.5

2.0

N
or

m
al

iz
ed

 #
 o

f W
rit

es

 Unsec WB WT SuperMem

Array
Queue

B-tre
e

Hash Table
RB-tre

e
0.0

0.5

1.0

1.5

2.0
 Unsec WB WT SuperMem

N
or

m
al

iz
ed

 #
 o

f W
rit

es

Array
Queue

B-tre
e

Hash Table
RB-tre

e
0.0

0.5

1.0

1.5

2.0

N
or

m
al

iz
ed

 #
 o

f W
rit

es

 Unsec WB WT SuperMem

SuperMem reduces up to 50% of write requests by using
the CWC scheme

Transaction size: 256B Transaction size: 1KB Transaction size: 4KB

Conclusion

32

Problem

Existing Work

Our Solution

Memory encryption incurs crash inconsistency issue

Using a write-back counter cache
Large battery backup, software-level modification, or error correction

SuperMem: exploit a write-through counter cache
Large battery backup, software-level modification, error correction
Counter write coalescing for reducing writes
Cross-bank counter storage for speeding up writes

Thanks! Q&A

