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Abstract
Data deduplication as an important middleware plays an
essential role in current backup systems due to the high
space efficiency, which however suffers from low restore
performance, since the chunks are heavily fragmented.
Existing systems leverage caching and rewriting schemes
to reduce the number of container reads to restore the
original data. However, when storing a large number
of versions, the caching schemes become inefficient
since each cached container consists of a few required
chunks due to the exacerbated fragmentation, while
the rewriting schemes consume more space to store the
duplicate chunks.

In this paper, we explore and exploit the behaviors
of the fragmented chunks in the backup systems. Based
on the observations, we propose the open-sourced
HiDeStore1, a High-performance Deduplication and
reStore backup system without decreasing the dedupli-
cation ratio. The main insight is to enhance the physical
locality for the new backup versions during the dedupli-
cation process. Thus, the chunks are stored closely and
the number of container reads significantly decreases to
restore the original data. Compared with state-of-the-art
deduplication and restore schemes, HiDeStore reduces
the index lookup overhead by 38% and improves the
restore performance by up to 1.6×, without decreasing
the deduplication ratio.

CCS Concepts: • Software and its engineering →
Software system structures.

1The source code of HiDeStore is available at http-
s://github.com/iotlpf/HiDeStore
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1 Introduction
The data grow exponentially in the widely used applica-
tions, such as IoT embeddings, artificial intelligence and
cloud computing, which require efficient and large-scale
storage capacities [7, 17, 18]. To save space and improve
storage efficiency, data deduplication [31, 41] becomes
an efficient middleware to eliminate the duplicate
data, and has been widely used in current storage
systems [11, 24–26, 32, 39], especially for storage backup
systems [14, 19, 30].

In the chunk-based deduplication systems [21, 31,
41], the data streams are divided into chunks with
on average 4-8KB, which are further represented by
fingerprints calculated via a cryptographic hash function,
such as SHA-1 and MD5. Since the probability of a
hash collision is much smaller than that of a hardware
error [31], the chunks that share the same fingerprint
are identified as duplicate chunks. To save the space,
the duplicate chunks are stored in the containers (i.e.,
typical 4MB space to store the chunks) only once on
the persistent storage, such as HDD or SSD. The data
streams are then represented as the lists of the chunk
references (i.e., refer to the physical locations of the
chunks), called recipes, which are used to restore the
original data.

However, the deduplication process incurs severe
fragmentation problem [13, 16, 20], which hinders the
restore performance. Specifically, in a continuous data
stream, the unique chunks are stored into new containers
when arriving, and the identified duplicate chunks are
referenced to the containers that have been written for
a long time. As a result, we have to read a large number
of containers to obtain all the chunks, incurring lots of
expensive I/Os to the persistent storage. Moreover, the
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chunk fragmentation problem is exacerbated over time,
which severely decreases the restore performance.

Existing systems leverage two kinks of schemes to
improve the restore performance. First, the caching-
based schemes (including container-based caching [13,
16, 28], chunk-based caching [9, 20, 22] and forward
assembly [9, 20]) are proposed to reduce the number
of container reads. The main insight is to exploit the
logical locality of the backup stream, i.e., the chunks
are stored in the same order as they first appear in
the stream. Therefore, the read containers have high
probability to contain the subsequent chunks of the
same data stream, which exhibits good cache-friendly
locality. Second, some schemes rewrite the duplicate
chunks to enhance the physical locality (i.e., the physical
layout of a backup stream after deduplication) of the
data stream [8, 13, 16, 27]. By writing some duplicate
chunks to the new containers, the chunks belonging to
the same data streams are stored closely, hence fewer
containers are read to restore the original data.

However, existing schemes become inefficient when
storing a large number of backup versions due to the
following limitations. First, the caching schemes fail to
alleviate the fragmentation problem, since the chunks
are stored into more containers as the backup data
increase. As a result, one container contains a few chunks
belonging to the same data stream, which becomes
inefficient to be cached. Second, although rewriting
some duplicate chunks enhances the physical locality,
the deduplication ratio decreases due to the existence of
duplicate chunks. We have to allocate extra space to store
the rewritten chunks, which is exacerbated over time.
For example, even if the deduplication ratio decreases
1%, 10GB extra space is required for 1TB unique data,
which is used to store the rewritten data.

To overcome the limitations of existing schemes,
we explore and exploit the behaviors of the fragmented
chunks in the backup systems. We design a heuristic
experiment to figure out how the chunks are stored
during the deduplication process. We have two important
observations from our experimental results. First, the
high redundancy arises between adjacent backup version-
s, and the chunks that don’t appear in current backup
version have low probability to appear in the subsequent
backup versions. Second, a new backup version is more
likely to be restored than the old ones, which means that
the high restore performance for the new backup version
is more important than the old ones.

Based on the observations, the fragmented chunks
can be eliminated by modifying the deduplication
process. We propose a scalable deduplication scheme with
high deduplication/restore performance and deduplica-
tion ratios, called HiDeStore. The scalability in this
paper is interpreted that the proposed scheme provides

high restore performance over time, which is efficient
even when a large number of backup versions are stored.
The main insight is to identify the chunks that are more
likely to be shared by the subsequent backup versions,
called hot chunks, and store these chunks together to
enhance the physical locality for the new backup versions.
The other chunks (i.e., have the low probability to
be shared by the new backup versions) are stored in
the containers as the traditional deduplication schemes,
called cold chunks.

Specifically, the whole deduplication process consists
of three steps. (1) Classify the hot and cold chunks.
We use two hash tables in the fingerprint cache to
respectively store the chunks of the last and current
backup versions. Each hash table contains the finger-
prints and corresponding location information of the
chunks. (2) Filter and store the contents of the hot and
cold chunks. The contents of the coming unique chunks
are temporarily stored in the active containers when
deduplicating one backup version, and the contents of
the identified cold chunks are stored in the archival
containers after processing the backup versions. (3)
Update the recipes for restoring the original data in
the future. We construct a recipe link list to reduce the
updating overhead, and further optimize the process
of recipe searching by periodically eliminating the
dependency among recipes. Compared with state-of-
the-art deduplication and restore schemes, HiDeStore
reduces the index lookup overhead by 38% and improves
the restore performance by up to 1.6×. Moreover,
HiDeStore keeps high deduplication ratio while incurring
acceptable overheads. Our proposed scheme is efficient
for archival backup systems, e.g., backup all versions of
the software and the system snapshots for users.

In this paper, we have the following contributions.
• High deduplication performance without

the decrease of deduplication ratio. We explore
the workload characteristics in backup systems and
only cache the chunks with high probability to be
deduplicated, without frequently accessing the disks.
Therefore, the deduplication throughput is improved.
The duplicate chunks have high probability to be
hit in the fingerprint cache, thus achieving the high
deduplication ratio.

• High restore performance for new backup
versions. Based on the chunk distribution among
different backup versions, we filter and store the cold and
hot chunks in different containers, thus enhancing the
physical locality for new backup versions. As a result, we
achieve high restore performance for new backup versions
due to fewer container reads than existing schemes.

• Low Overheads. Unlike the traditional schemes,
HiDeStore doesn’t need extra space to store the duplicate
chunks and the full index table due to the high
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deduplication ratio. Moreover, removing expired backup
version in HiDeStore is easy to implement without the
need of garbage collection.

The remainder of this paper is organized as follows.
Section 2 introduces the background and motivations.
Section 3 shows our observations on the backup systems.
Section 4 illustrates the design of HiDeStore. In Section 5,
we compare our design with the state-of-the-art schemes
and show the experimental results. Section 6 describes
the related work. Finally, we summarize our work in
Section 7.

2 Background
2.1 The Deduplication Process

The chunk-based deduplication is an efficient approach
to improve the space utilization, which has been widely
used in current storage systems [11, 24–26, 32, 39]. A
deduplication system usually consists of two phases,
including deduplication and restore phases, as shown
in Figure 1. In this paper, we focus on the in-line
deduplication [9, 10, 13, 16, 21, 23, 28, 41], i.e., the
data are deduplicated once they are generated.

In the deduplication phase, �the coming data
stream is divided into multiple chunks (e.g., on av-
erage 4-8KB [41]) via various chunking algorithms,
such as TTTD chunking [12], Rabin-based CDC [26],
FastCDC [37]. �The obtained chunks are represented
as 20-byte fingerprints that are calculated through a
secure hash function, e.g., SHA-1 [31]. To eliminate the
duplicate chunks, we only need to compare the 20-byte
fingerprints, rather than the original 4KB data. Because
the probability of a hash collision is much smaller than
that of a hardware error [31]. �The chunks with the
same fingerprint are identified to be duplicated, and
otherwise the chunks are unique. However, as the data
increase, the generated fingerprints overflow the limited
memory, which become a system bottleneck to search
the fingerprints [21, 41]. Existing deduplication systems
maintain an efficient fingerprint cache in the memory
to accelerate the deduplicate process by exploiting the
locality and similarity [6, 21, 35, 41]. �When the coming
fingerprints miss in the cache, the fingerprints are further
searched in the full index table on disks to obtain
high deduplication ratio. However, searching the full
index table is optional, depending on the deduplication
algorithms and workload characteristics. �Finally, the
unique chunks are stored into typical 4MB containers as
the chunks arrive. The metadata (e.g., fingerprint, chunk
size and container ID) of all the chunks are recorded in
a recipe [41] for the data recovery. Specifically, the data
structure of the recipe is a chunk list, and each item
contains a fingerprint (20-byte) (i.e., corresponding to a
chunk), the ID of the container (4-byte) containing the

Backup Stream

Deduplicating

Fingerprint cache

Restore cache

Fingerprint index table

Recipe store

DiskMemory

Figure 1. The deduplication and restore phases.

chunk, and the offset (4-byte) in the container. The size
of each item in the recipe is 28-byte, and the total size
of the recipe is determined by the number of the chunks.

The data need to be restored from system crashes or
version rollbacks [16, 20], which consists of the following
steps. �To restore the original data, the recipe is accessed
to determine the chunks need to be read and the locations
to obtain the corresponding chunks. �According to
the instructions of the recipe, we assemble the data
stream in memory in the chunk-by-chunk manner, which
requires frequent disk accesses. To improve the restore
performance, the caching schemes are used to reduce
the number of container reads. However, the restore
performance is affected by the physical locality of the
chunks, since the frequent and random disk accesses
cause significantly high overheads.

2.2 Chunk-based Access Bottleneck

In large-scale deduplication systems [21, 41], searching
the fingerprint indexes to identify the duplicate and
unique chunks is usually a performance bottleneck. Since
the number of fingerprints increases proportionally with
the stored data, the index table possibly overflows the
limited memory, hence involving frequent disk accesses
for index lookups. The fingerprint index table is actually
a key-value store, where the key is a fingerprint and the
value points to the chunk. Each key consumes 20 bytes
(e.g., calculated by SHA-1) to represent a typical 4KB
chunk, and thus indexing 4TB unique chunks requires
at least 20GB to store the keys, which consumes a large
amount of memory space. More importantly, the number
of keys increases as new data arrive, which is difficult to
put the whole index table in the memory.

To avoid the frequent accesses to the full index table
on disk, existing deduplication systems store partial
indexes in memory (i.e., fingerprint cache) to improve
the deduplication performance. As shown in Figure 1,
the chunks hitting the fingerprint cache are considered as
duplicated chunks, which are not stored for space saving.
Other chunks (i.e., miss in the fingerprint cache) are
searched in the index table on disk to further identify the
duplicate and unique chunks. Only the unique chunks
are stored. During this process, the fingerprint cache
with the high hit ratio will decrease the access to disks
and improve the deduplication throughput. Thus various
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Figure 2. The chunk fragmentation problem. The order
of versions is determined by the generation time.

schemes aiming to improve the hit ratio of the fingerprint
cache are proposed [21, 41].

Some schemes [10, 21, 23, 41] make full use of the
locality characteristic, i.e., the chunks among different
backup streams appear in approximately the same
order with a high probability. The chunks following
the searched chunks are prefetched into the fingerprint
cache during one disk access, which significantly improves
the hit ratio. Moreover, only partial indexes are stored
according to the sampling approaches to reduce the
memory consumption [21, 38]. Nevertheless, for the work-
loads that have little or no locality, the locality-based
approaches produce poor performance. In these cases, the
similarity-based approaches are proposed [6, 35]. The two
data streams are highly similar if they share many chunks.
However, the similarity-based approaches decrease the
deduplication ratios, depending on the similarity among
data streams. Because only the most similar data streams
are searched to improve deduplication throughput, which
overlooks the full index table.

Existing schemes involve different amounts of disk
accesses, depending on the locality and similarity of
the workloads. Moreover, we have to make a trade-off
between deduplication ratio and throughput, since the
high deduplication throughput is achieved by avoiding
the search for the full index table, depending on the
workload characteristics.

2.3 Chunk Fragmentation Problem

Unlike the deduplication phase that searches the meta-
data (i.e., fingerprint indexes), the restore phase accesses
the real data of the chunks according to the recipe. The
restore performance suffers from the chunk fragmenta-
tion problem [8, 9, 13, 16, 20, 30], i.e., the chunks of the
same data stream are scattered into various containers,
causing frequent disk accesses during the recoveries.
The chunk fragmentation problem comes during the
deduplication phase. The unique chunks are stored in
new containers, while the identified duplicate chunks
refer to the containers that have been stored for a long
time. Thus, the chunks are separately stored and the
physical locality is destroyed.

Figure 2 illustrates how the chunk fragmentation
problem arises with the assumption that each container
contains at most 3 chunks. During the deduplication
phase, the unique chunks are stored in the containers
when they arrive. The chunks belonging to the first
data stream are stored in Containers 1, 2 and 3. For
the second data stream, the identified duplicate chunks
(e.g., Chunks A, C, D, E, F, G, H) are not stored,
while the unique chunks (e.g., Chunks I, J, K, L) are
stored in Containers 4 and 5. As a result, we need
to access 5 containers to restore the second backup
stream. The same storing mechanism is applied to the
third data stream, which needs to access 6 different
containers to restore the original data. Moreover, such
chunk fragmentation problem is exacerbated over time.

Various chunk-based and container-based caching
schemes [9, 13, 16, 28] exploit the observation that the
order to read chunks is the same as the chunks to be
stored for reducing the disk accesses. For example, if
container 1 is cached when reading chunk A, then chunk
C will hit the cache due to being contained in container 1,
avoiding to re-access the disk. Moreover, the information
of next required chunks can be obtained via recipes in
advance, and thus some schemes adopt a look-ahead
window to assemble the chunks belonging to the same
container [9, 20], which avoid the frequent accesses to
the same container. However, the fragmentation problem
is exacerbated over time, since the fragmented chunks
are generated during the deduplication process as shown
in Figure 2, while the caching schemes don’t modify the
deduplication process.

A more promising way to improve the restore
performance is to enhance the physical locality of the
backup streams by rewriting some duplicate chunks. For
example, we only need to read 4 containers for rewriting
and storing the chunks of the third backup stream
together, which however reads 6 containers in Figure 2.
Various rewriting approaches propose different measures
to determine which chunks to be rewritten, such as
Content-Based Rewriting algorithm (CBR) [16], Chunk
Fragmentation Level (CFL) [27], Capping [20] and other
variants of capping [8, 34]. Moreover, Fu et al. [13]
exploit the historic information to rewrite the chunks.
Existing rewriting schemes rewrite the chunks meeting
some fragmentation quantization standards. However,
these rewriting schemes decrease the deduplication ratios
due to the existence of duplicate chunks, which consume
a large amount of available space.

3 Observations on Fragmented Chunks
The above analysis show that the fragmented chunks
are generated in the deduplication phase. In order to
enhance the physical locality, our work modifies the
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Figure 3. The chunk number distribution over different backup versions.

deduplication process to store the chunks. To gain
more insights about how the fragmented chunks are
generated among different backup versions, we count the
chunk numbers of different backup versions on various
workloads, including Linux kernel, gcc, fslhomes and
macos. All these workloads are generally used in the
deduplication systems, and more details about the used
workloads are shown in Section 5.

The heuristic experiment is conducted on Destor [1]
which is a widely used deduplication platform. We assign
an infinite buffer to store the information of the chunks
without modifying other components of Destor. The
assigned buffer is used to store the metadata (including
fingerprint, chunk size and version tag) of all chunks,
where the version tag indicates the backup version
recently containing the chunk. For example, the version
tags of all chunks are set to V 1 when we deduplicate the
first backup version. When we next process the second
backup version, the duplicated chunks hit the buffer and
we modify the version tags of these chunks to V 2, which
indicates that these chunks are recently contained in
version 2. Moreover, the unique chunks in the second
backup version are stored in the buffer with the version
tag V 2, while the remaining chunks (i.e., not duplicate
with the second backup version) in the buffer keep the
version tag V 1. The subsequent backup versions are
processed in the same way. As a result, the chunks that
are not contained in the new backup versions will always
maintain the old version tags.

We count the different chunks according to the
version tags after processing each backup version, and
the results are shown in Figure 3. As shown in Figure 3a,
there are 1,557 V 1 chunks after deduplicating the first
backup version, which decreases to 734 after processing
the second backup version and no longer decreases in
subsequent backup versions. Such results indicate that
these 734 chunks don’t appear in the second backup
version and the subsequent backup versions. We have
the same observation on other chunks and workloads, as
shown in Figures 3b and 3c. The observation on macos
is a little different, as shown in Figure 3d. For example,
the V 1 chunks not only decrease in the second backup
version, but also decrease in the third backup version.

After processing the subsequent two backup versions, V 1
chunks hardly decrease.

From the above results, we observe that the chunks
not appearing in the current backup version have a low
probability to appear in the subsequent backup versions.
The obtained observation offers insights in the real-word
applications, since the new backup version is generated
via upgrading the old ones, which contains most contents
of the old versions and generates some new data. Besides,
some existing works [27–29] demonstrate that newer
backup versions are more likely to be restored from the
system crashes or version rollbacks than the old ones.

Based on these observations, we hence attempt
to ensure the restore performance for the new backup
versions, e.g., storing the V 8 chunks closely to improve
their physical locality. The proposed scheme can be
viewed as a reverse online deduplication process, i.e.,
the fragmented chunks are generated in the old backup
versions rather than the new ones. Through this way, we
store the chunks of the new backup version closer without
rewriting the duplicate chunks like the traditional
schemes. Moreover, the restore performance of the new
backup version is improved without decreasing the
deduplication ratio.

It is worth noting that all the observations come
from backup systems, e.g., backup the different versions
of the software (such as gcc, linux kernel) and the
snapshots of the file systems. We have the similar
observations on other workloads (e.g., gdb, cmake).

4 The Design of HiDeStore

In this section, we demonstrate the design of HiDeStore,
a backup system with high deduplication and restore
performance. To efficiently store the chunks and improve
the restore performance, we modify both the deduplica-
tion and restore phases. One of the key insights is to only
search the chunks with high probability (i.e., the previous
backup versions) to be deduplicated with coming chunks.
Another insight is to classify and respectively store
the hot and cold chunks, which groups the chunks
of new backup version closely to alleviate the chunk
fragmentation.
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Figure 4 illustrates the system overview of HiDeStore.
In the deduplication phase, the backup streams are
processed via chunking and hashing like traditional
deduplication schemes. One difference is that HiDeStore
only searches the fingerprint cache without further
searching the full index table on disks. The chunks
matching the fingerprint cache are duplicate, otherwise
unique. In this way, HiDeStore significantly reduces
the memory consumption and avoids the expensive
disk access. To achieve a high deduplication ratio, the
fingerprint cache mainly contains the chunks with a high
duplicate probability according to the observation from
Figure 3. More details are elaborated in Section 4.1.

To alleviate the chunk fragmentation for new backup
versions, HiDeStore respectively stores the hot and
cold chunks, which works like a filter as shown in
Figure 4. The contents of identified unique chunks
are not directly stored in the containers as traditional
deduplication schemes. Instead, the coming unique
chunks are temporarily stored in the active containers,
which are considered as hot chunks. After processing
one backup version, the chunks not appearing in the
current version are kicked out from the active containers
and stored into the archival containers, considered
as cold chunks. In the context of our paper, the
archival containers are the same as those in traditional
deduplication systems for archival purpose. The active
containers change frequently, which insert the hot chunks
and remove the cold ones. More details are shown in
Section 4.2.

During the process of moving chunks from active
containers to archival containers, the recipe is updated
to record the locations of chunks for future data recovery.
To reduce the overhead for updating recipes, we only
update the previous recipe rather than all recipes. We
also periodically eliminate the dependency among recipes
to reduce the overheads of reading recipes, as shown in
Section 4.3. The details of restoring and removing expired
backup versions are shown in Sections 4.4 and 4.5.

Our proposed scheme is efficient for archival backup
systems, and there exist many redundant data among
different versions. For example, the newer version of the
software is upgraded from the old one, thus containing
many duplicate data with the old version. For the
workloads that are not included in this paper, we
simply trace the chunk distribution among versions and
determine whether to use the proposed scheme, which
produces low overhead since we only need to trace the
metadata of the chunks.

4.1 Fingerprint Cache with Double Hash

The observation from Figure 3 indicates that the chunks
not appearing in current backup version (say cold chunks)
have a negligible probability to appear in subsequent

Backup Stream

Deduplicating

Fingerprint cache

Restore cache

Active Containers
(hot chunks)

Archival Containers
(cold chunks)

Recipe store
1

Memory Disk

2
3

9

4 5

6 7

8

Figure 4. System overview of HiDeStore.

backup versions. Therefore, we don’t need to search these
cold chunks when deduplicating the subsequent backup
versions.

An intuitive design is to only deduplicate the current
backup version against the one with high duplicate
probability. However, directly using the traditional
fingerprint cache in HiDeStore incurs two issues. First,
the cache unit of the traditional fingerprint cache is
a container, which may contain the cold chunks and
consume a large amount of the available space. As a
result, the limited cache fails to provide enough space
for the hot chunks, and thus the deduplication ratio
decreases. Second, the traditional fingerprint cache fails
to identify whether the chunks are hot or cold. As a
result, we can’t separately store the different chunks and
enhance the physical locality.

To address these issues, we propose to use two hash
tables in the fingerprint cache, respectively represented
as T1 and T2 as shown in Figure 5. In both hash
tables, the fingerprints and metadata of the chunks
are respectively served as keys and values, where the
metadata consist of the chunk size and the ID of active
containers that contain the chunks (abbreviated as
CID). At the beginning to deduplicate the current
backup version (represented as CV ), T1 contains the
metadata of the chunks in the previous backup version
(represented as PV ) and T2 is empty. During the
deduplication phase, T2 is used to contain the chunks
of CV . Both the new unique chunks and the chunks
hitting the fingerprint cache are inserted into T2. The
chunks that hit T1 are removed from T1 at the same
time. After processing CV , the chunks remaining in T1
are cold chunks, while the chunks in T2 are hot chunks.

Figure 5 illustrates the workflow of the proposed
fingerprint cache. There are three cases to deduplicate
the coming chunks, which sequentially search T1 and
T2 to identify the duplicate and unique chunks. In Case
one, chunk A is considered as a unique chunk, since
both T1 and T2 don’t have a duplicate chunk with A.
Hence, we insert the metadata of chunk A into T2, and
store the content of chunk A into an active container, as
shown in Section 4.2. In Case two, chunk B is considered
as a duplicate chunk due to finding a match in T1. In
this case, we don’t need to store the content of chunk B
since it has been stored. However, the metadata of chunk
B is removed from T1 and inserted to T2, indicating
that chunk B is a hot chunk and has a high probability
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Figure 5. The structure of the fingerprint cache.

to appear in the subsequent backup versions. In Case
three, chunk C is also identified as a duplicate chunk due
to matching in T2. Unlike chunk B, we don’t need to
execute any operations on chunk C, since its metadata
has been stored in T2.

After deduplicating CV , the chunks not appearing
in CV are left in T1, which become cold chunks.
The chunks in T2 are hot chunks and may appear
in the subsequent backup versions. After separating
the hot and cold chunks, HiDeStore moves the cold
chunks from active containers to archival containers after
deduplicating CV and updates the recipes, as shown
in Sections 4.2 and 4.3. Finally, we destroy T1 and
T2. When deduplicating the next backup version, the
metadata of CV in the recipe is prefetched to T1 to
serve as PV .

In the hash table, we use fingerprint of each chunk as
a key, which is calculated via SHA-1. The probability of
a hash collision is much smaller than that of a hardware
error [41]. For the case of macos in Figure 3d, we add
another hash table to classify the hot and cold chunks,
and the deduplication process is similar with Figure 5.
The sizes of T1 and T2 are bounded and hardly full,
since the hash tables only contain the metadata and the
total size of a hash table is limited to the size of one
(or two) backup version(s). Take the data in macos (a
very large workload) as an example, one version contains
about 5 million chunks, and the total size of T2 is more
than 100MB (5,000,000*28byte), where 28-byte data
consists of 20-byte fingerprint, 4-byte ID, 4-byte size, as
shown in Figure 5.

Unlike the traditional deduplication schemes (i.e.,
locality- and similarity-based schemes), HiDeStore on-
ly searches the fingerprint cache, which significantly
improves the deduplication throughput. At the same
time, HiDeStore achieves almost the same deduplication
ratio like the exact deduplication schemes, as shown
in Section 5.2. The benefit mainly comes from the
observation from Figure 3, i.e., searching the hot chunks
is enough since the cold chunks have a negligible
probability to appear in subsequent backup versions.

4.2 Chunk Filter to Separate Chunks

In the traditional deduplication systems, the identified
unique chunks are directly written to containers accord-
ing to the order of the arriving chunks, which however
incurs the chunk fragmentation, as shown in Figure 2.

1 metadata 3.5KB 4.2KB 3.7KB 4.1KB ···

2 metadata 3.9KB 3.6KB 3.5KB 4.1KB ···

3 metadata 4.2KB 4.1KB 3.6KB ···

3.9KB 3.3KBChunk E: Chunk F:

CID

Figure 6. Compact sparse containers.

Unlike them, HiDeStore separately stores the hot and
cold chunks by changing the writing paths of the chunks.

Figure 6 shows the common structure of a container,
including metadata and the real data of the contained
chunks. The metadata consists of container ID, the data
size and a hash table for the stored chunks, where the
key is a fingerprint and the value is a pointer to the
corresponding chunk. We use two kinds of containers
to store the hot and cold chunks, including active
containers and archival containers. The active containers
are dynamic due to frequently inserting and removing
chunks, while the archival containers are static unless
removing expired data. Each container is 4MB, i.e., the
same size as the traditional containers.

When storing the contents of the chunks, the hot
chunks are temporarily stored in active containers during
the deduplication phase. After deduplicating one backup
version, the chunks remaining in T1 are considered to be
cold, which are moved to archival containers. The process
of moving chunks from active containers to archival
containers works like a filter, as shown in Figure 4. After
removing the cold chunks, we need to compact the active
containers to enhance the physical locality. Otherwise
the new chunks are scattered into more containers and
the fragmentation is exacerbated. However, the space of
the removed chunks can’t be directly reused due to the
unequal sizes. For example, the deduplication systems
generally use content-based chunking algorithms to avoid
the boundary-shift problem [26, 40], which generate
variable-length chunks. As shown in Figure 6, the chunks
with 3.5KB and 3.7KB are removed from an active
container, releasing 7.2KB in total. However, the coming
chunk E with 3.9KB can’t be inserted into this container
since the free space is not continuous. Although chunk
F with 3.3KB can be inserted into the container, more
fragmented spaces are generated and wasted.

To reuse the free space in active containers and en-
hance the physically locality, HiDeStore merges and com-
pacts the sparse containers. We calculate the container
utilization (i.e., the total size divided by the used size) to
indicate whether the container is sparse or not. Figure 6
illustrates the compaction operation in HiDeStore. The
chunks in two (or more) sparse containers are written into
the same container without considering the order, since
all these chunks are hot chunks, which will be prefetched
together during reading. To improve the space utilization,
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Active Containers

Archival Containers

Version 1

Version 2

Version 3

Version 4

Figure 7. Update recipes. The blue and orange chunks
are respectively stored in archival and active containers.

the compacted container is stored on disk by overwriting
the sparse container whose CID is the smallest.

Although moving the cold chunks from active
containers to the archival ones incurs some overheads as
shown in Section 5.4, we show that such moving process
can be done offline, since the total deduplication process
is implemented as a multi-thread pipeline. Once the hot
and cold chunks are classified in the hash tables, the next
backup version can be processed. Moreover, compared
with the traditional deduplication schemes, HiDeStore
significantly mitigates the chunk fragmentation for new
backup versions, since the chunks of new backup version
are stored closely in the active containers, rather than
physically scattered to different locations.

4.3 Update Recipes

In the deduplication systems, the recipe is generally
used to record the metadata of chunks in a backup
stream, which shows how to restore the original data.
The metadata consists of the fingerprint, chunk size and
ID of the container that contains the chunk (represented
as CID). We need to update the recipes when moving
the cold chunks, since the locations of the chunks are
modified. However, we have no prior knowledge about
which recipes contain these cold chunks unless checking
all the recipes, which incurs high overheads. Moreover,
each recipe needs to be updated multiple times as long
as the recipe contains the moved cold chunks.

To reduce the overhead for updating recipes, we
only update the previous recipe of the current backup
version rather than all the recipes. For the case of macos,
we update the last two recipes. Figure 7 illustrates the
principle of updating recipes after deduplicating backup
version V4, and the corresponding recipe is represented
as R4. We record the CIDs of all chunks as 0 in R4 to
indicate that all chunks are stored in active containers,
and the specific active container is obtained via checking
the fingerprint cache. When the cold chunks are moved
from active containers to the archival ones, we update
R3 by modifying the CIDs of these cold chunks to the
corresponding archival container IDs (i.e., contain the
chunks). The CIDs of the remaining chunks in R3 are
modified to the negative ID of V4. For example, the
value 4 indicates that the chunk is stored in the archival

Algorithm 1: Update Recipes
Input: Recipe R[N ], Hash Table T
Output: Updated Recipe R[N ]
foreach chunk in R[n-1] do

if chunk.CID>0 then
insert chunk into T

end

end

while previous recipe R[n-1] exist do
foreach chunk in R[n-j] do

if chunk.CID<0 then
if chunk have a match p in T then

chunk.CID=p.CID
else

chunk.CID=-n
end

end

if chunk.CID>0 then
insert chunk into a new Hash Table t

end

end
HashTableDestroy(T) and T=t;

end

container 4, while the value −4 indicates that we need
to further check R4 to find the chunks.

As a result, all recipes form a chain, as shown in
Figure 7. We need to read multiple recipes to find the
concrete location for each chunk when restoring the
old backup version, which incurs long latency. Instead,
we periodically update the recipes before restoring.
Algorithm 1 shows an example for updating all the
recipes. We read recipe Rn−1 with the assumption that
the newest backup version is n, and insert the chunk
whose CID is larger than 0 into hash table T , which is
used to update the previous recipe Rn−2 (Lines 1-5). The
negative CID is modified when the chunk has a match in
the hash table T (Lines 9-10). The other negative CIDs
are modified to −n (Lines 11-12), indicating the chunks
are stored in active containers. At the same time, the
chunks whose CIDs are larger than 0 are inserted into a
new hash table t (Lines 15-17). Finally, the hash table t
is used to update the previous recipe, Rn−3 (Line 20).

The hash table uses the fingerprint as a key and the
pointer to the chunk as a value. The recipe is updated
from the last modified version. For example, recipe R1

has been pointed to R4 in the last updating operation,
and we directly read R4 to update R1 next time. The
recipe only records the metadata of the chunks, which
is easy to be updated with low overhead, as shown in
Section 5.4. Moreover, we only need to update the recipe
as needed offline, and thus the overhead of accessing the
recipes is negligible.

4.4 The Restore Phase

The data are restored according to the recipes. In the
traditional deduplication systems, all CIDs in recipes
are positive, indicating which containers contain the real
data of chunks. Unlike them, the recipes in HiDeStore
contain 3 types of CID. The positive CID indicates the
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Table 1. Characteristics of workloads

Dataset Kernel gcc fslhomes macos

total size 64GB 105GB 920GB 1.2TB

total versions 158 175 102 25

Deduplication ratio 91.53% 78.75% 92.17% 89.56%

archival container, the negative CID indicates the backup
version and 0 indicates the active container.

After reading the recipes, the data can be easily
restored via traditional caching schemes, such as chunk-
based or container-based caching schemes [9, 13, 16, 28],
and forward assemble schemes [9, 20]. By storing the
hot chunks together, the fragmentation of new backup
versions is alleviated, and the restore performance is
improved.

4.5 Removing Expired Versions

In the deduplication systems, the expired versions are
removed for space savings [13, 29]. However, we can’t
directly remove all the chunks of the expired version,
since some chunks may also belong to other backup
versions. We need to detect the chunks that only belong
to the expired version before being removed, which
however incurs high overhead due to the need for
checking all the backup versions. Moreover, the chunks
of different versions are interleaved together, as shown
in Figure 2, requiring some garbage collection efforts to
reclaim the space for the deleted chunks.

In practice, all efforts for chunk detection and
garbage collection are easy in HiDeStore, since HiDeStore
has stored the chunks belonging to different backup ver-
sions separately. For example, the chunks only belonging
to V1 are stored in archival containers. No subsequent
backup versions refer to these chunks according to the
observation from Figure 3. We directly remove these
chunks when removing expired V1 without the needs for
expensive chunk detection and garbage collection.

5 Performance Evaluation
In this section, we evaluate the performance of HiDeStore
on different workloads. Since the traditional dedupli-
cation schemes separately achieve high performance in
terms of deduplication and restore, we respectively select
the state-of-the-art schemes for comparisons.

5.1 Experimental Setup

We implement a prototype of HiDeStore based on
Destor [14], which is a widely used deduplication
framework and supports the general deduplication
pipeline procedure, including chunking, hashing, index-
ing, rewriting and storing. The chunking phase uses the
TTTD chunking algorithm [12] and the hashing phase
uses SHA-1 to calculate the fingerprint, due to their

Figure 8. The deduplication ratios.

simplicity and easy-to-use strength. The hash tables in
HiDeStore use the fingerprints as the keys, which rarely
have hash collisions [31].

For the deduplication performance, we compare
HiDeStore with DDFS [41], Sparse index [21] and
SiLo [35]. DDFS is an exact deduplication system,
which achieves the highest deduplication ratio since all
the duplicate chunks are removed. Sparse index and
SiLo reduce the memory consumption and improve the
deduplication throughput by combining locality and
similarity. We use the implementations of these schemes
from Destor [1]. Moreover, for the restore performance,
we compare HiDeStore with caching- and rewriting-base
schemes, including capping [20], ALACC [9] and FBW [8].
We use the implementation of ALACC from Ref. [3].
Due to no open source code available of FBW is, we
re-implement FBW following the design in the original
work [8]. For all schemes, we use the same configurations
as the original work to facilitate fair comparisons.

We use four real-world datasets as shown in Table 1,
which are widely used in other works [8, 9, 13, 14, 35].
Specifically, kernel [5] and gcc [4] are two generally used
public datasets, which consist of the real data of the
corresponding software. Fslhomes [2] and macos [2] are
two trace datasets, which consist of server snapshots
from users. Two consecutive versions are the most
similar expect that there are large upgrades, as shown
in Figure 3.

All the experiments run on a Linux server (kernel
version v4.4.114), which has two 8-core Intel Xeon E5-
2620 v4 @2.10 GHz CPUs (each core with 32KB L1
instruction cache, 32KB L1 data cache, and 256KB L2
cache), 20MB last level cache and 24GB DRAM.

5.2 Deduplication Performance

In general, the deduplication system needs to be
examined in three performance metrics, including dedu-
plication ratio, deduplication throughput and memory
consumption for index table.

5.2.1 Deduplication Ratio.
To evaluate the deduplication ratio, we divide the
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Figure 9. Lookup overhead among different deduplication schemes.

Figure 10. The index table overheads.

eliminated data size by the total size of the dataset,
and the results are shown in Figure 8. DDFS achieves
the highest deduplication ratio due to using the exact
deduplication approach. We observe that HiDeStore
achieves almost the same deduplication ratio as DDFS,
which is higher than sparse index and SiLo. The main
reason is that the chunks with a high probability
to be deduplicated are maintained in the fingerprint
cache. HiDeStore achieves high deduplication ratio via
searching these chunks during the deduplication phase.

Both sparse index and SiLo decrease some dedu-
plication ratios due to the near-exact deduplication
approaches, depending on the sampling methods. The
near-exact deduplication schemes group multiple chunks
into a segment, and partial chunks are sampled to
serve as the feature of each segment. The segment is
prefetched for deduplication if its feature is the same,
or the most similar, with that of the new segment.
However, the sampled features may overlook some chunks
which have high duplicate probability, thus decreasing
the deduplication ratios. Increasing the sampling ratio
can improve the deduplication ratio, which however
requires more space to store the features and more time
to be spent on searching the features. As a result, we
have to make a trade-off between deduplication ratio
and deduplication throughput. Based on Figure 3, it
is worth noting that if the near-exact deduplication
schemes choose the segments of last backup version as
the candidates to deduplicate the new segments, the
high deduplication ratio is achieved, like HiDeStore.

As shown in Figure 8, we evaluate the deduplication
ratios of rewriting schemes, including capping [20] and

ALACC [9]. The rewriting schemes are evaluated based
on SiLo [35], which achieves good deduplication per-
formance by making a trade-off between deduplication
ratio and deduplication throughput. We observe that
the rewriting schemes decrease more deduplication ratios
than the exact deduplication scheme, due to the existence
of duplicate chunks. Moreover, when processing more
data, the rewriting schemes rewrite more duplicate
chunks to alleviate the chunk fragmentation, which
further decreases the deduplication ratios. Even when
the deduplication ratio decreases 1%, extra 10GB are
required for storing 1TB data.

5.2.2 Deduplication Throughput.
The used experimental platform (i.e., Destor [1])

stores the indexes in a fingerprint cache and a full
index table. To simulate the requests to disks, Destor
evaluates the number of lookup requests for the full index
table, while the lookup requests for unique chunks are
eliminated since most are answered by the in-memory
Bloom filter [14]. Thus, the index throughput evaluated
by Destor is not absolute throughput. We use the same
metric as Destor [14] to evaluate the lookup overhead,
i.e., lookup requests per GB, which is defined as the
number of the required lookup requests to the full
index table to deduplicate 1GB data. The high lookup
requests per GB to the full index table represent the
low deduplication throughput, since we need to spend
more time on randomly accessing the disks. However,
HiDeStore doesn’t need to access the full index table
during deduplicating, since the chunks that have the
high probability to be deduplicated have been stored in
the fingerprint cache before deduplication. To facilitate
fair comparisons, we use the same unit size of a lookup
request as the traditional schemes, and evaluate the
number of the lookup requests. The results among
different schemes are shown in Figure 9.

As shown in Figure 9a, we observe that HiDeStore
achieves the best results among all schemes. Specifically,
HiDeStore reduces up to 71% of the lookup requests
than DDFS. HiDeStore obtains more benefits when
deduplicating more backup versions, since the lookup
overhead of HiDeStore is bounded to the size of one
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Figure 11. The restore performance among different schemes.

backup version. Compared with near-exact deduplication
schemes, HiDeStore respectively reduces the lookup
overhead by up to 48% and 38% than sparse index and
SiLo. The main reason is that HiDeStore only needs
to search the fingerprint cache without the needs to
frequently access the full index table on disks. However,
the traditional deduplication schemes need to access the
full index table when the coming chunks miss in the
fingerprint cache.

Moreover, we observe that the lookup overheads of
sparse index and SiLo increase slowly with the backup
versions. Since these schemes exploit the logical locality,
i.e., the segments of the last backup version are most
likely to be accessed during deduplication, as shown in
Figure 3. Hence, the fingerprint cache has a high hit
ratio when most segments of the last backup version
are maintained. However, the segments of other backup
versions may also be prefetched, since the sampled
chunks possibly exist in multiple backup versions. Unlike
them, HiDeStore fully exploits the observation from
Figure 3 without the needs of sampling the chunks.
Only the chunks with high the duplicate probability
are accessed, and HiDeStore achieves the best results.
We have the same observations on other datasets, as
shown in Figures 9b and 9c.

For macos, the lookup overhead of HiDeStore is a
little higher than SiLo, as shown in Figure 9d. Since
the chunks with the high duplicate probability occur in
the last two backup versions, which incurs more lookup
requests. However, it is worth noting that HiDeStore
prefetches the fingerprint cache before deduplicating each
backup version, which doesn’t block the deduplicating
process like traditional deduplication schemes. All the
lookup requests in HiDeStore are sequential, since the
metadata of chunks are stored together in the recipe.
Hence, HiDeStore delivers high lookup performance in
the real-world backup systems.

5.2.3 Space Consumption for Index Table.
The space consumption consists of the index table,

the stored data and recipes. The stored data are
evaluated by the deduplication ratio, and the higher
deduplication ratio indicates the less data are stored,

as shown in Figure 8. The recipes record the positions
of all the chunks and indicate how to recover the data,
and thus the sizes of recipes are constant. Except these
two metrics, we use space overhead per MB(B) [35] to
evaluate the index table overhead, which is defined as
the required space for the indexes to deduplicate 1MB
data, like existing schemes [14, 35].

The index table overheads among different dedupli-
cation schemes are shown in Figure 10. DDFS stores the
indexes of all unique chunks, and has the highest memory
consumption. Moreover, the index table overhead is high
when the datasets contain a large number of small files.
Sparse index and SiLo incur lower index table overheads
than DDFS, depending on the sampling approaches and
ratios. For example, sparse index reduces the memory
consumption by nearly 128× if we set the sample ratio
to 128 : 1. SiLo samples the minimal fingerprint of a
segment, which further reduces the index table overhead.
Moreover, the index table overheads increase when
processing a large amount of data.

Unlike them, HiDeStore doesn’t need extra space to
store the indexes, since HiDeStore deduplicates one back-
up version against its previous one, and the fingerprint
indexes of all chunks in previous backup version have
been stored in the recipe. We check the recipe of the
previous backup version during deduplication, rather
than maintaining an index table. Hence, HiDeStore
significantly reduces the index table overhead. Moreover,
HiDeStore obtains more benefits when deduplicating
more backup versions, since no memory space for the
index table is needed, i.e., the recipe of last backup
version has maintained the indexes for deduplication.

5.3 Restore Performance

Restoring the data needs to read the data from different
containers on disks, and the restore performance is
significantly influenced if the chunks are scattered
into multiple containers. In our evaluation, the sizes
of all containers are set to 4MB to facilitate fair
comparisons. We use speed factor(MB/container-read)
as the metric to measure the restore performance, which
is defined as the mean data size that is restored per
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container [8, 20]. Speed factor is widely used in many
schemes [8, 9, 13, 16, 20], since this metric avoids the
speed variance due to the physical configurations in file
systems. Higher speed factor indicates higher restore
performance, since the data are physically gathered.
The scheme that doesn’t rewrite chunks is served as
the baseline. The state-of-the-art rewriting scheme is
ALACC [9], which achieves the best results among
existing schemes when using FBW as the restore caching
scheme [8]. Other schemes are implemented based on
Destor [1], which uses FAA [20] as the restore caching
scheme.

The results of the restore performance among
different schemes are shown in Figure 11. We observe
that HiDeStore achieves higher restore performance on
new backup versions than other schemes, which however
sacrifices the restore performance of the old backup
versions. Specifically, HiDeStore improves the restore
performance by up to 1.6× than ALACC on the new
backup versions. The main reason is that HiDeStore
groups the chunks belonging to new backup versions
closely in the active containers, and stores the identified
cold chunks in the archival containers. These cold chunks
may belong to multiple old backup versions, and the
fragmentation of old backup version is exacerbated over
time. However, the fast restore performance for new
backup version is more important than the old ones,
since a number of existing works [27–29] demonstrate
that newer backup versions are more likely to be restored.

From Figures 8 and 11, we observe that HiDeStore
keeps high restore performance for the new backup
versions without decreasing the deduplication ratio.
However, the rewriting schemes have to rewrite more
and more chunks to alleviate the fragmentation over
backup versions, which consume more space to store
the duplicate chunks. In order to achieve high restore
performance, existing rewriting schemes have to set a
low rewriting-threshold to rewrite more chunks, which
further consumes more space.

5.4 HiDeStore Overheads

The overheads of HiDeStore come from two aspects,
including updating recipes and moving the chunks from
active containers to archival containers.

We update the recipes in two cases. First, after
processing one backup version, we only update the
previous recipe during the deduplication phase. Second,
when restoring one backup version, we update the recipe
according to Algorithm 1. The mean latency for updating
one recipe depends on the sizes of the workloads, as
shown in Figure 12. For example, 21ms is required to
update one recipe of Linux Kernel. We observe that the
overhead of updating one recipe is low due to the small
size of the recipe. Moreover, Algorithm 1 is carried out

Figure 12. HiDeStore running overheads, including the
processes to move cold chunks and update recipes.

offline before restoring the data, and the overhead is
negligible.

The process of moving chunks is carried out
after deduplicating one backup version, which can be
processed offline due to the pipeline implementation. We
evaluate the latency for moving chunks and merging
sparse containers, and the results are shown in Figure 12.
The chunks in the active containers are sequentially
written to archival containers. Hence, the process
of moving chunks is not influenced by the chunk
fragmentation.

5.5 The Deletion

The expired backup versions need to be removed to save
space [13, 29]. Unlike the traditional schemes, HiDeStore
separately stores the cold and hot chunks during the
backup phase, as demonstrated in Sections 4.2 and
4.5. HiDeStore directly removes the cold chunks of the
expired backup versions without the needs to detect
which chunks only belong to the expired backup version,
since the subsequent backup versions don’t refer to these
cold chunks. Moreover, HiDeStore doesn’t need any
efforts for garbage collection, since the removed chunks
are stored together in the archival containers, which
doesn’t cause the fragmentation like traditional schemes.
Therefore, the overhead of removing expired backup
versions is almost zero, which is much lower than those
of the traditional schemes.

6 Related Work
Deduplication Schemes for Index-access Bottle-
neck. Various approaches are proposed to address
the index-access bottleneck by exploiting the logical
locality, i.e., sequential chunks in a backup stream
have a high probability appearing in another backup
stream with the same order. Zhu et al. [41] use an in-
memory Bloom Filter and cache a sequence of chunks to
speed up the deduplication process. Sparse Indexing [21]
uses a sampling approach to avoid the needs for full
chunk indexing, which significantly reduces the RAM
consumption. ChunkStash [10] uses SSD to deliver
high access performance. Since the locality information
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may become outdated over time, Block Locality Cache
(BLC) [23] is proposed to always use up-to-date locality
information. Extreme Binning [6] exploits file similarity
instead of locality to deliver reasonable throughput for
non-traditional backup workloads that have poor locality.
To achieve high deduplication throughput at low RAM
overhead, SiLo [35, 36] efficiently exploits both locality
and similarity.

However, these approaches mainly focus on the
deduplication phase, while overlooking the chunk frag-
mentation problem. Different containers have to be
accessed to read the scattered chunks, resulting in poor
restore performance.

Restore Schemes for Chunk Fragmentation.
Existing approaches that address the chunk fragmenta-
tion problem are coarsely classified into two categories,
including optimizing the restore cache and rewriting
duplicate chunks. Specifically, the caching-based schemes
exploit the locality, i.e., the order to read chunks is the
same as the chunks are stored. Hence, the container-
based caching [13, 16, 28] and chunk-based caching
schemes [9, 20] are proposed. Moreover, the data streams
are restored in a Forward Assembly Area (FAA) by
leveraging the prior knowledge of the recipes [20]. Cao et
al. [9] combine FAA and chunk-based caching to improve
the restore performance.

The schemes that rewrite some chunks to enhance
the physical locality become more promising, since the
chunk fragmentation is alleviated. The Content-Based
Rewriting algorithm (CBR) [16] determines whether
to rewrite the chunks based on the contents of the
data stream. Chunk Fragmentation Level (CFL) [27]
is an efficient quantitative metric to measure the frag-
mentation, defined as the optimal chunk fragmentation
(i.e., the optimal number of containers to hold the data
stream) divided by the current chunk fragmentation
(i.e., the actual used containers to hold the data stream).
Capping [20] limits the maximum number of containers
that is referred by a segment, which ensures that the
number of containers referenced by each stream is
small. Moreover, a variant capping method based on
the minimum submodule method is proposed [34]. Cao
et al. [8] optimize the capping algorithm by dynamically
setting the maximum number of the referred containers
for various workloads. However, these rewriting schemes
reduce some deduplication ratios due to the existence of
duplicate chunks.

Other Schemes for Deduplication. To avoid the
boundary shift problem, many content-based chunking
schemes are proposed, including TTTD chunking [12],
Rabin-based CDC [26], FastCDC [37] and AE [40]. To
remove the expired backup versions, some chunk detec-
tion schemes [33] and garbage collection schemes [15]
are proposed.

7 Conclusion
Data deduplication as an efficient middleware becomes
important to obtain space savings, which however
suffers from the chunk fragmentation over time. Existing
caching- and rewriting-based schemes become inefficient
when processing a large number of versions due to the
exacerbated fragmentation problem. As a result, it is
necessary to obtain a trade-off among deduplication ratio,
deduplication throughput and restore throughput. Our
proposed HiDeStore explores and exploits the access
pattern during deduplication process. We identify the
hot and cold chunks, and store the hot chunks closely to
enhance the physical locality for the new backup versions.
The experimental evaluations show that our proposed
HiDeStore improves the deduplication throughput and
restore throughput than state-of-the-art schemes, while
maintaining a high deduplication ratio with acceptable
overheads. We have released the open source code of
HiDeStore for public use in GitHub.
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