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Abstract—Currently, an unprecedentedly vast amount of videos are hosted on the Internet and shared by users across the world.

Within these videos, a considerable portion is duplicate or near-duplicate. Consequently, building an effective yet efficient content-based

redundancy detection system is of importance, as this research would be beneficial to a variety of applications. Despite the progress

in this field, designing a practical detection system for web videos continues to be difficult, because of the contradictions between the

accuracy and speed requirements. In this paper, we propose a novel near-duplicate video detection system, CompoundEyes, whose

design philosophy deviates from the conventional feature-centered paradigm. Instead, the focus of our system has been shifted from

the design of an advanced feature representation to the design of system architecture. This designmethodology not only ensures a

decent detection accuracy by the collaboration of the classifiers but also substantially accelerates the detection speed due to the low

dimensionality of the feature representations and the exploitation of the parallelism among the components. Experiments have been

conducted to demonstrate that the CompoundEyes is both accurate and fast.

Index Terms—Near-duplicate detection, web videos, instance-based learning, multiple instance learning

Ç

1 INTRODUCTION

THE rapid progress inmultimedia technologies and online
video hosting services (e.g., YouTube) prompt the

expansion of web videos. Due to the astronomical volume,
videos have consumed a significant amount of Internet
resources. In 2014, 78 percent of all U.S. Internet traffic was
web videos; this share increases to 84 percent in 2018 [1].

Meanwhile, duplicated video content is pervasive in the
ever-increasing web videos. In a web video dataset, around
27 percent of videos are duplicate or near-duplicate [2].
Accurate and fast detection of the redundancy in web videos
is of importance. For instance, redundancy-aware content
distribution networks are amenable to the optimization of
bandwidth and storage provision. Moreover, pirate videos
and false/polluted tags [3] can be identified by comparing
the visual content of videos.

Due to the semantic gap, detectingNear-Duplicate Videos
(NDVs) based on the associated keywords, tags, or descrip-
tion of videos is fast but less accurate. In contrast, content-
based Near-Duplicate Video Detection (NDVD) systems
[2], [4], [5] aremore accurate but suffer from efficiency issues,
because these systems apply sophisticated and high-dimen-
sional feature representations for satisfactory detection

accuracy. Every minute, 300 hours of videos are uploaded to
YouTube [6]. If the detection speed is an order of magnitude
slower than this growth rate, the Near-Duplicate Video
Detection system will be impractical for large-scale applica-
tions. However, balancing the demands of accuracy and
speed is challenging:

� High Complexity: The complexity of videos is higher
than that of other types of big data. The feature
representations developed hitherto are not capable
of perfectly handling numerous types of content
modifications in web videos. Thus the accuracy can
be affected if certain information is ignored in the
detection.

� Contradictory Demands: In order to increase the accu-
racy, the feature representations are designed to be
complicated and high-dimensional [4], [7], thus
more aspects of video content are included. How-
ever, this design yields high computation cost [4],
which makes it not suitable for online redundancy
detection.

To overcome these challenges, academic communities
attempt to fuse the different features of video (e.g., tempo-
ral, spatial relations) into advanced features [4], [7] and con-
duct the extraction and representation of the features
offline. Intuitively, since these representations contain more
information, they are helpful for revealing subtle redun-
dancy in NDVs. However, in this paper, by resorting to the
information theory, we prove that fusing different features
into an advanced feature does not necessarily increase its
informativeness.

Therefore, we can enhance the discriminative ability of the
detection/retrieval systembymaking use ofmultiple features
rather than designing a complex composite feature represen-
tation. This methodology is analogous to the structure of the
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compound eyes of insects. The compound eyes are composed
of numerous small optical systems, each of which is simple
and weak; but the composition of these systems can achieve
comprehensible eyesight and high visual acuity.

Following this analogy, the NDVD system we proposed is
named CompoundEyes [8]. In this system, every video is rep-
resented as a bag of feature vectors of different types. Each
type is generated by an independent feature extraction and
representation component. As the compound eyes of insects,
the satisfactory detection accuracy is achieved by the whole
system rather than a particular feature extractor. This design
seamlessly integrates the principles ofMultiple Instance Learn-
ing and the systems approach; meanwhile, the algorithms uti-
lized by the components are simple, fast, and adapted for
parallelism exploitation. In this manner, the conflicting
demands of detection accuracy and speed aremitigated.

The contributions of our paper can be summarized as
follows:

� A Shift of Detection Methedology: In the design of an
NDVD system, we shift the focus from advanced
composite feature representations to the architecture
of the system. First, by defining the informativeness
of feature representation, we prove that fusing multi-
ple features does not increase the amount of infor-
mation. Second, based on this proof, we employ the
systems approach to structure the system and apply
the method of Multiple Instance Learning for the
fusion of the information of features.

� Efficiency Improvement: The paradigm shift also enhan-
ces the speed efficiency. First, the dimensionality of
representations is reduced. Second, the system is par-
allelized to accelerate the detection speed further.

� Implementation: Our implementation of Compoun-
dEyes exhibits satisfactory performance. The system
maintains decent detection accuracy while substan-
tially expedites the detection process.

The rest of the paper is organized as follows. Relatedwork
is reviewed in Section 2. Background knowledge concerning
the feature-centered detection paradigm and the proofs that
buttress the design of CompoundEyes are discussed in Sec-
tion 3. In Section 4, the architecture of CompoundEyes is pro-
posed. This system is evaluated in Section 5. Section 6
concludes the paper. A preliminary version of this paper has
been published [8]. Here we provide the theoretical founda-
tions for the paradigm shift, implement two types of conven-
tional feature-based NDVD systems, and conduct more
experiments to demonstrate the advantages of our system.

2 RELATED WORK

In this section, we briefly survey the approaches and techni-
ques that have been applied in multimedia duplicate detec-
tion/retrieval. These approaches include how to represent a
multimedia item (i.e., an image or a video clip) as a process-
able data type (e.g., vectors), enhance the speed efficiency,
and fuse features.

Despite the differences between images and videos, their
representations are generally transferable, since a video
consists of frames (i.e., images). There are two steps in rep-
resenting an image: extracting visual features and

describing the features with data types. Based on the granu-
larity, the features can be categorized into global and local
features, so are the representations.

Global features capture the global properties of an image
[9], [10]. In contrast, local features are localized, salient
regions in an image [11]. Global features can only be
described with global representations (e.g., fingerprints, sig-
natures), while local interest region can be described by
using descriptors such as SIFT [12] or PCA-SIFT [13], or sum-
marized into a global representation by applying the BoWs
(Bag-of-Words)method [14].

Comparedwith images, videos have an additional tempo-
ral dimension. Taking the average of the global representa-
tions of all frames [2], [15] and sequencematching techniques
[16], [17], [18] are on the two ends of the spectrum of video
representations..

In the literature, filtering and indexing are two commonly
applied approaches to accelerate the processing speed. Zhao
et al. [19] filter candidate near-duplicate images by compar-
ing their BoWs representations, before the matching of local
interest regions. In [2], Wu et al. build a hierarchical system
with color histogram representation and local interest region
representation based approaches. Indexing structures are
used to expedite the retrieval of near-duplicate images or
videos. Hash table is one of the most popular indexing struc-
tures. Other examples include LIP-IS [20], [21], Locality Sen-
sitiveHashing (LSH) [15], [22], or inverted indexing [7].

In order to overcome the limitations of the global and local
feature representations, academic communities have investi-
gated various strategies to fuse visual features. Shang et al.
[7] utilize Conditional Entropy (CE) and Local Binary Pattern
(LBP) to capture the spatial information within frames
and preserve the temporal information by applying the
w-shingling method. In [4], [23], by making use of manifold
information, Song et al. translate key-frames into binary hash
codes. The affinity relations of videos in HSV and LBP spaces
are preserved in the training of the hash functions. A similar
approach called kernelizedmultiple feature hashing (KMFH)
is proposed by Zou et al. [24]. Alternative fusion strategies
include Multiple Instance Learning [25] and ensemble fusion
[9], which are similar to the idea of CompoundEyes.

3 PRELIMINARIES

There are various definitions of NDV in the literature. In this
paper, we adopt the least subjective [26] definition proposed
by Wu et al. [2], in which NDVs are videos with similar
visual content but have undergone various modifications
such as illumination changes or caption insertion. Therefore
NDVD is based on visual content rather than semantics.

3.1 Two-Stage NDVD/NDVR

Near-duplicate Video Detection and Near-duplicate Video
Retrieval (NDVR) are different in their objectives, but the
underlying techniques are transferable. In detection, the goal
is to determine whether a pair of videos are similar; in
retrieval, the aim is to locate the videos that are near-duplicate
to the query video and position them correctly. The typical
process of content-based NDVD/NDVR systems is com-
prised of two stages: feature extraction and representation,
neighborhood construction.
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3.1.1 Feature Extraction and Representation

A video feature is a summary of information in the visual
content. Stability and distinguishability are its two valued
traits. Where a feature is extracted may span globally across
the whole video (e.g., color distribution), or be localized to a
region (e.g., interest regions).

Extracting features from a video is conducted on a frame-
by-frame basis. For instance, to calculate the color distribution
of a video, the color distribution of each frame is computed
first, then the average of them is taken as the color distribution
of the video.

Extracted features are described by representations.
Among numerous representations, histograms are widely
adopted, to represent both global features (e.g., color distri-
bution), or local features (e.g., SIFT, and BoWs).

3.1.2 Neighborhood Construction

Owing to speed efficiency concerns, global representations
(e.g., signatures) rather than a sequence of pattern symbols
are generally preferable in NDVD/NDVR systems. When
the first stage ends, videos are summarized as a point in a
multi-dimensional feature space. If the feature is both stable
and distinguishable, NDVs are adjacent whereas different
videos are distant in this space. Therefore, we can identify
the near-duplicate videos to a video by constructing its
neighborhood in the feature space. In other words, this
neighborhood is a decision boundary. The videos that reside
within the boundary are regarded as duplicated videos to
the given video, and others are non-duplicate.

Constructing neighborhood is critical for detection speed,
especially when the dataset is large. As mentioned in Sec-
tion 2, to accelerate this construction, retrieval assistance
schemes are introduced, such as hash tables, inverted index-
ing file, or Locality SensitiveHashing [27].

3.2 Feature-Centered Detection Paradigm

Conventionally, feature extraction and representation in the
first stage are the core of the design of NDVD systems,
which have been profoundly studied. In this part, we com-
mence our discussion about this feature-centered detection
paradigm with a mathematical model, upon which the
drawbacks of this paradigm are investigated, to introduce
and justify the design philosophy of CompoundEyes.

3.2.1 Mathematical Model

First, we define four relevant concepts in NDVD systems as
follows:

Definition 1. The neighborhood of a video v 2 V is NðvÞ ¼ fv0
2 V jv0 2 duplicateðvÞg.
Definition 1 is independent of feature representations.

Definition 2. The representation of a video v 2 V under feature
f 2 F is defined asXfðvÞ 2 Rn (i.e., euclidean space). Defining
the feature space as euclidean space is not mandatory.

Definition 3. A hypersphere neighborhood of a video v 2 V under
feature f 2 F is defined as Sfðv; tÞ ¼ fv0jv0 2 V jXfðv0Þ �Xf

ðvÞj � tg, where j:j is a distance measurement in the feature
space, and t is a parameter of Sf .

Definition 4. The error set of Sfðv; tÞ is defined as Efðv; tÞ ¼
fv0 2 V jv0 2 NðvÞ; v0 =2 Sfðv; tÞg [ fv02 V jv0 =2 NðvÞ; v0 2 Sf

ðv; tÞg.
With these definitions, after establishing the feature f ,

the task of NDVD/NDVR in this paradigm is as simple as
testing whether v0 2 Sfðv; tÞ; v; v0 2 V . Detection/retrieval
accuracy is measured by the volume of Efðv; tÞ. The smaller
Ef is, the better f is to embody videos.

As shown in the left part of Fig. 1, the hypersphere neigh-
borhood in a low-dimensional space under a simple feature
f1 may not be a satisfactory approximation ofNðvÞ, as jEf1 j ¼
4. To increase the distinguishability, a higher-dimensional
feature representationXf; f 2 F is created by combining fea-
ture representations Xf1 ;Xf2 ; . . . ;Xfn ; f1; f2; . . . ; fn 2 F [4],
[7], [23]. The hypersphere neighborhood in this feature space
is more accurate as shown in the right part of Fig. 1, since
jEf j ¼ 0. However, this paradigm may encounter problems
of dimensionality and informativeness.

3.2.2 Dimensionality

The first potential issue with the feature-centered paradigm
is the high dimensionality of representations. Typically,
there are two manners of dimensionality growth: more fea-
tures being integrated, or the vocabulary of visual words
expanding:

� The LBP-based spatiotemporal feature [7] is an exam-
ple of feature fusion. First, each frame is represented
by a binary vector of 16 dimensions; thus there are
216 ¼ 65536 distinctive vectors (or patterns). Then the
video representation is constructed by counting
the frames that belong to each pattern. In this way,
the dimensionality of representations is 65536.

� In BoWs methods, the dimensionality of representa-
tions is the number of visual words, or Oð ffiffiffi

n
p Þ

according to a rule of thumb, where n is the number
of interest regions extracted from all videos. Suppose
there are 107 videos in a dataset, each of them has 102

frames and the average number of extracted regions
in a frame is 103, the dimensionality of this represen-

tation is 10
7þ2þ3

2 ¼ 106.
Either the combinatorial explosion or sublinear growth

could lead to the high-dimensionality of representations,
which imposes heavy processing cost. On the other hand, the
accuracy could also be negatively affected. When dimension-
ality increases, the maximum distance between two random
representations becomes indiscernible compared to the mini-
mumdistance, as

Fig. 1. Transform the low-dimensional feature space into a high-
dimensional space.
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lim
d!1

E
distmaxðdÞ � distminðdÞ

distminðdÞ
� �

¼ 0: (1)

Thus the neighborhood becomes less meaningful. Besides,
when irrelevant or noisy dimensions are incorporated into
representations, the accuracy of neighboring video retrieval
drops.

3.2.3 Informativeness

The second potential issue concerns the reduction of infor-
mativeness. Informativeness, or the amount of information
in representations, is critical to detection accuracy. We
assume that features are represented as one-dimensional his-
tograms because histogram is adopted to describe both
global features (e.g., color distribution) and local features
(e.g., SIFT, PCA-SIFT, BoW). The informativeness of a repre-
sentation is defined as entropy:

Definition 5. Suppose f1; f2; . . . ; fk; . . . 2 F are visual features.
The informativeness of a video representation XðvÞ 2 fXf1ðvÞ;
Xf2ðvÞ; . . . ; XfkðvÞ; . . .g isHvðXÞ ¼ �P

i pvðxiÞlog pvðxiÞ
wi

.
The feature representations XðvÞs are normalized before-

hand, which is a widely adopted technique to boost the perfor-
mance of learning algorithms. The term pvðxiÞ is defined as
pvðxiÞ ¼ gvðxiÞwi, where gv : rangeðXÞ ! ½0; 1� is the under-
lying probability density function of the one-dimensional histo-
gram XðvÞ, and wi is the width of the ith bin of XðvÞ. In other
words, the range of XðvÞ is divided into consecutive, non-over-
lapping bins, and the value ofXðvÞ stays the same within a bin.

The formal definitions of these variables are: wi ¼ ui � li,
xi 2 ½li; ui�, ui�1 ¼ li, [n

i¼1½li; ui� ¼ rangeðXÞ, where n is the
dimensionality (i.e., number of bins) ofXðvÞ.
The following properties can be provedwith Definition 5.

Property 1. HvðXÞ ¼ 0, if n ¼ 1; HvðXÞ ! 0, if n ! 1 and gv
is discrete.

Proof. With Definition 5, the proof of the first part is
straightforward. tu
For the second part,HvðXÞ can be calculated as

HvðXÞ ¼ �
X
i

pvðxiÞlog pvðxiÞ
wi

¼
X
i

wið�gvðxiÞlog gvðxiÞÞ:
(2)

Two properties of the term �gvðxiÞlog gvðxiÞ in Equa-
tion (2) are relevant to the limit of HvðXÞ, boundedness and
continuity.

First, since the range of gv is [0,1], and limgvðxÞ!0 gvðxÞ
log gvðxÞ ¼ 0, which can be proved by applying L’Hopital’s
rule, j � gvðxÞlog gvðxÞj < 1. Thus�gvðxiÞlog gvðxiÞ is bounded.

Second, the continuity of �gvðxÞloggvðxÞ depends on the
continuity of gv. Consequently, we branch the proof of this
part into two cases:

Case 1. According to Equation (2),HvðXÞ is the Riemann sum of
the function �gvðxÞloggvðxÞ. Since this function is bounded,
HvðXÞ is Riemann integrable when gv is continuous or piece-
wise continuous. The limit of HvðXÞ when n approaches infin-
ity is not necessarily zero.

Case 2. If gv is discrete, there are at most countable bins over
which gvðxiÞ is defined when n approaches infinity.

For a bin in which gvðxiÞ is defined, wið�gvðxiÞlog gvðxiÞÞ
is an infinitesimal when n goes to infinity (i.e., wi ! 0).

With the induction technique, we can prove that the sum-
mation of countable infinitesimals is still an infinitesimal. We
define a statement that P ðnÞ is an infinitesimal for all n 2 N.
P ðnÞ ¼ Pn

i¼1 �i, where �i; i ¼ 1 . . .n is an infinitesimal.
Base Case. When n ¼ 1, an infinitesimal �1 itself is an

infinitesimal;
Inductive Step. Suppose P ðnÞ holds until n ¼ k� 1; k >

2; k 2 N, then P ðkÞ ¼ P ðk� 1Þ þ �k, where both P ðk� 1Þ
and �k are infinitesimals. By the definition of infinitesimal,
P ðkÞ is also an infinitesimal, so P ðnÞ is valid for all n 2 N.

To summarize, if gv is discrete,HvðXÞ ! 0 as n ! 1.

Due to the losses in sampling and digital computations, the
underlying probability density functions of the feature repre-
sentations in numerous real-world applications are discrete
rather than continuous. According to Propertie 1, increasing
the dimensionality of this type of representations does not
necessarily make it more informative. On the contrary, as the
number of bins (i.e., dimensions) rises, the representations
become sparse, and their informativeness gets closer to zero.
Experiments with BoWs representations [28] buttress this cor-
ollary. Essentially, Propertie 1 reveals the curse of dimension-
ality as Equation (1) does, from another perspective.

Property 2. HðXf1ðvÞ; Xf2ðvÞ; . . . ; XfkðvÞÞ � HðXfiðvÞÞ; i ¼ 1; . . . ;

k; . . . .

Property 3. HðXf1ðvÞ; Xf2ðvÞ; . . . ; XfkðvÞÞ � HðXf1ðvÞÞ þH
ðXf2ðvÞÞ þ . . .þHðXfkðvÞÞ;

Proof. By Definition 5, PfXfðvÞ ¼ xig ¼ gvðxiÞ; f 2 ff1; f2;
. . . ; fk . . .g; xi 2 rangeðXfðvÞÞ. Therefore, a feature repre-
sentation XfðvÞ can also be viewed as a random variable.
In this way, the term HðXf1ðvÞ; Xf2ðvÞ; . . . ; XfkðvÞÞ is
mathematically sound, and the definition of informative-
ness remains the same.

According to the chain rule,

HðXf1ðvÞ; Xf2ðvÞ; . . . ; XfkðvÞÞ

¼
Xk
i¼1

HðXfiðvÞjXf1ðvÞ; . . . ; Xfi�1
ðvÞÞ: (3)

Equation (3) can also be written as,

Xk
i¼1

HðXfiðvÞjXf1ðvÞ; . . . ; Xfi�1
ðvÞÞ

¼
Xk�1

i¼1

HðXfiðvÞjXf1ðvÞ; . . . ; Xfi�1
ðvÞÞ þHðXfkðvÞÞ:

(4)

Due to the non-negativity of entropy and Equation (4),
the following inequality holds,

HðXf1ðvÞ; Xf2ðvÞ; . . . ; XfkðvÞÞ � HðXfkðvÞÞ: (5)

Based on Inequality 5 and the symmetry of joint
entropy, Propertie 2 can be proved.

To prove Propertie 3, we use the monotonicity property
that conditioning reduces entropy,
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HðXfiðvÞjXf1ðvÞ; . . . ;Xfi�1
ðvÞÞ � HðXfiðvÞÞ: (6)

By plugging Inequality 6 into Equation (3), Propertie 3
can be proved. tu
In Properties 2 and 3, the joint distribution of randomvaria-

blesXf1 ;Xf2 ; . . . ;Xfk models the combination of these feature
representations. From Propertie 2, constructing a sophisti-
cated representation via feature fusion does increase its
informativeness comparedwith every single feature represen-
tation. However, according to Propertie 3, the informativeness
of this composite representation is upper bounded by the
sum of the informativeness of component representations.
Therefore, building a sophisticated classifier, and feeding it
with multiple feature representations could achieve higher
accuracy than feeding a simple classifier (i.e., the hypersphere
neighborhood)with a composite representation.

4 SYSTEM DESIGN

According to Properties 1 and 3, shifting the focus from
building an advanced feature representation to an advanced
classifier is beneficial to detection accuracy. In order to sat-
isfy the speed requirement, our system is designed according
to the principles of the systems approach. In this approach,
components are simple, efficient, and independent of each
other. Parallelism generated from this autonomy is also
exploited to increase speed further.

4.1 Architecture

An abstraction layer model can illustrate the architecture of
CompoundEyes. In this model, frames are sampled at the
Frame layer; the features of these frames are extracted and
represented at the Feature layer. From these representations,
patterns of NDVs generate at the Knowledge layer, which
finally emerge at the Decision layer and are used to make
predictions about videos being duplicated or not.

The system is divided into three subsystems: Feature
Vector Builder, Vector Repository, and Ensemble Learner.
These subsystems are located on the Feature, Knowledge
and Decision layers, as shown in Fig. 2.

In related systems, most of the computational overhead is
originated from Feature Vector Builder. The subsystem is
intrinsically complicated due to the complexity of the visual
content of multimedia objects. By following the principles of
systems approach, we divide the Feature Vector Builder sub-
system into various Vector Builders, each of which uses a
unique feature extraction and representation algorithm. For
each Vector Builder, there is a weak Learner that uses its rep-
resentations to make predictions. The Ensemble Learner col-
lects these predictions, to make final predictions. This design
also conforms to the ideas ofMultiple Instance Learning.

The division of the functionalities of the system ensures
the exploitation of the hidden parallelism. The parallel orga-
nization of CompoundEyes is hierarchical, as depicted inside
the dashed rectangles and circle of Fig. 2. The first level is the
function parallelism among components, i.e., Vector Builders
andweak Learners. They compete for computation resources
to perform their computations. The second level is the data
parallelism within the computations of Vector Builders.
Upon the allocation of computation resources, one or more
parallel tasks are spawned, among which the computations
of the Vector Builder are divided.

4.2 Data Flow

The data flow of CompoundEyes is presented in Fig. 3.

4.2.1 Feature Layer

In the Feature layer, we utilize seven feature extraction algo-
rithms: color coherence, color distribution, Local Binary Pat-
tern, edge orientation, ordinal pattern, motion orientation,
and bounding boxes of objects, as explained in Fig. 4. All of
these algorithms are simple and efficient. Furthermore, the
diversity of these features enhances the accuracy of the final
prediction [29].

The Vector Builders work on a frame-by-frame basis. Sup-
pose the jth Vector Builder deals with feature fj; j ¼ 1; . . . ; 7,
it first extracts fj from a key-frame of video v and represents
it as a histogramXi

fj
ðvÞ; i ¼ 1; . . . ; jvj, where jvj is the number

of key-frames in v. Then the representation of v is calculated

asXfjðvÞ ¼ 1
jvj
Pjvj

i¼1 X
i
fj
ðvÞ. The summation can be computed

Fig. 2. The architecture and parallel organization of CompoundEyes.

Fig. 3. The data flow of CompoundEyes.

Fig. 4. The seven features in CompoundEyes.
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in parallel, which is referred to as the frame-level data paral-

lelism. This parallelism is exploited by distributing the com-

putations of Xi
fj
ðvÞ; i ¼ 1; . . . ; jvj onto the tasks obtained by

this Vector Builder, as shown in Figs. 2 and 3.

4.2.2 Knowledge Layer

The neighborhoods constructed by Vector Repository are
hypersphere neighborhoods defined in Definition 3. After
converting videos into bags of representations fXfjðvÞjv 2 V;
j ¼ 1; . . . ; 7g, the representations of the videos in the training
set Vt are stored and indexed in Vector Repository along
with their ground-truth labels. Vector Repository consists of
seven subspaces, each of which only stores a type of feature
representations Xfj ; j ¼ 1; . . . ; 7. With Vector Repository,
CompoundEyes acquires the capabilities of both NDVD and
NDVR systems.

When the representations of a query video vq from the test
set Vq, fXfjðvqÞjj ¼ 1; . . . ; 7g, are issued to Vector Repository,
its neighborhoods, fSfjðvq; tÞjj ¼ 1; . . . ; 7g, are computed
and returned to Learners in the Decision layer respectively.
Video Repository makes this neighboring video retrieval
proceduremore efficient.

We implement the Vector Repository as an LSH [30], [31]
structure. The reason is twofold. First, LSH is more accurate
in neighboring video retrieval. Second, the temporal cost of
retrieval isOð1Þ. Besides, the LSH structure is combinedwith
Cuckoo Hashing [32]. As a result, the problems of unbal-
anced load among hash tables and of local similar sets are
mitigated, which further enhances its retrieval performance.

4.2.3 Decision Layer

Wemodel theNDVD task as a classification problem.A hand-
ful of videos are designated as seed videos (i.e., reference vid-
eos). Compared with one of the reference videos, a video
v 2 V can be labeled as n possible classes ci; i ¼ 1; . . . ; n. For
example, when n ¼ 2, the classes are duplicate and non-
duplicate. In CompoundEyes n ¼ 7, because the dataset
which we adopt divides videos into seven categories: Exactly
Duplicate, Similar, Different Version, Major Change, Long
Version, Dissimilar, and Do not Exist. Dissimilar and Do not
Exist are treated as the same.

As shown in Fig. 2, Learners (or classifiers) in the Deci-
sion layer are organized hierarchically. The prediction
about a video being duplicate is made upon the hypotheses
of the seven weak Learners.

The weak Learners are denoted as Lj; j ¼ 1; . . . ; 7. The
seven Learners corresponds to the seven features that we uti-
lize. The videos from both the training set Vt and test set Vq are
summarized as bags of representations fXfjðvÞjv 2 Vt [ Vq;
�j ¼ 1; . . . ; 7g in the Feature layer. fXfjðvÞjv 2 Vt; j ¼ 1; . . . ; 7g
are stored in Vector Repository along with their ground-truth
labels fv ¼ cijv 2 Vt; i ¼ 1; . . . ; 7g, while fXfjðvÞjv 2 Vq; j ¼
1; . . . ; 7g are directed to LearnersLj; j ¼ 1; . . . ; 7, respectively,
as shown in Figs. 2 and 3. In Lj, the probabilities pðvq ¼
cijLjÞ; i ¼ 1; . . . ; 7 are approximatedwith frequencies,

Fnðvq ¼ cijLjÞ ¼
jfv ¼ cijv 2 Vt; v 2 Sfjðvq; tÞgj

jfvjv 2 Vt; v 2 Sfjðvq; tÞgj

i ¼ 1; . . . ; 7:

The computation of Sfjðvq; tÞ is performed by Vector Repos-
itory, as mentioned above.

These frequencies are taken as input to Ensemble Learner,
which calculates the posterior probabilities pðvq ¼ cijL1; . . . ;
L7Þ; i ¼ 1; . . . ; 7, utilizing the BKS (Behavior-Knowledge
Space)method [33] as follows,

pðvq ¼ cijL1; . . . ; L7Þ ffi p̂ðvq ¼ cijL1; . . . ; L7Þ;

p̂ðvq ¼ cijL1; . . . ; L7Þ ¼ Fnðvq ¼ cijL1; . . . ; L7ÞP
j Fnðvq ¼ cjjL1; . . . ; L7Þ :

To make the estimation of Fnðvq ¼ cijL1; . . . ; L7Þ; i ¼ 1; . . . ; 7
easier, we assume Lj; j ¼ 1; . . . ; 7 are conditionally indepen-
dent, which is sensible because of the diversity of features.
With the approximation pðvq ¼ cijLjÞ ffi Fnðvq ¼ cijLjÞ; i ¼
1; . . . ; 7, we have,

pðvq ¼ cijL1; . . . ; L7Þ / pðL1; . . . ; L7jvq ¼ ciÞ

¼
Y7
j¼1

pðLjjvq ¼ ciÞ /
Y7
i¼1

pðvq ¼ cijLjÞ

ffi
Y7
j¼1

Fnðvq ¼ cijLjÞ; i ¼ 1; . . . ; 7:

Therefore, with appropriate normalization, the probabilities
are estimated as

pðvq ¼ cijL1; . . . ; L7Þ ¼
Q7

j¼1 Fnðvq ¼ cijLjÞP7
k¼1

Q7
j¼1 Fnðvq ¼ ckjLjÞ

i ¼ 1; . . . ; 7:

The class with the largest posterior probability would be the
final prediction of the class of vq.

Applying the Nearest Neighbor algorithm on the weak
Learners and the BKS method on Ensemble Learner yields
satisfactory performance. The reasons are as follows: first,
Vector Repository computes Sfjðvq; tÞ efficiently, the cost of
which is Oð1Þ; second, the Nearest Neighbor algorithm is
non-parametric, which is helpful to reduce the training cost
to Oð1Þ, fulfilling the in-situ requirement; third, the Nearest
Neighbor algorithm is sensitive to the variations of feature
types [29], thus making it suitable in the scenario of multiple
features; fourth, the BKS method is sufficiently accurate to
be applied on Ensemble Learner [33].

4.3 Advantages

The advantages of CompoundEyes can be illustrated from
the following aspects:

a) Accuracy: The accuracy improvement is primarily
achieved via the collective efforts of Learners. First,
the coverage of features is broader. Not only are the
spatial and temporal information used in learning,
but also the color, edge orientation, texture, and
object sizes information. Second, the diversity of rep-
resentations enhances the accuracy of learning.

b) Detection Speed: Two factors contribute to the improve-
ment of detection speed. The first one is the compact-
ness of representations, which shortens the temporal
cost of extracting feature vectors and of neighboring
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vectorial representation retrieval. The second one is
the exploitation of the function parallelism among
Vector Builders and weak Learners, and the frame-
level data parallelismwithin Vector Builders.

c) In-situ Updating: CompoundEyes has the capacity of
continually updating its classifiers with new knowl-
edge (i.e., videos and corresponding ground-truth
labels), because the training cost is Oð1Þ, and the
changes in classifiers do not affect the construction
of representations in the Feature Layer.

d) Modularity: The components in CompoundEyes are
independent, so they can be changed without affect-
ing others. For example, a new Vector Builder that
extracts a new feature can be admitted if necessary,
so is the case with weak Learners implementing other
classification algorithms, and Vector Repository uti-
lizing alternative indexing schemes. Therefore, the
system could be easily upgraded.

5 EVALUATION

5.1 Experimental Setup

We implement CompoundEyes in C++, C, and Matlab. Spe-
cifically, Vector Builders are coded in C++, with the assis-
tance of OpenCV libraries. Weak Learners and Vector
Repository are implemented in C, and Ensemble Learner is
programmed in Matlab. The parallel parts of Compoun-
dEyes are implemented by usingOpenMP libraries.

Experiments about CompoundEyes are conducted on a
64-core Intel Xeon E5-4640 machine (2.4 GHz, 12.5 GB mem-
ory) with the Ubuntu system. The cores are distributed
equally into 4 NUMA nodes. This multi-core machine is
favorable for the parallel computations of CompoundEyes,
and boosts the speed substantially.

CompoundEyes is evaluated against other NDVD/NDVR
systems that adopt the CC_WEB_VIDEO dataset. The source
code of these systems is not available, except MFH [4]. How-
ever, the memory demand for the matrix computations in
this system is too large to be satisfied by ourmachines. There-
fore, in the comparisons of accuracy and response time, we
adopt the values reported in the papers. Concerning the pre-
processing (i.e., feature extraction and representation, repre-
sentation storage, and training) time, the comparisons are
conducted theoretically. The reason is twofold. First, the tem-
poral cost of the preprocessing of other systems is not pro-
vided in those papers. Second, the parallelization of the
preprocessing of CompoundEyes substantially increases its
detection speed, whichmakes the comparisons unfair.

BoWs feature representation is widely used by the vision
community. Recently, the feature representations generated
by deep neural networks have shown promising results in
challenging tasks such as automatic image annotation. We
implement two NDVD systems based on these two classical
features and compare these systems with CompounEyes
regarding accuracy. The two systems are coded in Python,
with the assistance of OpenCV and TensorFlow libraries.
The BoWs-based system is deployed on a 4-core Intel i3-3220
machine (3.3 GHz, 16 GB memory), and the deep neural net-
work-based system is deployed on a 4-core Intel i5-4460
machine (3.2 GHz, 12 GB memory), whose GPU is GeForce
GT-720.

5.2 Dataset Description

We evaluate CompoundEyes on the CC_WEB_VIDEO data-
set, which contains 12,790 web videos. There are four rea-
sons for this selection.

� First, this dataset was constructed from real online
videos. The videos are from YouTube, Google Video,
and Yahoo! Video.

� Second, various formats and content modifications
are included.

� Third, it has been widely adopted, which facilitates
us to compare the performance.

� Fourth, ground-truth labels are provided. The videos
are labeled manually by the researchers, which is
laborious andmakes the dataset precious for NDVD/
NDVR research.

The CC_WEB_VIDEO dataset is comprised of 24 indepen-
dent groups. Each group corresponds to a search keyword
and contains the videos that are returned by video search
engines after entering the search keyword. In each group, a
video is designated as the seed video, and others are com-
paredwith it and labeled accordingly. The similarity relations
between them, such as “Exactly Duplicate,” are attached to
the corresponding videos as their classes/categories/labels.
As mentioned in Section 4.2.3, there are seven classes. The
researchers who built the dataset defines these classes. They
want to define more fine-grained categories for the similarity
relations between videos, rather than just simply “Similar”
and “Dissimilar.”

5.3 NDVD/NDVR Systems in the Literature

To evaluate the performance of CompoundEyes, we com-
pare it with existing state-of-the-art NDVD/NDVR systems
that have been evaluated on the CC_WEB_VIDEO dataset
or extended datasets. They are described as follows:

Hierarchical Detection System (HIER). Wu et al. [2] propose
a hierarchical NDVD system, which uses a global signature-
based method to filter out duplicates with minor changes
first, leaving more sophisticated changes to the local fea-
ture-based method.

Video Cuboid based Detection System (VC). Zhou et al. [22]
introduce the Video Cuboid signature, an n-gram based
representation, to integrate the temporal and spatial infor-
mation. Further optimizations include the use of the EMD
distance, incremental signature construction, and an LSH
based matching scheme.

Spatial-Temporal Feature based Detection System (ST). Shang
et al. [7] explore alternative approaches to combine the tempo-
ral and spatial information into signatures. Two approaches
are proposed: Conditional Entropy (ST-CE) and Local Binary
Pattern (ST-LBP). The retrieval process is accelerated by
applying a fast intersection kernel and inverted files.

Multiple Feature Hashing based Detection System (MFH).
Song et al. [4] provide another combination of global and
local features. A series of hash functions are learned from
the feature representations. The neighboring video search-
ing is conducted in the Hamming space of the hash codes.

In these systems, VC provides us with the results of accu-
racy, while others are more concerned with mean average
precision and average response time. Hence, we will com-
pare CompoundEyes with VC regarding accuracy, and with
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others regarding mean average precision and average
response time.

5.4 NDVD Systems Based on Classical Visual
Features

These NDVD systems are designed with the feature-cen-
tered paradigm. The feature extraction and representation
algorithms are advanced, through which the videos are rep-
resented as discriminative, high-dimensional vectors in
euclidean space. The distances between the representations,
along with corresponding ground-truth labels of videos in
the training set are fed into a one-vs-the-rest Support Vector
Machine (SVM) classifier. Because we compare Compoun-
dEyes with these NDVD systems only concerning the accu-
racy, efficiency-boosting techniques such as LSH are not
involved in the design.

Bag-of-Words (BoWs). As aforementioned, in the BoWs
approaches, local features of an image are extracted first,
then summarized into a global representation (i.e., a histo-
gram of the frequencies of the occurrence of visual words).
Converting a video into a BoWs representation consists of
two phases: the construction of visual word vocabulary,
and the interpretation of videos based on this vocabulary.

In the first phase, we extract two types of local features
from frames and build vocabularies accordingly. The first
type is Scale-Invariant Feature Transform (SIFT), and the sec-
ond one is Speeded Up Robust Features (SURF). Both of
them are effective for a variety of computer vision applica-
tions. We randomly select 10 percent of the local features of
all the keyframes of the videos in the training set and per-
form K-Means clustering on them. By rule of thumb, the
number of clustering centers is set to be the squared root of
the number of local features.

Converting the videos in the test set into BoWs represen-
tations commences when the vocabulary is available. Since
the dimensionality of the BoWs representation equals to the
size of the visual word vocabulary, the computation of the
representation of a video can be conducted by merely add-
ing the representations of each frame of the video.

Deep Convolutional Neural Network (CNN). With extensive
training sets, deep convolutional neural networks are capa-
ble of outperforming humans in visual recognition tasks.
The trained networks with good generalizability can be
used as a base network in transfer learning. The feature rep-
resentations generated by these networks are more effective
in vision tasks than descriptions such as color histograms or
BoWs representations, even on a different image set.

By detaching the last softmax layer, a standard deep con-
volutional neural network converts a frame into a high-
dimensional feature vector. The feature representation of a

video can be computed by averaging the feature vectors of
its keyframes. Generally speaking, the feature representa-
tions of the videos generated in this way are effective if the
pre-trained neural network performs well in annotating the
frames of the videos. From preliminary experiments, we dis-
covered that regarding annotation performance, VGGNet
[34] is superior to Inception-v3 [35] on annotating the frames
of the CC_WEB_VIDEO dataset. Therefore, we use the 16-
layer and 19-layer VGGNets implemented in TensorFlow for
the NDVD task. The dimensionality of the feature represen-
tations of both networks is 1,000.

5.5 Experimental Results

In this section, experiments are conducted to evaluate the
performance of CompoundEyes. Datasets of various sizes
are constructed by randomly selecting videos from the
CC_WEB_VIDEO dataset. Unless stated otherwise, in each
one of them, 50 percent are used as the training set and the
other 50 percent as the test set.

5.5.1 Accuracy

a) Evaluation metrics:

� Accuracy: The portion of correct predictions in total
results.

� Mean Average Precision: The Mean Average Precision
(MAP) is computed by averaging the Average Preci-

sion (AP) of each group g, as MAP ¼ 1
24

P24
g¼1 APg;

APg ¼ 1
n

Pn
i¼1

i
ri
, where n is the number of correct

predictions , ri is the rank of ith correct prediction.
b) Results: CompoundEyes shows improvements on

detection accuracy. It achieves a higher Accuracy (AC) than
the VC system, 89.28 percent versus 80 percent, and outper-
forms other NDVD/NDVR systems in Mean Average Preci-
sion, as shown in Table 1.

A subset of the CC_WEB_VIDEO dataset with 10 percent
randomly selected video clips is constructed to evaluate
CompoundEyes against the NDVD systems based on the
BoWs and CNN feature representations. The construction
of the BoWs visual word vocabularies will fail due to the
shortage of memory if more portions of videos or local fea-
tures are involved in the computations of vocabulary con-
struction. Besides, the temporal cost of the computations of
the CNN feature representations for the videos is high,
especially when these computations are conducted on out-
dated machines.

Table 2 shows the comparisons of Accuracy and Mean
Average Precision between CompoundEyes with the two
classical feature-centered NDVD systems. Depending on
what type of local features are extracted, and the number of
layers in the convolutional neural network, the two systems
can be further divided into four systems (i.e., BoWs-SIFT,
BoWs-SURF, CNN-16, CNN-19).

TABLE 1
The Comparisons of Performance with Other

NDVD/NDVR Systems in the Literature

SYSTEM VC HIER ST-CE ST-LBP MFH Ours

AC(%) 80 N/A N/A N/A N/A 89.2
MAP(%) N/A 95.20 95.30 95.00 95.40 99.75
RT (ms) N/A 9600 3.7 3.6 N/A 0.2051
PMU N/A OðkÞ OðnÞ OðnÞ Oðk3n3Þ OðkÞOðkÞ
TC N/A Oðkn2Þ OðknÞ OðknÞ Oðk3n3Þ OðknÞOðknÞ

TABLE 2
The Comparisons of Accuracy with Classical

Feature-Based NDVD Systems

SYSTEM BoWs-SIFT BoWs-SURF CNN-16 CNN-19 Ours

AC (%) 79.27 78.66 76.93 78.80 80.91
MAP (%) 98.26 98.18 92.53 97.66 99.21
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From Table 2, we observe that CompoundEyes is more
effective than other NDVD systems concerning both Accu-
racy andMean Average Precision, despite the simplicity and
low dimensionality of the features that it applies, and the
low cost of training. To further investigate the reason behind
these counter-intuitive comparison results, we decompose
the comparisons of average Accuracy and Mean Average
Precision for all the videos in the subset into the comparisons
over the 24 groups, as shown in Figs. 5a and 5b.

To investigate what factors impact the accuracy in differ-
ent video groups, we pinpoint the incorrect predictions
made by CompoundEyes and other models. The following
observations are obtained:

� In group 4, the seed video is about two cats playing.
Both of the SIFT and SURF models achieve perfect
accuracy, but CNN-16 and CNN-19 make plenty of
false predictions. The themes of the videos that they
incorrectly predict as “Similar” are cat related indeed,
but different from the seed video in content. Where
CompoundEyes fails are the videos that are different
in length, luminescence, or the addition of certain
close-up shots.

� In group 14, the seed video has a lot of redundant
frames, which downgrade the performance of all
models. However, the accuracy of benchmark models
is better than that of CompoundEyes, since their mis-
takes are insignificant (mistaking “Similar” videos for
“Exactly Similar”). Whereas CompoundEyes incor-
rectly classifies three “Similar” videos as “Dissimilar.”
All the three misclassified videos are edited. A frac-
tion of frames are added, deleted, or changed, but the
editions do not affect the theme of the videos.

� In group 20, the seed video does not have a specific
topic and contains plenty of close-up shots. Com-
poundEyes achieves perfect performance, while
benchmark models are not capable of handling these
videos. Their mistakes do not have a characteristic,
and the topics of these videos are diverse, including
piano playing, manga, drama, dancing.

From these observations, it follows that one of the signifi-
cant factors influencing the accuracy of prediction is the
abstraction level of features. The seven features utilized in
CompoundEyes are essentially low-level visual features; thus
the similarity detection is vulnerable to changes in length,
luminescence, or the addition/deletion of frames. In contrast,
the features extracted by deep neural networks such as CNN-
16 are more about high-level semantic meanings of frames.
Consequently, distinct videos that share a similar topic are
less discernible to the classifiers that apply these features.

Without further fine-tuning, high-level semantic featuresmay
not be a better option than low-level visual features in the
NDVD/NDVR tasks.

The comparisons in Fig. 5b are slightly different than the
ones in Fig. 5a. Both the CNN-19 and CompoundEyes
achieve 100 percent Average Precision on almost the 24
video groups, whereas other systems fail on certain groups.
In conclusion, from the comparisons of Accuracy and Mean
Average Precision, CompoundEyes built on simple visual
features surpasses or is on par with the sophisticated 19-
layer VGGNet.

5.5.2 Detection Speed

a) The Definition of Temporal Cost: The detection speed of Com-
poundEyes is measured by the temporal cost, which is the
sum of the preprocessing time and response (i.e., retrieval
and classification) time

Temporal Cost ¼ PreprocessingTimeþResponseTime:

b) Analysis of Preprocessing Time Cost: In the literature,
preprocessing is performed offline thus its temporal cost is
not measured. The overhead of preprocessing can be esti-
mated from the fact that in HIER, ST-CE or ST-LBP, extract-
ing features on a dataset of 132,647 videos is practically
impossible [4].

Suppose the number of videos is n, and the average num-
ber of keyframes in a video is k. The peak memory usage
and worst case time complexity of the preprocessing of the
systems are estimated in Table 1.

According to the fifth and sixth rows of Table 1, Compoun-
dEyes has advantages in both the peak memory usage and
time complexity. It neither involves the computations and
pairwise comparisons of SIFT descriptors as HIER, nor the
computations of certain global variables, such as the entropy
of ordinal relations in ST-CE, the correlation between LBP
patterns in ST-LBP, and the transformation and bias matrices
in MFH. The computations of these variables are both spa-
tially and temporally exhaustive. In contrast, the two major
operations of CompoundEyes in preprocessing, constructing
feature representations and inserting them into Vector
Repository, are spatially and temporally efficient. The aver-
age temporal cost of preprocessing of CompoundEyes is
1.4537s.

c) Experimental Results of Response Time Cost: The advantage
of CompoundEyes in detection speed can also be manifested
from response time, as shown in Table 1. The average response
time of CompoundEyes only accounts for 5.70 percent of
ST-LBP’s.

Fig. 5. Comparisions with classical feature-based NDVD systems on the 24 groups of videos.
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Implementing the central part of CompoundEyes in C++
instead ofMatlabmay contribute to the reduction of response
time. However, such a substantial reduction could not be
explained merely by the efficiency of C++. In Compoun-
dEyes, the dimensionalities of representations are 16, 32, and
64, all of which are much lower 65536 of ST-CE and ST-LBP
[7]. This reduction in dimensionality is the main reason for
the improvement in response time.

5.5.3 Parallel Speedup

Experiments in this section are also performed on a 10 percent
subset of CC_WEB_VIDEO. The temporal costs of the sequ-
ential and parallel version of CompoundEyes are compared
to evaluate the parallel speedup.

The average temporal cost of each Vector Builder is esti-
mated in Fig. 6a first, and used as a reference for workload
distribution. On the horizontal axis are the abbreviations of
the features extracted, which are color histogram (HSV),
color coherence (CC), ordinal pattern (SP), edge orientation
(EO), bounding boxes of objects (BB), local binary pattern,
and motion orientation (OPT_FLOW).

a) Thread Allocation Strategies: Both the parallel sections
and tasks in Fig. 2 are OpenMP abstractions of threads.
With different thread allocation strategies, the overall paral-
lel speedup would be different. Therefore, we design and
compare three allocation strategies as follows, to sensibly
provision the computing resources:

� SECTION: What varies in this strategy is the number
of parallel sections competed by Vector Builders,
from 1 to 7. Once a parallel section is assigned to a
Vector Builder, a number of parallel tasks will be
allocated for computing. This number is propor-
tional to the Vector Builder’s sequential running
time.

� TASK-EQ: In this strategy, every Vector Builder
acquires a parallel section. What varies is the number
of tasks spawned by a section, which is the same for
all Vector Builders.

� TASK-PROP: In this strategy, every Vector Builder
obtains a parallel section, and the number of tasks
allocated to a Vector Builder is proportional to its
sequential running time.

b) Results: As expected, from Fig. 6b, TASK-PROP
achieves the best speedup, because it efficiently utilizes allo-
cated threads. Moreover, we notice that when the number of
threads exceeds 60, speedup ceases to rise. Since the value
equals the number of cores in the machine, this phenome-
non is a hint of resource contention.

We also notice that even the best allocation strategy does
not deliver linear speedup. The reason is that in Compoun-
dEyes, videos are processed sequentially, which limits the
throughput of the system.

5.5.4 Feature Information Fusion

In this part, we assess the impact of feature information
fusion, mainly on the detection accuracy. The experiments
are conducted on a 10 percent subset. For the sake of fairness,
the number of parallel sections is equal to the number of fea-
tures to be combined, and the number of tasks that a section
can spawn is equal for all Vector Builders.

As shown in Fig. 7a, on average, the fusion increases the
detection accuracy, both regarding Accuracy and Mean
Average Precision. This growth shrinks when measured by
the best accuracy of fusion. For example, the accuracy dif-
ference between the optimal combination of three features
and four is negligible. Therefore, it is of importance to select
the features to fuse.

For the optimal combinations except all-included, corre-
sponding average temporal costs are shown in Fig. 7b.
They are helpful when choosing the number of features.
For instance, fusing three features is better than four,
because it costs less time but achieves comparable detection
accuracy.

5.5.5 Relevant Parameters

a) The Size of the Dataset: The first relevant parameter is the
size of the dataset. According to Fig. 8a, Accuracy is above
80 percent when the size is 1,279. It increases as the size of
dataset grows. Therefore, CompoundEyes is accurate when
sufficient knowledge has been learned, and its discrimina-
tive capability develops as knowledge accumulates.

Fig. 8b affirms that the total temporal cost increases line-
arly rather than exponentially with the growth of dataset.
This linearity confirms that Vector Repository is capable of
maintaining decent performance even if the size of dataset
becomes large.

b) The Size of the Training Set: Because a system well-tuned
on the training set could behave poorly on the test set, it is

Fig. 6. Sequential and parallel versions comparison.

Fig. 7. The effect of feature information fusion.

Fig. 8. The effect of the size of dataset.
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necessary to evaluate the detection accuracy of Compoun-
dEyes with training sets of different sizes.

The effect of the size of the training set on Accuracy and
Mean Average Precision is recorded in Fig. 9. In these
experiments, the CC_WEB_VIDEO dataset is divided into a
training set and a test set. The ratio of the size of the training
set to the size of the test set varies along the horizontal axis.
The value of Mean Average Precision stays stable, and the
value of Accuracy increases as the ratio increases. Both of
them peak around 5 : 5. Afterward, the classifiers are over-
trained.

c) Vector Repository-related Parameters: Two Vector Reposi-
tory-related parameters, r and k, are of importance. Parame-
ter r has the same meaning as t that appears in Definition 3.
Parameter k is the number of hash tables. Generally speak-
ing, a larger value of k increases the detection accuracy, at
the expense of longer response time.

Because the value of r is different for each type of feature
representations, we set them by experience first, then
change them with the same offset. The effect of r on Accu-
racy and Mean Average Precision is shown in Fig. 10a, and
the effect on average temporal cost is shown in Fig. 10b.

Since k is same for all subspaces in Vector Repository, we
vary its value directly. From Fig. 11a, we observe that Accu-
racy and Mean Average Precision exhibit different trends,
the former one goes down while the latter one goes up and
stays around 100 percent. This difference in trends is because
as k increases, the recall of neighboring feature representa-
tion retrieval grows, but the precision goes down. These
changes reflect onAccuracy but notMeanAverage Precision,
for the number of correct results and their ranks are barely
affected.

The effect of k on average temporal cost is shown in
Fig. 11b, from which we know that 12 is the optimal value
for the detection speed.

6 CONCLUSION

In this paper, we proposed and developed CompoundEyes,
an effective and efficient NDVD system. The design of this
system follows a novel detection paradigm, where a bag of
simpler feature representations has replaced the sophisticated
feature representation. With this functionality decomposition,
the structure of the system can be designed by the principles
of the systems approach, thereby the lower complexity of each
component and the parallelism among them can be exploited
to reduce the temporal overhead forNDVD tasks.Meanwhile,
the accuracy of the detection remains decent because of the
effective fusion of the information in features. The experiment
and analysis results corroborate that concerning the detection
accuracy, CompoundEyes not only surpasses other contem-
porary feature fusion NDVD/NDVR systems but also is on
par with the feature-centered systems based on BoWs and
CNN features. In themeantime, CompoundEyes outperforms
other systems in the peakmemory usage and time complexity.
In conclusion, CompoundEyes is sufficiently effective and
efficient for large-scaleNDVD tasks of web videos.
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