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ABSTRACT

Cloud computing needs to process and analyze massive high-
dimensional data in a real-time manner. Approximate queries
in cloud computing systems can provide timely queried re-
sults with acceptable accuracy, thus alleviating the consump-
tion of a large amount of resources. Locality Sensitive Hash-
ing (LSH) is able to maintain the data locality and support
approximate queries. However, due to randomly choosing
hash functions, LSH has to use too many functions to guar-
antee the query accuracy. The extra computation and stor-
age overheads exacerbate the real performance of LSH. In
order to reduce the overheads and deliver high performance,
we propose a distribution-aware scheme, called DLSH, to of-
fer cost-effective approximate nearest neighbor query service
for cloud computing. The idea of DLSH is to leverage the
principal components of the data distribution as the projec-
tion vectors of hash functions in LSH, further quantify the
weight of each hash function and adjust the interval value in
each hash table. We then refine the queried result set based
on the hit frequency to significantly decrease the time over-
head of distance computation. Extensive experiments in a
large-scale cloud computing testbed demonstrate significant
improvements in terms of multiple system performance met-
rics. We have released the source code of DLSH for public
use.
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1 INTRODUCTION

In cloud computing systems, massive high-dimensional data
need to be fast processed and well analyzed. According to
the report of International Data Corporation (IDC) in 2014,
the data we create and copy is doubling in size every two
years from now until 2020. By then, the size of data will
reach 44 ZettaBytes [40], which needs to be handled in a real-
time manner. The popular use of mobile devices accelerates
the production of large amounts of data. There exist 1.51
billion mobile active users on Facebook in March 2016, with
an increase of 21% year-over-year [2]. Moreover, industrial
companies have already been dealing with petabytes-scale
data everyday [1, 2].

Cloud computing systems consume a large amount of sys-
tem resources, such as computation, storage and networks,
to support query-related requests. However, it is still chal-
lenging to return accurate queried results in a real-time man-
ner [13, 18, 22, 41]. In order to address this challenge, many
researchers focus on query services in the cloud computing
communities, such as search tree for multiple-set member-
ship testing [47], lock-free logarithmic search tree based on
MDList [49], query authentication and correction on out-
sourcing data [39], photo search for preserving privacy [50],
real-time search for files [46], keyword search over encrypted
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data [8, 19, 35, 36], distributed query processing in RFID-
enabled supply chains [21], pattern matching string search on
encrypted cloud systems [42] and automating model search
for machine learning [34]. However, these schemes suffer from
space inefficiency and high-complexity hierarchical address-
ing, thus failing to support real-time queries.

Obtaining clear and accurate results for query requests
is time-consuming and not easy-to-use to users, who usual-
ly fail to provide accurate descriptions for query requests.
Hence, approximate near neighbor (ANN) query service has
received many attentions in practical applications due to the
real-time property. Locality Sensitive Hashing (LSH) [15]
and its variants [6, 7, 12, 14, 17, 24, 30] have been wide-
ly used to support ANN query due to the simplicity of hash
computation and the maintenance of data locality. The basic
idea of LSH is to hash similar points into the same bucket
with a high probability, as well as hash different points into
the same bucket with a low probability. For basic LSH and
its variants, hash functions project data points over random-
ly chosen directions, which are independent of data distri-
butions. In order to maintain the accuracy of approximate
queries, multiple hash tables have to be utilized, resulting in
space-inefficiency.

The essential reason of the space-inefficiency of LSH-based
queries is that the LSH functions are unaware of data distri-
butions. The “one-size-fit-all” methodology fails to efficiently
meet the needs of real-world applications, thus having to use
multiple hash tables to maintain data locality and guaran-
tee the query accuracy. For example, entropy-based LSH [29]
uses hundreds of hash tables to achieve good search quali-
ty. Multi-probe LSH [24] uses derived probing sequences to
probe multiple hash buckets, resulting in partly reducing s-
pace overhead. Figure 1 shows two projected results of the
identical 100 data samples following a Gaussian distribution,
with different projection vectors in the 2-dimensional space.
Our design goal is to differentiate the aggregated data in
a suitable direction, which faithfully exhibits the data lo-
cality as well as efficiently decreases the hash collisions. As
shown in Figure 1(a), the projection vector in the best case
is efficient to identify correlated data. However, as shown in
Figure 1(b), it is difficult to accurately obtain them, since
almost all data have been projected into one small area.

Existing efforts improve the performance of hash-based
schemes by using data-dependent hash functions, such as
spectral hashing [43], shift-invariant kernel hashing [32], com-
plementary hashing [45], isotropic hashing [16], hashing with
decision trees [20], circulant binary embedding [48] and su-
pervised discrete hashing [33]. Due to overlooking the data
locality, these hashing schemes fail to provide real-time query
services.

To deliver high performance and support real-time ANN
queries, we need to deal with three main challenges.

• Low Accuracy. The basic LSH and its variants [12,
14, 17, 24, 30] choose the projection vectors of hash
functions without taking the data distribution into
account. For uniformly-distributed data points, they

(a) The best case. (b) The worst case.

Figure 1: An example of projection difference in 2-d
space.

are hashed into buckets with equal probability, and
thus points in buckets are uniform. However, in prac-
tice, the distribution of descriptors of data in cloud
computing applications is far from being uniform [31,
33]. Hence, unevenly distributed points are hashed by
randomly-chosen directions, which results in the ag-
gregation of many irrelevant points and decreases the
accuracy of query operations.

• Space Inefficiency. Projection vectors of LSH func-
tions are independent of data distributions. Conven-
tional LSH-based schemes heavily depend on using
many hash tables to guarantee the accuracy of queries.
The heavy memory consumption of hash tables be-
comes the performance bottleneck of basic LSH and
its variants.

• High Query Latency. Because of random projection
vectors, many irrelevant points are probed and stored
in the result set of a query. Hence, the result set con-
tains too many candidates for the following distance
computation, which is time-consuming and high query
latency for cloud users.

In order to address the challenges, a Distribution-aware
Locality Sensitive Hashing (DLSH) scheme is proposed for
cloud computing to guarantee query accuracy, improve the
space efficiency and reduce query latency. The idea behind
DLSH is to first explore and exploit the data distribution,
which is further used to judiciously select hash functions,
and then refine the queried result set. Specifically, in order to
maintain the data locality and reduce the space overhead, we
leverage Principal Component Analysis (PCA) [3] into the
Distribution-aware LSH. The basic idea of PCA is to main-
tain the maximum standard deviation of projection vectors
in datasets, as well as reduce the dimensionality of data.

By using the principal components of the data distribution
as the projection vectors of hash functions, we hence select,
rather than randomly choose, hash functions, thus reducing
the number of hash functions used and space overhead. Un-
fortunately, conventional PCA fails to offer successive pro-
jections and eliminate all irrelevant points of queries due to
the orthogonality constraints, thus not meeting the needs
of approximate queries in cloud computing. Hence, we put

243



DLSH: A Distribution-aware LSH Scheme SoCC ’17, September 24–27, 2017, Santa Clara, CA, USA

forward a refinement method of queried result set based on
traditional PCA by utilizing the corresponding eigenvalues
of principal components to quantify the weight of each hash
function, adjusting the interval value in each hash table and
then recording the hit frequency of candidates to downsize
the result set, resulting in significantly decreasing the time
overhead of following distance computation. Specifically, this
paper has made the following contributions.

• Improving the Accuracy of ANN Queries. We
take the data distribution into account and propose a
distribution-aware LSH scheme, called DLSH, in cloud
computing systems. DLSH takes advantage of princi-
pal components of data distribution, to construct hash
functions, rather than randomly-chosen projection vec-
tors. In order to significantly reduce the PCA compu-
tation overhead, we compute the covariance matrix of
a dataset in an offline manner to obtain the projection
vectors, since we obtained the dataset in advance. Un-
like conventional PCA, we further quantify the weight
of each hash function and adjust the interval value in
each hash table to refine the queried result set. This
scheme can significantly improve the accuracy of ANN
queries.

• Improving the Space Efficiency and Decreasing
Query Latency. Through taking the data distribu-
tion into account, a small number of hash tables is
enough to guarantee the query accuracy, which im-
proves space efficiency. In query process, DLSH takes
advantage of the hit frequency of candidates to fur-
ther reduce the number of candidate results, which
can eliminate a lot of irrelevant points. The refinement
process cuts down the time overhead of distance com-
putation, which decreases the query latency.

• Practical Implementation. We have implemented
the DLSH prototype that is compared with the ba-
sic E2LSH [4, 9] and Principal Component Hashing
(PCH) [25], in a large-scale cloud computing testbed.
We utilize three widely used datasets to examine the
practical performance of the proposed DLSH. We fur-
ther propose a new metric for ANN query, named
weighted recall, to differentiate the contribution of each
queried ANN for query performance. The results demon-
strate significant performance improvements in terms
of accuracy and time overhead of ANN queries and
space overhead of hash tables.

The rest of this paper in organized as follows. Section 2
presents the research background. Section 3 shows the DLSH
design and practical operations. Section 4 illustrates the per-
formance evaluation, and Section 5 presents the related work.
Finally, we conclude our paper in Section 6.

2 BACKGROUND

In this section, we present the research background of local-
ity sensitive hashing and principal components analysis for
approximate nearest neighbor query.

2.1 (R, c)-Nearest Neighbor Query

Suppose A is a set of data points in d-dimensional space and
points a, b ∈ A. D(a, b) is the distance between a and b.

Definition 2.1. (R, c)-NN Query. Given parameters R,
c and a query point q, for ∀ a ∈ A, if D(q, a) ≤ cR, Point
a is defined as an ANN of Point q, where c (> 1) is called
approximation ratio and R is a tolerable distance threshold.

Points a and q with d-dimensional attributes can be rep-
resented as vectors −→ad and −→qd , respectively. If their distance
D(a, q) is smaller than a pre-defined constant R, Point a
is called an approximate nearest neighbor (ANN) of Point
q. All ANN points of the query point q in a particular set
compose the set of query result. The distance can be repre-
sented in many forms, such as the well-known Euclidean and
Manhattan distance.

2.2 Locality Sensitive Hashing

Locality Sensitive Hashing (LSH) introduced by Indyk and
Motvani in [15] has the property that maps close-by points
into the same hash bucket in hash tables with a higher prob-
ability than distant ones. LSH is an efficient approximate
algorithm for high-dimension similarity search. In order to
support ANN query, given a query point q, we first hash
it into buckets in multiple hash tables, and then gather all
points in those hit buckets by ranking them in increasing
order of their distances to the query point q. We eventually
select the first k points for a query request, which is called
kNN query. In each function of LSH family, similar points
have a higher chance of colliding into the same hash bucket
than that are far apart. Formally, the LSH family can be
defined as follows [5]:

Definition 2.2. LSH Function Family. Let U be a set
of hash values, and S be the set of n points, S ⊂ Rd. H =
{h : S → U} is the hash function family. For ∀p, q ∈ S,

• If D(p, q) ≤ R, then PrH [h(p) = h(q)] ≥ P1.
• If D(p, q) > cR, then PrH [h(p) = h(q)] ≤ P2.

where c > 1 and P1 > P2 for ANN query. Hence, the LSH
family is called (R, cR, P1, P2)− sensitive.

The hash functions in H can be defined as:

ha,b(v) = ⌊a · v + b

ω
⌋, (1)

where ⌊·⌋ is floor function, a is a d-dimensional random vec-
tor following a p-stable distribution, and b is a real number
chosen uniformly from the range [0, ω), in which ω is a large
constant.

The hash function projects high-dimensional points onto
the vector a and maps the inner products into hash buckets
with the interval ω. The parameter b can be regarded as the
offset.

Random projections are leveraged to generate the family
of hash functions. Intuitively, the close-by points in the high-
dimensional space will also be close-by in all random projec-
tions. However, the probability is very small while two close
points in high-dimensional space are close in all directions of
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projection space, if enough number of projections are used.
Hence, we need to enlarge the gap between P1 and P2. In
practice, a concatenation of LSH functions is leveraged to
generate a hash value for each point in Rd. Formally,

Definition 2.3. Concatenation of LSH Functions.G =
{g : Rd → Uk} is a concatenation of LSH functions, in which
∀gi ∈ G consists of a sequence of k hash functions randomly
chosen from H. Namely,

gi(p) = (hi1(p), hi2(p), . . . , hik(p)), (2)

where k is the number of functions in each concatenation and
hi1, hi2, . . . , hik are randomly chosen from the LSH Family
H.

We leverage the concatenation of LSH functions to con-
struct hash tables. Hence,

• If D(p, q) ≤ R, then PrH [g(p) = g(q)] ≥ P k
1 .

• If D(p, q) > cR, then PrH [g(p) = g(q)] ≤ P k
2 .

The expected number of points in S that collide with Point
q in a hash table but are far from cR in space is less than
P k
2 ∗ |S|. Moreover, the recall for one hash table is P k

1 , which
is not large in real-world applications [9, 11]. In order to
increase the overall recall, l concatenations of LSH functions
are applied simultaneously to construct l hash tables. Thus,
if D(p, q) ≤ cR, the possibility that Point p collides with
Point q in at least one hash table is at least 1 − (1 − P k

1 )
l,

which is close to 1.
Figure 2 shows an example to illustrate the LSH scheme.

LSH has the property that hashes near neighbor points (q
and a) into the same or adjacent bucket in hash tables with
a high probability, and hashes distant points (q and b) into
different buckets.

Table 1

Table 2

q

a

b

Figure 2: An example of the LSH scheme.

When the hash values of a query q are gi(q)(1 ≤ i ≤ l),
we should gather the candidate points that are collide with
q in ∪l

i=1Bigi(q), which have at least one hash value gi(q).
However, the union of Bigi(q) contains too many candidates
for time-consuming distance computation.

LSH has been successfully used in approximate nearest
neighbor queries in high-dimensional vector space. In prac-
tice, we need to configure two main parameters in LSH for
approximate queries, namely, l, the number of hash tables,
and k, the number of hash functions in each hash table. Al-
though there exists the theoretical guarantee for the recall
in the conventional LSH, it is inefficient to space and time
overheads due to the use of multiple hash tables with mul-
tiple hash functions [15]. Moreover, the projections of LSH

functions are chosen randomly which are independent of da-
ta distributions, resulting in a high probability of bad cases
like Figure 1(b). We have to utilize multiple hash tables to
guarantee the query accuracy, which is space inefficient. We
hence take into account the principal components of data
distributions to decrease space overhead.

2.3 Principal Component Analysis

Principal component analysis [3, 25, 51] is a widely-used tech-
nique of analyzing and simplifying datasets in multivariate
statistical analysis. PCA is usually used for dimension reduc-
tion, feature extraction, and image coding and enhancement,
in which a number of related variables are transformed in-
to a set of uncorrelated variables. The basic idea of PCA
is to reduce the dimensionality of data, as well as maintain
the maximum standard deviation of projection vectors in
datasets. PCA is calculated through eigenvalue decomposi-
tion of a data covariance matrix, then gets the eigenvectors
and eigenvalues, usually after mean centering and normaliz-
ing the data matrix for each attribute [3].

Considering a data set X contains n vectors, where each
vector is composed of d variables:

X =


x11 x12 . . . x1d

x21 x22 . . . x2d

...
...

...
...

xn1 xn2 . . . xnd

 . (3)

To obtain principal components, we calculate the means of
the variables. The vector of the means is:

X =


x1

x2

...
xd

 , (4)

and the covariance matrix is S = 1
n−1

XTX, namely,

S =


S2
1 S12 . . . S1m

S12 S2
2 . . . S2m

...
... . . . . . .

S1m S2m . . . S2
m

 , (5)

where S2
i is the variance and the covariance is:

Sij =
n
∑n

k=1 xikxjk −
∑n

k=1 xik

∑n
k=1 xjk

[n(n− 1)]
. (6)

The eigenvalues N and the eigenvectors V can be obtained
from the covariance matrix S, and vectors in V are arranged
by the decreasing order of corresponding eigenvalues in N .
We usually selected first several eigenvectors in V as the prin-
cipal components V ′ of data set X. We use a new dataset
Y to represent X in V ′, which is calculated as Y = XV ′. In
particular, the variances of the data in first several eigenvec-
tors carry much more information, which greatly reflects the
query performance. We can only use the first several eigen-
vectors of the data distribution as the projection vectors in
LSH and construct the hash tables, resulting in reducing
space overhead.
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3 DESIGN AND IMPLEMENTATIONS

In this section, in order to address the challenges of time
and space inefficiencies in LSH-based schemes, we present a
cost-effective hashing scheme, i.e., Distribution-aware LSH
(DLSH). In practice, we utilize the principal components of
the data distribution to allocate the projection vectors in
LSH, which meets the needs of approximate queries with
a few hash tables and is thus space saving. In order to en-
hance the precision of ANN query and decrease the overhead
of distance computation, we quantify the weight of k hash
functions and adjust the interval value in each hash table,
and then record the hit frequency of candidates to decrease
the size of ANN query results without any loss of accuracy.

First of all, we summarize the main notations used in Ta-
ble 1.

Table 1: Variables and descriptions.

Notation Description
c approximation ratio
S the set of n points
D() the distance between two points
k the number of functions in each concatenation
l the number of hash tables
C(q) query result set of q
C′(q) refined result set of q
Col(p) collision number of p
m collision threshold
α collision threshold in percentage
β false positive probability
δ error probability

3.1 Distribution-aware Locality Sensitive
Hashing

In the conventional LSH, the parameters of hash functions
are determined through random-chosen algorithms that over-
look the data distribution [24, 30]. In order to guarantee the
accuracy, we have to use numerous hash tables and corre-
sponding hash computation, thus causing substantial space
and time overheads.

Our idea is to first utilize the principal components of
the data distribution to replace the random projection vec-
tors in LSH. In practice, we use the principal components of
the data distribution to guide the hash selection. PCA de-
creases the dimensionality of data, and keeps the maximum
standard deviation of projection vectors in datasets. More-
over, the computation overhead of PCA is proportional to
the size of the dataset. We hence choose a feature dataset
from the original dataset to guarantee time efficiency. Our
experiments show that when the size of the feature dataset
is larger than 5000, the obtained eigenvectors V has little
impact on projection of the original dataset. This is also
confirmed by existing observations [51]. However, the sim-
ple use of PCA fails to improve the overall performance due
to orthogonality constraints, which introduces too many ir-
relevant points into queried result set. We hence put for-
ward a refinement method to meet the needs of space and
time efficiencies. The proposed refinement method consists
of three-step operations, i.e., weight quantization, interval

adjustment and frequency recordation. First, for construct-
ing the distribution-aware LSH index, we randomly choose
a feature dataset to represent the original dataset to reduce
the computation overhead due to the use of offline PCA com-
putation. Second, we obtain the eigenvalues and eigenvectors
based on the covariance matrix of dataset. Finally, we quanti-
fy the weight of hash functions and adjust the interval value
in each hash table to construct hash tables, and then com-
pute hash values of items to insert. Algorithm 1 illustrates
the construction algorithm of Distribution-aware LSH struc-
ture.

Algorithm 1 The DLSH construction algorithm

Input: Dataset X
1. Randomly choose a feature dataset X′.
2. Compute the means of variables based on Equation 4.

3. Obtain the covariance matrix based on Equation 6.
4. Get the eigenvalues N and the eigenvectors V , and choose
the first t(= kl) eigenvectors V ′ = [v1, v2, . . . , vt].

5. The l hash tables are constructed as follows:
5.1 Compute the weight of k hash functions for each hash table
based on the corresponding eigenvectors.
5.2 Adjust ω in LSH of i hash tables according to the LSH in

i− 1 hash tables (1 < i ≤ l).
5.3 Compute hash values Hash(x) for each x ∈ X:
5.4 Insert x to a bucket according to Hash(x).
Output: Distribution-aware LSH Index

3.2 The Refinement Method

3.2.1 Weight Quantization. Theoretical analysis proves the
efficiency and efficacy of LSH for hashing close points into
the same bucket [15]. However, due to the use of too many
hash tables, the conventional LSH consumes high space over-
head, which is much larger than the limited-size fast memory.
Frequent access to the low-speed storage devices (e.g., hard
disks) suffers from the slow query performance. The con-
ventional random projection based LSH requires a random
weight value for each hash function, and then computes the
weighted sum as the hash value of each point in one hash
table. Referring to Equation 2, for ∀p ∈ S, the hash value in
one hash table is:

gi(p) = ai1 ∗ hi1(p) + ai2 ∗ hi2(p) + . . .+ aik ∗ hik(p), (7)

where the weight aij is a constant randomly chosen from the
range [0, 1) following a p-stable distribution, and 1 ≤ i ≤ l.

In Figure 1, we know that the projection vector in the
Left is better than that of the Right, because the former d-
ifferentiates the aggregated data, and meets the needs of ap-
proximate queries, namely, projecting close points into same
bucket with a high probability and hashing distant points
into same bucket with a low probability. Intuitively, a larger
weight value should be allocated for the hash function with
the better projection vector, for obtaining better query per-
formance. There is no guarantee for query performance with
random allocation of weight value in the conventional LSH.
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Hence in Distribution-aware LSH, we utilize several eigenvec-
tors as projection vectors, and so the corresponding eigenval-
ues can demonstrate the contribution of each direction bet-
ter. Suppose that a dataset S and N = [n1, n2, . . . , nk] is the
set of k eigenvalues, then the weight of each hash function
is:

ai =
ni∑k
i=1 ni

(1 ≤ i ≤ k). (8)

Hence in each hash table, the hash value of Point p is g(p) =∑k
i=1 aihi(p) for each p ∈ S.

3.2.2 Interval adjustment. The interval value ω in LSH is
a constant which is usually overlooked in real-world cloud
computing applications. However, our experiments demon-
strate that the overall performance of query systems is sig-
nificantly different when using different values of ω. The pa-
rameter ω exhibits the granularity of hash collisions. A large
value of ω increases the collision probability between similar
points, but may hash distant points into the same bucket,
which affects the query accuracy, as shown in Figure 3(a).
Meanwhile, a small value of ω decreases the collision proba-
bility between far points, but possibly causes similar points
to be hashed into different buckets as shown in Figure 3(b),
thus exacerbating the query recall, although more hash ta-
bles are used.

(a) The larger ω.

(b) The smaller ω.

Figure 3: The example of interval difference.

In our DLSH design, we adjust the value of interval ω
to improve the query performance. In each hash table, we
utilize k hash functions, and the values of ω are identical,
which are smaller than that in the last hash table. The pro-
jection vectors in DLSH are selected from eigenvectors V
in sequence. The first principal component (eigenvector) has
the largest possible variance, and others decrease in order.
Principal components with the larger variance have the prop-
erty that hash distant points into different buckets with a
larger probability. In order to keep the property in principal
components with smaller variance, we need to adjust and
decrease the values of ω. In practice, the value of ω in each
hash table is half of that in last hash table. Namely, for the
ith (i = 1, 2, . . . , l) hash table, the value of ω is:

ωi =
ω0

2i
, (9)

where ω0 is the initial default value. We manually set ω0 =
4.0 following the principle in E2LSH [9] and LSH-Forest [38].

3.2.3 Frequency Recordation. In approximate query appli-
cations, two similar points collide in all hash tables with very
small probability. When the hash values of a query q are
gi(q)(1 ≤ i ≤ l), we collect the candidate results containing
at least one hash value gi(q). Hence, the result set for query
q becomes the union of Bigi(q):

C(q) = ∪l
i=1Bigi(q). (10)

The result set C(q) contains all candidates for the query q,
and almost all near neighbors are hit with large probability.
However, C(q) includes too many irrelevant points that col-
lide few times with Point q, which incurs high overhead of
distance computation and the decrease of query precision.

In order to further reduce the size of the queried result
set, we record the collision number for each candidate in
C(q) when performing the hash computation, i.e., how many
times each candidate point collide with the query q in l hash
tables. The collision number for ∀p ∈ C(q) is:

Col(p) =

l∑
i=1

¬(gi(p)
⊕

gi(q)). (11)

Intuitively, the probability that one is an ANN of the query
q increases with its collision number. Namely, the point with
greater collision number is the near neighbor of query q with
a larger probability, while the point with smaller collision
number is the near neighbor of query q with a smaller prob-
ability. In practice, the hash functions in the first hash table
utilize the first few principal components with larger vari-
ance. The candidates with hash value g1(q) are approximate
nearest neighbors of query q with larger possibility. These
candidates are still maintained in C′(q), which is the refined
result set of query q. In other hash tables, when the collision
numbers of candidates reach a threshold m, corresponding
candidates are then added into C′(q). If Col(p) ≥ m, the
point p is called to be frequent. Let α be the collision thresh-
old in percentage, so m = αl. During the query process, if
there is a frequent point whose distance to q is less than or
equal to cR, we return TURE and the point; Otherwise, we
return FALSE.

Lemma 3.1. Let β and δ be the false positive and error
probability, respectively. For P2 < α < P1, 0 < β < 1 and
0 < δ < 1, the number of hash tables l can be defined as [14]:

l = ⌈max(
1

2(p1 − α)2
ln

1

δ
,

1

2(α− p2)2
ln

2

β
)⌉. (12)

3.3 Weighted Recall Evaluation

In order to take into account the contribution of each queried
ANN for query performance, we propose a new metric for
ANN query, called weighted recall. The weighted recall is
defined as the fraction of relevant weighted instances that
are retrieved. In an ANN query of Point q, we prefer to find
nearer points, rather than farther ones, based on approxi-
mate degree. Nearer points to the query are more important
than farther ones in ANN query systems. Moreover, the near-
er points significantly contribute to the query performance,
especially for the recall ratio. Hence, we describe relevant

247



DLSH: A Distribution-aware LSH Scheme SoCC ’17, September 24–27, 2017, Santa Clara, CA, USA

instances of the query point with different weights. In our
design, we explore and exploit the Euclidean distances be-
tween candidates and the query point to respectively set the
weights of candidates. Based on the distances of candidates
in C′(q) from the query q, we allocate larger weights to near-
er points. Suppose that a point xi ∈ C′(q), the corresponding
weight is:

wi =
a

D(q, xi)2
. (13)

In fact, the candidate xi may match the query q, in which
the D(q, xi)

2 is equal to 0, resulting in the infinite weight.
In order to address this problem, we add an offset to the
distance between each candidate and the query point, i.e.,

wi =
a

D(q, xi)2 + b
, (14)

where a and b are two constants.
Suppose that X : {x1, x2, . . . , xn} is the exact-matching

set, and Y : {y1, y2, . . . , ym} ⊂ X is the ANN set. The
weighted recall ratio is the sum of ANN weights divided by
that of exact-matching weights, namely:

recall =

∑m
i=1 wi∑n
i=1 wi

. (15)

3.4 Parameter Settings

According to the Equation 12, the accuracy of DLSH is con-
trolled by the error probability δ and the false positive per-
centage β, which are constants set by users. Specially, δ de-
termines the successful rate of all LSH-based methods for
ANN query. In this paper, we set δ = 1

e
following the princi-

ple in QALSH [14]. Intuitively, DLSH checks more frequent
items with a bigger β, and hence achieves a better search
quality but higher costs in terms of distance computation.
Like [10, 14], we set β = 100/n to restrict computation over-
head, where n = |S|.

We now consider the number of hash tables l, collision
threshold percentage α and collision threshold m. Referring
to Equation 12 of Lemma 3.1, let l1 = ⌈ 1

2(p1−α)2
ln 1

δ
⌉, and

l2 = ⌈ 1
2(α−p2)2

ln 2
β
⌉, then l is equal to the larger one of l1 and

l2, namely, l = max(l1, l2). Since p2 < α < p1, l1 increases
monotonically with α and l2 decreases monotonically with α.
In practice, l should be as small as possible for space saving.
Hence, we have the smallest l when l1 = l2. Then, α can be
determined by:

α =
µ · p1 + p2

1 + µ
, where µ =

√
ln 2

β

ln 1
δ

. (16)

Replacing α in l1 by Equation 16, we have:

l = ⌈
(
√

ln 2
β
+

√
ln 1

δ
)2

2(p1 − p2)2
⌉. (17)

After having the values of l and α, we set the collision thresh-
old m as follows:

m = ⌈αl⌉. (18)

3.5 Practical Operations

We describe practical operations of DLSH to support item
insertion, ANN query and item deletion.

3.5.1 Insertion. The insertion operation needs to place
items in hashed buckets for ANN query. Algorithm 2 illus-
trates the insertion algorithm for item x. We denote B[∗] to
be the item in the bucket. In each hash table, we compute k
hash values for item x, and then obtain the final hash value
according to the weights of hash functions. Hence, the item
x is inserted into the list of the bucket. We repeat the above
operation until item x is inserted into all hash tables.

Algorithm 2 Insert(Item x)

1: i := 1
2: j := 1
3: while i ≤ l do
4: while j ≤ k do

5: hj(x) = ⌊a
′·x+b
ωi
⌋

6: end while/* a′ is the corresponding eigenvector of each

hash function*/

7: gi(x) =
∑k

j=1 ajhj(x)

8: x→ B[gi(x)]
9: end while/* aj is the corresponding weight value of each

hash function */
10: Return

3.5.2 ANN Query. The ANN query operation needs to
traverse all hashed buckets of the item to be queried and
obtain approximate nearest neighbors. Algorithm 3 shows
the details of query operation. We first lookup the hashed
bucket in the first hash table, and store the list into a result
set. From the second hash table, we record the hit times
of candidates in all hashed buckets of query item x. If the
number of hit times is larger than a pre-defined Threshold,
we store that item in the result set. We need to execute
exact-matching operation on the result set of a query point
x to eliminate irrelevant points and obtain the approximate
nearest neighbors.

3.5.3 Deletion. In the deletion operation, we need to lookup
the item to be deleted and then remove it from the bucket
of all hash tables. Algorithm 4 illustrates the algorithm of
deleting an item x from DLSH. We first lookup the item to
be deleted in hash tables according to its hash values, and
then delete it. The deletion operation is to remove an exist-
ing item in hash tables.

4 PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed
DLSH scheme by implementing a prototype in a large-scale
cloud computing system.

4.1 Experimental Setup

The server used in our experiments runs on the Linux 2.6.18
environment and is equipped with an Intel 2.8GHz 16-core
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Algorithm 3 ANN Query(Item x)

1: Result = ϕ

2: counts← {}
3: i := 1
4: Result := B[g1(x)]
5: i++

6: while i ≤ l do
7: for each item x ∈ B[gi(x)] do
8: if x ∈ items(counts) then

9: Col[x]← Col[x] + 1
10: else
11: Col[x]← 1
12: end if

13: end for
14: end while
15: for each item x ∈ items(counts) do
16: if Col[x] ≥ Threshold then

17: Result← Result ∪ {x}
18: end if
19: end for
20: Return Result

Algorithm 4 Delete(Item x)

1: i := 1
2: while i ≤ l do

3: if (B[gi(x)] == x) then
4: Delete x from B[gi(x)]
5: end if
6: i++

7: end while
8: Return

CPU, a 16GB DRAM and 500GB hard disk. We implement-
ed all functional components of DLSH scheme in the user
space.

We examine the performance of our proposed DLSH by
using three widely used datasets, which are distributed non-
uniformly [45, 51]. The rationale comes from high dimensions
and acceptable approximate results in these datasets for e-
valuation.

• Object Recognition Benchmark Images. The ac-
knowledged object recognition benchmark images of
University of Kentucky [28] consists of 10, 200 images
in total. In this image set, 4 images compose a group.
We utilize SIFT [26] to obtain 128-dimensional local
feature descriptors of these images. A subset of 1k data
points is sampled as the query set.

• LabelMe Dataset. We utilize 20K 512-dimensional
Gist features extracted from the images of LabelMe
dataset in our experiments. The first 1k features are
used for querying. This dataset has been widely used
as a benchmark dataset for evaluating object recogni-
tion methods [43].

• Random Image Dataset. 1 million 128-dimensional
SIFT descriptors extracted from random images [23]
are used in our experiments. We randomly choose 1k
points from the dataset as the testing queries.

The evaluation metrics include the weighted recall ratio,
precision ratio and F-Measure of ANN query operation, as
well as mean time overhead and space overhead of the whole
system. Specifically, the weighted recall ratio is defined as
the fraction of the number of retrieved positive weighted in-
stances to the total number of weighted instances which are
positive in the dataset in ANN query. The precision ratio
is defined as the fraction of the retrieved positive instances
to the total number retrieved after completing lookup op-
erations. The F-Measure is the combination of recall and
precision, which is better to reflect the overall query perfor-
mance among several schemes. The mean time overhead is
the mean execution times per 1k ANN query requests in all
schemes. The above metrics have been widely used in evalu-
ating high-dimensional and approximate query results [45].

The performance of DLSH is associated with its parameter
settings, especially the metric R that manages the measure
of approximate nearest neighbors. Because of the uncertain-
ties and probabilistic properties of LSH [15, 24], it is a severe
task to identify an optimal R value for an ANN query. Hence,
we utilize the popular and well-recognized sampling mecha-
nism to obtain appropriate R values for our experiments,
which was proposed in the conventional LSH study [9] and
has been widely used in practical applications [5, 37]. We de-
termine the suitable R values of approximate distances for
three datasets to be 300, 400, 500 and 600 to appropriately
and quantitatively represent the correlation.

We show advantages of DLSH scheme over conventional
E2LSH [4, 9] as the baseline, and PCH [25], which is the
combination of PCA and LSH. E2LSH randomly chooses
a sample query set and a sample dataset from the testing
dataset to compute the optimal parameters, i.e., the num-
ber of hash tables l and hash functions k in each hash table,
based on the minimum processing time. After the computa-
tion based on three used datasets, the optimal case is 378
hash tables with 4 hash functions respectively. According to
Equation 17, the appropriate value of hash tables in DLSH
is l = 5. In the following figures, the pairs of number behind
E2LSH, PCH, and DLSH are the numbers of hash functions
in each table and the numbers of hash tables of the struc-
ture respectively. The capacity of each table is uniform. For
example, PCH(4, 5) indicates that the structure contains 5
hash tables, each of which has 4 hash functions.

4.2 Experimental Results

4.2.1 Weighted Recall Ratio. In an ANN query, the rele-
vant items differ in their distances to the query point. Hence
we take advantage of the weighted recall to evaluate the
query performance, which we introduced in Section 3.3. Fig-
ure 4 illustrates the weighted recall ratio of query operations
by using the dataset of benchmark images. We observe that
the average weighted recall ratio of DLSH is 95%, which is
slightly lower than the percentage of 98% in the convention-
al E2LSH when consuming 378 hash tables. Compared with
PCH, our proposed DLSH obtains on average 5% recall ratio
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degradations. E2LSH projects points with random projec-
tion vectors that are unaware of data distributions. Multiple
hash tables have to be constructed to find as many similar
points as possible, which is space-inefficient. PCH leverages
principal components of data distributions to improve per-
formance on E2LSH. Unlike it, DLSH further refines the
queried result set based on the hit frequency to significantly
decrease the time overhead of distance computation, with a
little acceptable performance degradation.
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Figure 4: The weighted recall ratio of DLSH using
the dataset of benchmark images.

Figure 5 shows the weighted recall ratio when using the
LabelMe dataset. We observe that compared with E2LSH
and PCH, our proposed DLSH only suffers on average 4%
recall performance losses, while the average recall ratio of
DLSH is 95% in LabelMe dataset, and 99% in E2LSH and
PCH.
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Figure 5: The weighted recall ratio of DLSH using
the LabelMe dataset.

We examine the weighted recall ratio with the random
image dataset as shown in Figure 6. Compared with E2LSH
and PCH, our DLSH only decreases almost 2% and 4% recall
ratio respectively, while the average weighted recall ratio of
DLSH is 95% in random image dataset, and 97% in E2LSH
as well as 99% in PCH.
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Figure 6: The weighted recall ratio of DLSH using
the random image dataset.

4.2.2 Precision Ratio. We examine the precision ratio of
E2LSH, PCH and DLSH by using the dataset of benchmark
images as shown in Figure 7. Compared with E2LSH and
PCH, our proposed DLSH significantly increases over 30%
and 20% precision ratio when k = 4. DLSH takes into accoun-
t of the principal components of data distributions, which
project similar points into the same bucket with higher pos-
sibility than random projection vectors, as well as project
distant points into different buckets. In order to handle the
orthogonality constraints of PCA and reduce the queried re-
sult set, DLSH further adjusts the interval value in each hash
table, takes advantage of the hit frequency of candidates to
significantly decrease the number of irrelevant points, thus
significantly improving the precision ratio.
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Figure 7: The precision ratio of DLSH using the
dataset of benchmark images.

Figure 8 illustrates the precision ratio of query operations
by using the LabelMe dataset. We observe that compared
with E2LSH and PCH, our designed DLSH improves the
precision over 35% and 25% when k = 4, respectively.

We examine the precision ratio with the random image
dataset as shown in Figure 9. Compared with E2LSH and
PCH, our designed DLSH obtains on average over 50% and
30% precision improvements.
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Figure 8: The precision of DLSH using the LabelMe
dataset.
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Figure 9: The precision of DLSH using the random
image dataset.

4.2.3 F-Measure. The F-Measure is the combination of
recall ratio and precision ratio, which comprehensively re-
flects the overall query performance of each scheme. It is
defined as:

F −Measure =
2× recall × precision

recall + precision
. (19)

Figure 10 shows the F-Measure by using the dataset of
benchmark images. We observe that DLSH improves the F-
Measure more than 40% compared with E2LSH, as well as
35% when k = 4 and 60% when k = 8 compared with PCH.
For the LabelMe dataset, compared with E2LSH and PCH,
our proposed DLSH obtains on average 40% and 25% im-
provements when k = 4 respectively as shown in Figure 11.

Figure 12 illustrates the F-Measure with the random im-
age dataset. We observe that DLSH obtains on average over
60% improvement compared with E2LSH, as well as 50% im-
provement when k = 4 and 40% when k = 8 compared with
PCH. Hence, DLSH significantly improves the overall query
performance than E2LSH and PCH.

4.2.4 Mean Insertion Time Overhead. Table 2 illustrates
the mean times per 1k insertion operations of DLSH by us-
ing three datasets. DLSH and PCH achieve almost the same
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Figure 10: The F-Measure of DLSH using the dataset
of benchmark images.
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Figure 11: The F-Measure of DLSH using the La-
belMe dataset.
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Figure 12: The F-Measure of DLSH using the ran-
dom image dataset.

performance due to similar implementations of insertion op-
eration. With the increase of distance threshold, DLSH con-
sumes on average 18.5ms to perform 1k insertion operations.
We observe that the insertion performance is tightly corre-
lated with the hash computation efficiency, which has been
significantly improved in our scheme. Hence, we obtain the
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improvement upon insertion performance due to the reduc-
tion in the number of hash tables, which significantly reduces
the overhead of hash computation.

Table 2: The mean times(ms) per 1k insertions.

Datasets R=300 R=400 R=500 R=600
Benchmark Images 18.02 18.02 18.02 19.82

LabelMe 18.93 18.25 19.61 18.25
Random Image 18.86 18.19 18.19 18.86

4.2.5 Mean Query Time Overhead. We examine the mean
time overheads per 1k ANN queries of E2LSH, PCH and our
DLSH by using the dataset of benchmark images as shown in
Figure 13. Compared with E2LSH and PCH, DLSH signifi-
cantly reduces almost 80% and 50% time overheads. E2LSH
hashes points with random projection vectors, which adds
extra irrelevant points hashed into the same bucket. A large
size of the result set is generated for distance computation,
which is time consuming. PCH introduced principal compo-
nents of the data distribution reduces the size of the ANN
query result set, and saves much computation time. Based
on PCH, our proposed DLSH handles the orthogonality con-
straints of PCA and further decreases the size of the queried
result set based on hit frequency, result in obtaining time
saving.
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Figure 13: The mean times per group having 1000
queries of DLSH using the dataset of benchmark im-
ages.

Figure 14 illustrates the mean time overheads per group
having 1k ANN queries of three schemes by using the La-
belMe dataset. We observe that DLSH decreases over 85%
time overhead compared with E2LSH, and almost 75% com-
pared with PCH.

Figure 15 shows the mean time overheads in the random
image dataset. Compared with E2LSH and PCH, our pro-
posed DLSH decreases on average almost 90% and 80% time
overheads. Hence, our DLSH optimizes the cloud computing
system performance by decreasing the time overhead.

Both DLSH and PCH need to carry out the two-step oper-
ations, i.e., hash computation and distance computation. P-
CA has been used to generate the projection vectors before
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Figure 14: The mean times per group having 1000
queries of DLSH using the LabelMe dataset.
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Figure 15: The mean times per group having 1000
queries of DLSH using the random image dataset.

hash computation. Unlike PCH, DLSH uses the proposed
refinement method to decrease the data amount to be com-
puted within the hash computation without extra overheads.
This has been implemented via changing the computation
parameters, i.e., the weight and the interval value ω of each
LSH function. Table 3 illustrates the reduction ratio of da-
ta amount in distance computation. Compared with PCH,
DLSH decreases on average 90% data amount due to refine-
ment.

Table 3: Reduction ratio(%) of distance computa-
tion.

Datasets R=300 R=400 R=500 R=600
Benchmark Images 94.85 90.75 89.66 83.05

LabelMe 94.75 93.41 90.02 89.45
Random Image 94.32 93.49 91.69 86.90

4.2.6 Space Overhead. We compare the space overheads
of three schemes by examining the size of hash tables. The
capacity of each table is uniform, and we hence simply com-
pare the number of hash tables each scheme uses, namely,
the second number behind each scheme in above figures, to
allow storage overhead to be comparable. We observe that
in order to guarantee query accuracy, E2LSH has to utilize
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multiple hash tables, such as 378 hash tables in our experi-
ments, which is obtained by the optimal algorithm. However,
DLSH and PCH obtain more space savings by only using 5
hash tables, which significantly decrease 98% space overhead.
The space sizes of the schemes in our evaluation is shown
in Table 4. Even if DLSH and PCH spend the same space
overhead, DLSH gains better query performance and time
efficiency. DLSH makes space efficiency to support real-time
queries better.

Table 4: Space overheads normalized to DLSH.

E2LSH PCH DLSH
The value of l 378 5 5
Normalization 75.6 1 1

4.3 Experimental Summary

Experimental results demonstrate DLSH has the advantages
in terms of precision and F-Measure of queries, as well as
time and space overheads, with some recall performance
reduction. It is an efficient tradeoff between recall reduc-
tion and space and query latency improvements. Existing
schemes, such as E2LSH and PCH, can also use fewer hash
tables to improve the space efficiency and query latency. The
key is how to efficiently determine the collision threshold.
Our contribution is to leverage the refinement scheme to ob-
tain the optimized tradeoff in terms of recall and precision.
DLSH can efficiently improve the query performance and
decrease time and space overheads to optimize the cloud
computing system performance.

5 RELATED WORK

Cost-effective query services are needed in cloud computing.
Clarinet [41] allows a query plan to be WAN-aware for opti-
mizing query completion times for geo-distributed data an-
alytics. Cedar [18] proposes wait-time duration selection for
aggregators in clusters, to gain near-optimal improvements
in response qualities. In order to guarantee the data con-
fidentiality and query privacy in public clouds, RASP [44]
combines several techniques, order preserving encryption, di-
mensionality expansion, random noise injection and random
project, to randomly transform the multidimensional dataset-
s, to provide efficient query services.

Multiple hashing-based query schemes in cloud computing
have been proposed to improve system performance. EIRQ [22]
leverages an aggregation and distribution layer to enable
users of different ranks to retrieve different percentages of
files that match their queries, which reduces querying costs
incurred in the cloud. Moreover, NEST [13] utilizes cuckoo-
driven locality-sensitive hashing to obtain load-balancing hash
tables and support approximate queries. Based on Bloom fil-
ters, a new data structure, called Bloom Tree, is proposed
to support multiple-set membership testing, which achieves
space compactness and operates more efficiently than the
previous work [47]. In order to investigate the efficient search
result verification problem in large dynamic encrypted cloud
data, an efficient verifiable conjunctive keyword search scheme
is presented to allow file update with verification cost related

to search operation rather than the file collection size [35].
The proposed lock-free cuckoo hashing algorithm [27] opti-
mizes the synchronization between query and modification
operations to offer high query throughput.

The performance of hashing-based schemes is significant-
ly dependent on the quality of the hash functions they use.
Many researchers have paid attention to improving the per-
formance of hashing-based schemes by using data-dependent
hash functions. PCH [25] exploits the properties of the dis-
tribution of stored data and projects data to principal axes.
Complementary hashing [45] utilizes multiple complemen-
tary hash tables which are learned sequentially in a boosting
manner, thus balancing the precision and recall more effec-
tively. IsoHash [16] learns projection functions with equal
variances for different dimensions, which is the first work to
verify the effectiveness by theory and experiments. Based
on boosted decision trees and GraphCut, an efficient super-
vised hashing method is proposed to make training and e-
valuation fast for learning hash functions, which shows the
advantages on retrieval performance and fast training for
high-dimensional data [20]. By introducing an auxiliary vari-
able, SDH [33] handles the discrete constrains imposed on
the pursued hash codes, and then generates the optimal bi-
nary hash codes for linear classification.

Existing work motivates our design of DLSH that makes
further improvements upon them. DLSH utilizes principal
components of data distributions as the projection vectors
of LSH to map similar items into the same bucket in hash
tables, thus supporting ANN query and obtaining time and
space saving without the loss of query performance.

6 CONCLUSION

In this paper, we propose a cost-efficient hashing scheme,
called DLSH, to support approximate nearest neighbor query
for large-scale cloud computing applications. The proposed
DLSH has the contributions to three main challenges in LSH-
based schemes, i.e., low accuracy, space inefficiency and high
query latency. DLSH takes advantage of principal compo-
nents of the data distribution as the projection direction-
s of hash functions in LSH, and handles the orthogonality
constraints of PCA by quantifying the weight of hash func-
tions, adjusting the interval value in each hash table and
reducing the size of queried results based on hit frequency.
Compared with state-of-the-art work, extensive experimen-
tal results demonstrate the efficiency and efficacy of DLSH.
We have released the source code of DLSH for public use in
Github at https://github.com/syy804123097/DLSH.
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