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Abstract—In order to efficiently achieve fault tolerance in
cloud computing, large-scale data centers generally leverage
remote backups to improve system reliability. Due to long-
distance and expensive network transmission, the backups incur
heavy communication overheads and potential errors. To address
this important problem, we propose an efficient remote commu-
nication service, called Neptune. Neptune efficiently transmits
massive data between long-distance data centers via a cost-
effective filtration scheme. The filtration in Neptune is interpreted
as eliminating redundancy and compressing similarity of files,
which are generally studied independently in existing work. In
order to bridge the gap between them, Neptune leverages chunk-
level deduplication to eliminates duplicate files, and approximate
delta compression to compresses similar files. Moreover, in order
to reduce the complexity and overheads, Neptune uses a locality-
aware hashing to group similar files and proposes shortcut delta
chains for fast remote recovery. We have really implemented Nep-
tune. We examine the Neptune performance by using real-world
traces of LANL, HP, MSN and Google. Compared with state-
of-the-art work, experimental results demonstrate the efficiency
and efficacy of Neptune.

I. INTRODUCTION

Cloud computing is typically housed in data centers that
consume a great deal of energy. To reduce energy consumption,
data centers are often constructed in close proximity of energy
sources and near locations where cooling is more natural
and cheaper, such as rivers and oceans (e.g., for hydraulic
power and water cooling). Such locations, however, can also
be disaster prone. Many cloud computing applications require
high degree of reliability and availability. Data centers and
their backups are hence built in geographically dispersed
manner, in order to prevent failures from disasters, such
as earthquakes, tsunami and hurricanes. The unpredictable
occurrence of disasters may destroy the entire datasets stored
in a data center, e.g., as a result of severe network outages
during super storm Sandy [1]. Therefore, large-scale cloud
networks rely on regular remote backups to protect against
the disasters. In general, long-distance network connectivity
is expensive and/or bandwidth-constrained, making remote
backups for massive data very costly in terms of both network
bandwidth and backup time.

An intuitive and direct solution is to detect data redundancy
in the backup data stream to reduce the amount of data actually
transmitted. It is worth noting that, from a systems imple-
mentation perspective, it is important to distinguish between
the managed and the unmanaged redundancy. The former is
purposely leveraged by the system to support and improve
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availability, reliability and load balance. The latter, however,
is system-unaware and invisible to the system. Due to its
consumption of substantial system resources, the unmanaged
redundancy becomes a potential performance bottleneck in
cloud systems. The cost effectiveness and efficiency of remote
backup, we argue, lie in the significant improvements on
the effective backup throughput, which can be achieved by
transmitting data difference, called delta. Hence, it is important
to understand the properties of the massive data in the backup
streams.

According to an International Data Corporation (IDC)
study, the amount of information created and replicated is more
than 1.8 Zettabytes (1.8 trillion Gigabytes) in 2011, while the
amount of digital data produced will exceed 40 Zettabytes
during the next eight years [2]. In a foreseeable future, this
already staggering volume of data is projected to increase
at an annual rate of more than 60%, much faster than the
expected growth of network capacity. Moreover, IDC analysis
also exhibits that nearly 75% of our digital world has a copy,
i.e., only 25% is unique. Moreover, inexpensive storage and
more powerful processors have resulted in a proliferation of
data that needs to be reliably backed up. Network resource
limitations make it increasingly difficult to backup a distributed
file system on a nightly or even weekly basis.

Since the network bandwidth across cloud systems is often
a performance-limiting factor, existing systems leverage data
reduction techniques to reduce the unmanaged redundancy
and improve the effective throughput. The most commonly
used techniques include chunk-level deduplication and delta
compression, whose goal is to prevent redundant data from
being transferred. Deduplication schemes split files into multi-
ple chunks (say, generally 8KB size), where a hash signature,
called a fingerprint, uniquely identifies each chunk. By check-
ing their fingerprints, duplicate chunks can be removed, while
avoiding a byte-by-byte comparison and replacing identical
data regions with references. Moreover, the delta compression
compresses similar regions by calculating their differences [3],
[4]. The rationale of delta compression comes from the fact
that both sender and receiver contain a reference file that is
similar to the transmitted file. Hence, we only need to transmit
the difference (or delta) between the two files, which requires
a significantly smaller number of bits. For a system backup,
both sender and receiver generally possess a reference file that
is similar to the transmitted file. Therefore, transmitting only
the difference (or delta) requires a smaller number of bits and
significantly improves the effective throughput.

We use the effective throughput to measure the perfor-
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mance of the long-distance backup schemes. It is the through-
put for transmitting the non-redundant backup information.
For example, if 10Mb data are transmitted in one second, the
throughput is 10Mb/s. However, if 9Mb of them is redundant,
the effective throughput is only 1Mb/s. Our real implementa-
tions demonstrate that the effective throughput increases from
2Mb/s to 286.27Mb/s via efficient data filtration. The data
filtration in Neptune needs to compute a sketch of each non-
duplicate chunk as a similarity measure. Sketches has the
property that if two chunks have the same sketch they are
likely near-duplicates. These can be used during backups to
identify similar chunks. Moreover, instead of using a full
index mapping sketches to chunks, Neptune uses a cache
with sketches from a previous stream to obtain compression
performance improvements to a full sketch index. For a remote
backup, identical chunks are deduplicated, and non-duplicate
chunks are delta compressed relative to similar chunks that
already reside at the remote servers. We then compress the re-
maining bytes and transfer across the WAN to the destination.
Specifically, this paper has the following contributions.

Comprehensive Filtration. Neptune offers comprehensive
filtration between the source and the destination of a remote
backup. In the source, Neptune eliminates duplicate files and
compresses similar files. The remote transmission leverages a
similarity detection technique to obtain significant bandwidth
savings. Neptune goes far beyond the simple combination
of system-level deduplication and application-level similarity
detection. While the former can deduplicate exact-matching
chunk-level data well, it fails to deal with files from the
application’s viewpoint, since the low-level chunks can not
explicitly express the properties of application-level data. The
latter only concentrates on the files themselves from the appli-
cation’s viewpoint, failing to capture and leverage the system-
level characteristics, such as metadata and access patterns.
Neptune, in fact, bridges the gap between them and delivers
high performance.

Cost-effective Remote Backups. During remote backups,
Neptune alleviates computation and space overheads. First,
to reduce the scope of processing data, Neptune leverages
semantic-aware groups by using Locality-Sensitive Hashing
(LSH) [5], [6] that has a complexity of O(1) and light space
overhead. In order to improve the efficiency of delta compres-
sion, Neptune slightly looses the selection of base fingerprint
by using top-k, rather than only one similar fingerprint in
conventional approaches. The top-k approximate delta com-
pression can identify more chunks to be delta compressed, thus
significantly reducing the entire network overheads. Moreover,
in order to support efficient remote recovery, we propose a
shortcut scheme for delta chains. The shortcut scheme allows
any given version to be restored by accessing at most two
files from the version chain. Neptune hence avoids extra
computation latency on the intermediate deltas and supports
fast recovery.

Prototype Implementation and Real-world Evaluations.
We have implemented all components of the Neptune ar-
chitecture. We built a prototype to compute fingerprints and
features, which are stored together in caching units, called
storage containers. Moreover, we have implemented Neptune
in multiple servers. We used 8KB chunk size and 4.5MB
containers holding chunks, fingerprints and features. We exam-
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ine the performance of Neptune by using multiple real-world
datasets, including Los Alamos National Laboratory (LANL),
HP, MSN and Google. We also compare Neptune with state-
of-the-art work, including EndRE [7], Cluster-Based Dedu-
plication (CBD) [8] and Stream-Informed Delta Compression
(SIDC) [4].

The rest of this paper is organized as follows. Sections II
presents the Neptune design. Section III presents the im-
plementation details. We present the experiment setup and
evaluation results in Section IV. Section V presents the related
work. We conclude our paper in Section VL.

II. THE NEPTUNE DESIGN

In this section, we present the Neptune design in terms of
research backgrounds and practical operations.

A. Resemblance Measure

Resemblance measure is used to evaluate whether two files
are approximate. In general, besides some slight modifications,
say formatting, minor corrections, etc, these files have the same
content. The quantitative resemblance is a number between 0
and 1. When the value is close to 1, the files are possibly
the same. High resemblance value represents near-duplicate or
approximate measure.

Definition 1: The resemblance r(A,B) of two files, A and

B, is defined as r(A,B) = E;‘Ugg } , where S4 and Sp respectively
represent the fingerprint sets of files A and B. The hashing
functions are chosen uniformly and randomly from a min-wise

independent family of permutations.

To accurately represent similarity of files, we leverage a
small and fixed-size sketch for each file. Sketches allow us to
group a collection of m files into the sets of closely resembling
files. Specifically, a sketch consists of a collection of the
fingerprints of files. To compute the fingerprints, we leverage
Rabin fingerprints [9] due to its ease of use and computation
efficiency. Rabin fingerprints are based on polynomial arith-
metic and can be constructed in any length. It is important to
choose the length of the fingerprints so that the probability
of collisions is sufficiently low. In practice 64 bits Rabin
fingerprints are sufficient for most real-world applications.

Consider two files, A and B, that have resemblance €. If
€ is close to 1, the sketches S4 and Sp will be approximately
pairwise equal. In order to identify duplicates, we divide every
sketch into k groups and each group contains s elements. The
probability that all the elements of a group are pair-wise equal
is €°. The probability that two sketches have r or more equal

groups is Py, = Y, <i<k (/;) esi(1— sk,

Each file needs to maintain these k fingerprints that are
called features. The probability that two features are equal is
&+ f, where f is the collision probability. The initial value
of threshold resemblance is &.

In order to delta compress chunks, we need to identify a
similar chunk that has already been transmitted and maintained
in the destination servers. A resemblance sketch can help
identify the features of a chunk. These features that will not
change maintain the salient property, even if we add some
small variations in the data. Moreover, to compute the features,
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we use a rolling hash function of 32-byte windows over all
overlapping small regions of data. We choose the maximal
hash value as the feature. By using multiple different hash
functions, Neptune generates multiple features. Chunks that
have one or more identical features are possible to be very
similar [10].

In practice, to generate multiple independent features, we
use the Rabin fingerprint over rolling windows w of chunk C
and compare the fingerprints. We then permute the Rabin fin-
gerprint to generate multiple values with randomly generated
coprime multiplier with 32-byte windows.

We select the Rabin fingerprint as feature;. In general,
if the maximal values are not changed, we can achieve a
resemblance match. We hence group multiple features together
to build a “super-feature”. The super-feature value serves as
a representation of the underlying feature values. It has the
salient property that if two chunks have an identical super-
feature, all the underlying features will match well. The super-
features help identify the similar chunks.

In order to obtain a suitable tradeoff between the number
of features and the super-feature’s quality, we performed a
large number of experiments on the used datasets, including
LANL, HP, MSN and Google. We use the variable numbers
of features per super-feature and the super-features per sketch.
We observe that increasing the number of features per super-
feature will increase the accuracy of matches, while unfortu-
nately decreasing the number of the identified matches. On the
other hand, if we increase the number of super-features, the
number of matches increases, however causing the increase of
the indexing overheads. We typically identify that four features
per super-feature can obtain the suitable tradeoff that exhibits
good resemblance matches.

A resemblance lookup is executed in an index represent-
ing the corresponding super-features of previously processed
chunks. We leverage each super-feature as a query request.
Moreover, we consider the chunks are better if they can
match on more super-features. This scheme is helpful to our
approximate delta compression in the remote backups.

B. Practical Operations and Workflow

In the Neptune remote backups, the source needs to send
the files to the destination, while consuming the minimum
bandwidth via data filtration. The data filtration consists of
deduplication and approximate delta compression. For the des-
tination, it needs to reduce the space overhead and aggregate
correlated files into groups to deliver high performance of local
deduplication. The similar base chunk is important to the data
filtration, which the source uses to encode and the destination
uses to decode.

The workflow in Neptune consists of the procedures in
both source and destination servers in the remote backups.
Figure 1 shows the details of Neptune’s workflow. When a
local deduplication-enabled system receives files, these files
are divided into content-defined chunks. A hash value is
calculated over each chunk to represent it as a fingerprint. The
fingerprint is then compared with an index of fingerprints of
previously stored chunks. If the fingerprint does not exist in
the index, it is new and should be stored. Otherwise, only
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a reference to the previous chunk is maintained in a file’s
metadata.
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The workflow of Neptune.

For the network transmission, the destination maintains
the chunks and their fingerprints, which are loaded into a
fingerprint cache. When a chunk from a source is requested
for the transmission, its fingerprint is compared with the cache
in the destination. If a miss occurs, a Bloom filter [11] is
checked to determine whether the fingerprint possibly exists
in the on-disk index. If so, the index is checked and the
corresponding container’s list of fingerprints is loaded into the
cache. When an eviction occurs, based on a Least Recently
Used (LRU) policy, all fingerprints from a container are evicted
as a group based on the locality-sensitive hash computation.
The destination further notifies the source to send the features
of non-duplicate files.

The resemblance search in the groups can find the approx-
imate top-k fingerprints that are most similar to the queried
features. If the queried group contains the similar chunks,
their fingerprints can be further sent to the source server to
determine if they also exist in the source. Otherwise, the
original chunks need to be sent to the destination server. When
the source server contains the top-k similarity chunks, these
similar chunks are selected as the base fingerprints. We execute
the delta compression on these base fingerprints and the chunks
to be transmitted. Finally, the required chunks and deltas in the
source are sent to the destination servers.

To perform delta encoding, we use Xdelta [3] that is
efficient to optimize the compression of highly similar data
regions. We initialize the encoding by iterating through the
base chunks, computing hash values at subsampled positions,
and storing the hash and offsets. We then process the target
chunks by computing their hash values at rolling window
positions. In order to identify the matches against the base
chunks, we retrieve the hash values in the index. If there is
a match, we compare the bytes in the base and target chunks
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forward and backward from the starting position to create the
longest match. Otherwise, if the bytes fail to match, we insert
the target bytes into the output buffer, while adding this region
to the hash index.

III. IMPLEMENTATION DETAILS

In this section, we present the implementation details
including correlation-aware grouping, data filtration and delta
chain management.

A. Correlation-aware Grouping

In order to narrow the scope of processing data and
alleviate the overheads, we leverage locality sensitive hashing
(LSH) [5], [12] to map similar files into the same hash buckets
with a high probability. The LSH function families have the
locality-aware property. The files that are close to one another
collide with a higher probability than files that are far apart.
We define S to be the domain of files and || *|| to be the
distance metric between two files. Let H be a family of hash
functions and we can choose a function g from H uniformly at
random. For any two points p and g, we study the probability

that g(p) = g(q).

Definition 2: LSH function family H, is called
(R,cR,P;,P,) sensitive for distance function || = || if for
any p,q €S

e If ||p,q|| <R then Prylg(p)
o If [[p,q|[> cR then Pry[g(p)

=g(q)] > P,
=g(q) <P

To allow resemblance identification, we choose ¢ > 1 and
P; > P,. In practice, we need to widen the gap between P; and
P, by using multiple hash functions. Distance functions || ||
correspond to different LSH families of /; norms based on an s-
stable distribution to allow each hash function g, 4 : ‘R1 = Z to
map a d-dimensional vector v onto a set of 1nte%ers The hash
function in H can be defined as g, ;(v) = | & ” where a is
a d-dimensional random vector with chosen entrles following
an s-stable distribution, b is a real number chosen uniformly
from the range [0, ®), and ® is a constant.
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Fig. 2. An example of the LSH scheme hashing approximate points into the
same bucket in hash tables.

Figure 2 shows an example to illustrate how the LSH
scheme works in terms of measured distance and geometry
results of hash functions. Specifically, LSH can determine
the similarity between two points by examining the distance
between them in a metric space. There exist two vectors a
and a'. Given a vector a and query point g, g-a is their dot
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product. We uniformly choose b from the interval [0, ). We
can observe that ¢g-a is the projection of point g onto vector a.
From it, we get g(¢) with a shifted distance b. Since the vector
a line is divided into intervals with length w, each interval
corresponds to a position sequence number of point ¢g. In such
a transformation, proximate points have a high probability of
being located into the same interval.

Each file representation consists of multi-dimensional vec-
tors, which are the inputs of LSH grouping. LSH computes
their hashed values and locates them in the buckets of hash
tables. Since LSH is locality-aware, similar vectors can be
placed into the same or adjacent buckets with a high probabil-
ity. We then select them from the hash buckets to constitute the
correlation-aware groups and support resemblance retrieval.

Based on the LSH grouping techniques, we can execute
the deduplication operations in the local servers. In order to
further reduce the network bandwidth for data transmission,
we leverage delta based policy for efficient compression.

B. Data Filtration

Data filtration in Neptune consists of chunk-level dedupli-
cation and approximate delta compression.

First, the deduplication has become a key component
in the backup systems. By efficiently eliminating duplicate
data, this technique can effectively improve the system effi-
ciency. Specifically, the deduplication divides a data stream
into variable-sized chunks and replaces duplicate chunks with
pointers to their previously stored copies. A deduplication
system identifies each chunk by its hash fingerprint. A fin-
gerprint index is used to map fingerprints of the stored chunks
to their physical addresses. In practice, due to the variable
sizes of chunks, a deduplication system manages data at a
larger unit, called container. A container is fixed-sized and
becomes the basic unit of read and write operations. For a
backup, Neptune aggregate the chunks into the containers
to maintain the locality of the data stream. Moreover, for a
restore, Neptune uses the container for efficient prefetching
via updating algorithms, say Least Recently Used (LRU), to
evict a container from the restore cache.

Second, the delta compression is designed as a faster
and more efficient way to decrease the overhead of network
transmission. It leverages the similarities between files and can
create significantly small compressed files. Hence, in order to
improve network transmission, transmitting only the difference
(or delta) between two files requires a smaller number of
bits. Delta compression uses a compressor that accepts two
inputs. One is the current file to be compressed. The other is a
reference source file. The delta compression operation needs to
locate and copy the differences between the current and source
files. A delta comes from compressing those differences. On
the other hand, the decompressor leverages the delta and source
files as the input to create an exact copy of the compressed
file.

C. Delta Compression

In the remote backups, delta compression has the salient
feature of bandwidth savings and efficient communications.



IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

Definition 3: Delta Compression. We have two files
Juew, fora, and a client C and a server S connected by a
communication link. C has a copy of fu, and S has a
copy of f,;;. The design goal is to compute a file f5, i.e.,
Joia + fnew — f5. In the meantime, S can reconstruct f,,, from
fora and fs, i.e., foqa+ fs — fnew- fs5 1S called as a delta of
Jnew and foq.

A differencing algorithm is able to identify the changes
between two versions of the same file. A delta file (A) is
the encoding of the output of the differencing algorithm. In
order to create a delta file, Neptune uses as the input two
versions of a file, including a reference file and a version file
to be encoded. The output is a delta file that represents the
modifications made between versions.

We represent the uncompressed ith version of a file by V;.
The difference between two versions V; and V; is indicated
by A(V,».,V,-)' With respect to V;, the file A(V,»,V,-) differentially
compresses and encodes V;. We can then restore V; by the in-
verse differencing operation on V; and Aw,v,)- We indicate the
differencing operation by 8(V;,V;) — A, v, and the inverse
differencing (reconstruction) operation by S_I(A(Vi,v,‘)vvi) —
V;. V; is created by modification of V;_;. '

A delta chain consists of a sequence of versions of the
same file that continues Vi,V5,...,Vi_1,Vi,Viy1,.... In order
to store this chain as a series of deltas, for two adjacent
versions V; and V;; |, traditional approaches store the differ-
ence between these two files, Ay, v, ,. The “delta chain” is

VEAW )5 s AW ) Bivig )

In order to reconstruct a version V;, we need to apply the
inverse differencing algorithm recursively for all intermediate
versions through i. The related operations in fact generate a
recurrence. V; represents the contents of the ith version of a
file and R; is the recurrent file version. When R; = Vj, we can
rebuild V; and obtain

%:571(A(%_1,\Q),R;_1)- 6]

The restore time for a version includes the time to restore
all of intermediate versions. In general, the time grows linearly
in the number of intermediate versions. For a multi-version
system, the restore consumes too many system resources and
incurs long restore delays, especially for the most remote
version.

In order to improve the restore performance and reduce
the operation delays, we propose a shortcut scheme for multi-
version delta chains. The shortcut scheme leverages a min-
imum number of files for reconstruction. This delta chain
consists of the modified forward deltas and an occasional
whole file, Vi, Aw, v5), Awvs), - A vie): Vir Ay,

Vigr)o -

The shortcut chain has the benefit of allowing any given
version to be reconstructed by accessing at most two files
from the version chain. When a client executes the delta
compression, the files transmitted to the server can be stored
directly without additional manipulation.

Besides adjacent versions, Neptune needs to offer efficient
and scalable delta compression for two non-adjacent versions,
say, versions V; and V;. We use |A(V,-,Vj)| to represent the size of
A(V,-,V,)- If j—i increases, the size will increase, thus leading to
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potential decrease of the compression quality. Neptune hence
uses an occasional whole file to limit the maximum version
distance.

In general, two adjacent versions, V; and Vi1, have oV}
modified fractions between them. The parameter o represents
the compression quality between adjacent versions. Neptune
makes use of a differencing algorithm to create a delta file,
Aw,v,,1)- The larger the size a|Vi| is, the better the compres-
sion performance is. The version compression is given by

Awivi )|

Vi=1-—
l Vit

©))

IV. PERFORMANCE EVALUATION

In this section, we present the experimental results of
Neptune in terms of multiple performance metrics.

A. Experiments Setup

We have implemented Neptune via multiple servers. Each
server has a 8-core CPU, a 32GB RAM, a 500GB 7200RPM
hard disk and Gigabit network interface card. The Neptune
prototype implementation required approximately 6000 lines
of C code in a Linux environment.

Currently, since no large-scale data center traffic traces
are publicly available, we generate patterns along the lines
of traffic distributions in published work and open system
traces to emulate typical data center workloads. To examine
the system performance, we leverage 4 datasets, i.e., Los
Alamos National Laboratory (LANL) dataset [13], HP file
system trace [14], MSN trace [15] and Google clusters [16].
We describe the characteristics of real-world datasets. The
measured traces are listed as follows.

First, Los Alamos National Laboratory (LANL) provides
multiple datasets [13]. These datasets exhibit the properties of
files’ attributes. The entire dataset is about 19GB and consists
of roughly 112 million lines of archive data and roughly 9
million lines of home/project space data. The attributes of the
dataset contain unique ID, file sizes (in bytes), creation time,
modification time, block sizes (in bytes) and the paths to files.

Second, HP file system provides a 10-day 500GB trace [14]
and this dataset shows the accesses from 236 users. The
dataset contains multiple operations, such as READ, WRITE,
LOOKUP, OPEN, and CLOSE, on the accessed files with file
names and device numbers.

Third, the MSN trace [15] includes the metadata informa-
tion in a 6-hour period. The entire dataset has been divided
into 10-minute intervals. This trace contains 1.25 million files
and records 3.3 million “READ” and 1.17 million “WRITE”
operations. The queried objects are the files that contain multi-
dimensional attributes, including access time, the amounts of
READ, the amounts of WRITE, operational sequence IDs and
file size within an examined interval.

Fourth, Google provides anonymized log data from the
clusters [16]. This dataset consists of a collected trace in a
7-hour period. The workload in the trace contains a set of
tasks and each task runs on a single machine. Tasks consume
memory and one or more cores (in fractional units). The
trace contains 3,535,029 observations, 9218 unique jobs and
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176,580 unique tasks. Each task belongs to a single job that
has multiple tasks.

We randomly allocate the available data segments or snap-
shots among 128 servers in a round-robin way. Moreover,
a client leverages the Neptune design for deduplication and
approximate delta compression. A client captures the system
operations from these traces and then delivers the requests
to servers. Both clients and servers use multiple threads to
exchange messages and data via TCP/IP.

Neptune can support top-k approximate delta compression
and deliver high system performance. The k value determines
the number of transmitted fingerprints from destination to
source servers to identify similar fingerprints. In general,
the larger the k value is, the more base fingerprints can be
found, which unfortunately incurs the longer latency due to
computation-intensive indexing. In order to select suitable k
values, we attempt to examine the tradeoff between obtained
bandwidth savings and execution latency. The used metric is
the normalized rate that is the value of the saved bandwidth
divided by the indexing latency. Specifically, we count the
bandwidth against different k values and compute their nor-
malized values between the minimum and maximum values.
In the similar way, we compute the normalized latency values
of executing top-k indexing. Figure 3 shows the normalized
values when using different k values. We observe that the
selected k values are respectively 4, 4, 5, and 6 for four
used sets. These k values can obtain suitable tradeoff between
bandwidth savings and indexing latency.

2
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Fig. 3. Selection of suitable k values.

To the best of our knowledge, there are no existing
approaches that can support both local deduplication and
delta compression for remote communications. In order to
carry out fair and meaningful comparisons, we respectively
compare Neptune with these two aspects. For deduplica-
tion, we compare Neptune with state-of-the-art deduplication
schemes, including EndRE [7] and Cluster-Based Deduplica-
tion (CBD) [8]. For delta compression, we compare Neptune
with Stream-Informed Delta Compression (SIDC) [4] that is
a salient feature of backup replication in the backup recovery
systems. Moreover, due to no open source codes, we choose
to re-implement EndRE [7], CBD [8] and SIDC [4]. Specif-
ically, we implemented EndRE’s end-host based redundancy
elimination service, which includes adaptive algorithm (i.e.,
SampleByte) for fast fingerprinting and its optimized data
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structure for reducing cache memory overhead. We also imple-
mented the components of CBD, including fingerprint cache,
containers and super-chunk based data routing scheme in the
deduplication clusters. SIDC was implemented, including its
Bloom filter, fingerprint index, and containers, to load the
stored sketches into a stream-informed cache.

All approaches for comparisons use the same running
environments to examine their performance under different
metrics. Specifically, the deduplication metrics include dupli-
cate elimination, throughput and RAM usage. The duplicate
elimination is defined as the percentage of duplicate data elim-
inated. The throughput is the rate at which the features of the
streams are processed. The RAM usage comes from recording
the space overhead of the grouping lookups. Moreover, the
compression metrics include the effective throughput, multi-
level normalized delta compression and delta overheads.

B. Results and Analysis

1) Deduplication Performance: We first present the exper-
imental results in terms of local deduplication.

Filtration Elimination. Figure 4 shows the percentage of
files duplicate elimination. Since EndRE and CBD carry out
the exact-matching deduplication and work for fully identical
files, they can remove on average 22.6% duplicate files. They,
in the meantime, fail to detect and remove the files with slightly
different files. Neptune eliminates the most duplicates (i.e.,
92.7%). The reason is that Neptune not only identifies exact-
matching chunks but also detects the similar chunks to obtain
the larger percentage of the filtrated data.

100
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Percentage of Filtrated Data

Google LANL HP MSN

Fig. 4. Percentage of the filtrated data in multiple traces.

Deduplication Throughput. Figure 5 shows the results
in terms of deduplication throughput. Specifically, Neptune
achieves an average throughput of about 3.25GB/s, higher than
1.85GB/s in EndRE and 1.22GB/s in CBD. The substantial
throughput improvements of Neptune attribute to the LSH
based grouping scheme that can significantly narrow the scope
of processing data, while alleviating the overheads and improv-
ing the deduplication throughput. Although EndRE optimizes
data structures to reduce memory overhead, its fingerprinting
hash table in practice consumes substantial space that is much
larger than the limited memory size. EndRE hence have to
frequently access to the not cached fingerprints in hard disks,
which meanwhile tends to adversely decrease the throughput.

Space Overhead. We compare the space overhead as
shown in Table I. The space overhead that is normalized to
that of EndRE in terms of RAM usage. Specifically, EndRE
has the highest RAM usage among the mentioned approaches
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Fig. 5. Deduplication throughput.

since it carries out the exact deduplication that demands a large
hash table in the memory to maintain the index of fingerprints.
Although EndRE uses SampleByte algorithm to store compact
signatures, it still requires at least 32 bytes for each new chunk,
thus leading to a very large hash table for millions of finger-
prints. Moreover, CBD needs to maintain the information for
stateful routing that consumes much space overhead. Neptune
leverages space-efficient features to significantly reduce the
space overhead.

TABLE 1. RAM USAGE NORMALIZED TO ENDRE.
EndRE | CBD | Neptune
Google 1 0.56 0.15
LANL 1 0.82 0.19
HP 1 0.73 0.14
MSN 1 0.61 0.18

Since Neptune demands significantly less RAM space
than other approaches, it can also improve the deduplication
throughput by caching more index information into RAM.
In fact, the Neptune system can be dynamically configured
according to the users’ requirements. For example, the through-
put and duplicate elimination rates can be configured by tuning
the proper system parameters (e.g., the number of indexed files
in the cache, the similarity degree and the number of features,
etc.). Therefore, from the system evaluation, Neptune is shown
to offer the efficient and scalable deduplication performance,
thus obtaining higher throughput and duplicate elimination at
much lower RAM overhead.

Time Overhead. We examine the time overhead in com-
pleting the file deduplication and the experimental results are
shown in Figure 6. EndRE leverages sample based finger-
printing algorithm to accelerate the deduplication. Neptune
obtains the smallest time overhead due to the usage of the LSH
computation to implement the fast and accurate detection of
duplicates.

2) Delta Compression in Remote Backups: We mainly
report the experimental results from the real backups by ex-
amining the multi-level delta compression, effective throughput
and delta overheads.

Multi-level Delta Compression. Our design goal is to
reduce the amounts of the transmitted data by using the multi-
level compression, as well as deduplication. Specifically, we
examine the performance of chunk deduplication (only reduce
the amounts of transmitted data and maintain the original data
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Fig. 6. Time overhead in the file deduplication.

in local systems), standard delta compression and Neptune.
The experimental results are shown in terms of the normalized
compression in the cumulative form.
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100%
80% r
60%
40%
20%
0%
LANL HP MSN

Google

Normalized Compression

Fig. 7. Multi-level delta compression.

Figure 7 shows the compared compression results for the
deduplication and compression options. The lowest region of
each vertical bar is the amount of compression achieved by
chunk deduplication, about 15.7% normalized compression.
The next sets of colored regions demonstrate how much extra
compression is achieved by using standard delta compression
and Neptune. In all cases, using deduplication adds further
compression, and by using standard delta compression, the
normalized ratios are improved, on average 18.2%. Beyond
existing compression ratios, Neptune obtains the better perfor-
mance since it supports both deduplication and top-k approxi-
mate delta compression. Neptune can hence identify more data
to be compressed.

Effective Network Throughput. We perform numerous
remote communications experiments to measure effective net-
work throughput between two remote cities. Their distance is
more than 1200km via 2Mb/s network link. Figure 8 shows
the results of the MSN dataset that has the largest size.
The throughput runs at 2Mb/s and is measured every 20
minutes. We observe that compared with full replication (i.e.,
the baseline), the average effective throughputs in Neptune
and SIDC are 286.27Mb/s and 57.26Mb/s respectively, much
larger than the baseline, 1.57Mb/s. The main reason is that
both Neptune and SIDC leverage the delta compression that
physically transfers much less data across the network. Fur-
thermore, SIDC replies on the closest fingerprint to determine
the similarity. Performing the delta compression on a single
base chunk limits the utilization and causes the decrease of
communication performance. The reason is that SIDC often
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fails to identify similar chunks to be compressed. Unlike it,
Neptune obtains better performance by finding more chunks
that can be delta compressed.
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Fig. 8. Effective throughput in remote communications.

Delta Computation Overheads. Neptune leverages the
delta compression to improve the effective throughput, which
meantime incurs extra computation and disk I/O overheads.
We examine these overheads in local servers and remote
backup servers. First, the storage capacity overheads for main-
taining fingerprints are relatively small. Each chunk stored
in a container (after deduplication) has the fingerprints. The
fingerprints are added to the metadata section of the storage
container, which is less than 40 bytes. The disk I/O overhead is
modest (around 4.5%). Furthermore, since the main overhead
comes from the computation cost, we examine the real CPU
utilization in both source and destination servers, as shown in
Figure 9.
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Fig. 9. Delta computation overheads.

We measure the CPU utilization over every 2 minute
period after the initial seeding phase. In the source servers,
the CPU utilization is around 2.47% to mainly identify top-
k fingerprints and compute the deltas to be transmitted. We
also observe that in the destination server, the CPU utilization
demonstrates increasing trend, from 4.7% to 9.8%. The main
reason is that the CPU overhead, i.e., indexing upon Bloom
filters and fingerprint structure, almost scales linearly as the
number of transmitted data. Overall, the entire CPU overheads
are no more than 10%, which is acceptable in the servers, due
to the increasing number of CPU cores. In essence, we trade
computation and I/O resources for higher network throughput
between remote network servers.

851

Recovery Overheads. The delta based recovery scheme
can remotely restore the removed files with relatively small
space and computation overheads. Compared with full back-
ups, the proposed delta-based recovery scheme in Neptune can
significantly reduce the system overheads. Note that since most
encoding operations can be completed in an off-line manner,
we mainly examine the decoding (i.e., recovery) time that is
the main concern for users.
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Fig. 10. Average recovery time.

Figure 10 shows the recovery time by examining the
operation of decoding the deltas. We observe that the recovery
time is approximately linear to the number of files to be
recovered. Recovering 1,000 files requires about 1 second,
which is generally acceptable to users. Neptune leverages the
shortcut chains to allow any given version to be restored by
accessing at most two files from the version chain. Neptune
hence avoids extra computation latency on the intermediate
deltas and supports fast recovery.

3) Neptune Assessment by Users: We argue that it is
important and intuitive to evaluate new backup service by con-
sidering users’ experiences after they use a new system design.
Users’ feedbacks often show some important aspects that may
not be revealed by either simulations or implementations, and
thus serve to complement the prototype-based evaluations.

We analyzed daily reports from cloud systems used by
users during the second week of October 2012. Figure 11
shows how much time was saved by the users versus sending
data without any compression. We reported the amounts of
the transmitted data, network throughput and compression
performance. We hence can calculate how long remote backups
would take without compression. The median users would
require 1025 hours to fully replicate their data (more than 6
weeks). With the aid of Neptune, the backups were reduced to
18.5 hours (saving over 1000 hours of network transfer time).

V. RELATED WORK

Delta compression offers an efficient way to store or
transmit data in the form of differences between sequential data
rather than complete files. The features of delta compression
are to reduce data redundancy and obtain substantial space sav-
ings. We need to select the most appropriate reference file(s)
from a collection of files, if there is no obvious similar file.
General delta compression tools are the copy-based algorithms
based on the Lempel-Ziv approach [17]. These tools include
vdelta and its newer variant vcdiff [18], the xdelta compressor
used in XDFS [3], and the zdelta tool [19].
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Fig. 11. Distribution of hours saved by users.

EndRE [7] uses an adaptive SampleByte algorithm for
fingerprinting and an optimized data structure for reducing
cache memory overhead. SIDC [4] proposes an architecture
that uses stream-informed delta compression to already ex-
isting deduplication systems without the need of persistent
indexes. Cluster-Based Deduplication (CBD) [8] examines the
tradeoffs between stateless data routing approaches with low
overhead and stateful approaches with high overhead but being
able to avoid imbalances. NetStitcher [20] uses a network
of storage nodes to aggregate not utilized bandwidth, and
leverages a store-and-forward algorithm to schedule data trans-
fers. Volley [21] performs automatic data placement across
geographically distributed data centers, while reducing WAN
bandwidth costs. Cimbiosys [22] offers a replication platform
to allow each device to define its own content-based filtering
criteria. By exploiting the skewness in the communication
patterns, a tradeoff between improving fault tolerance and
reducing bandwidth usage is obtained in [23].

Compared with the above schemes, Neptune shares the
same design goal of reducing the amounts of the transmitted
data between long-distance data centers. Unlike them, Neptune
judiciously implements the deduplication in local servers and
proposes a novel approximate delta compression to obtain
significant bandwidth savings. Neptune also leverages shortcut
delta chains to support fast remote recovery.

VI. CONCLUSION

This paper studied an efficient remote backup framework,
called Neptune, which offers efficient cloud backup services.
Neptune supports comprehensive data filtration via local dedu-
plication and network delta compression. To improve the
network transmission performance, Neptune uses approximate
delta compression to identify more chunks to be compressed.
The shortcut chains approach can further optimize the com-
pression performance and alleviate the computation overhead
in the recovery. Neptune has been implemented and thoroughly
evaluated in a real remote backup system. Results demonstrate
the benefits over state-of-the-art schemes including EndRE,
CBD and SIDC.
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