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BR-Tree: A Scalable Prototype for Supporting
Multiple Queries of Multidimensional Data

Yu Hua, Member, IEEE, Bin Xiao, Member, IEEE, and Jianping Wang, Member, IEEE

Abstract—Multidimensional data indexing has received much research attention recently in a centralized system. However, it remains
a nascent area of research in providing an integrated structure for multiple queries on multidimensional data in a distributed
environment. In this paper, we propose a new data structure, called BR-tree (Bloom-filter-based R-tree), and implement such a
prototype in the context of a distributed system. The node in a BR-tree, viewed as an expansion from the traditional R-tree node
structure, incorporates space-efficient Bloom filters to facilitate fast membership queries. The proposed BR-tree can simultaneously
support not only existing point and range queries, but also cover and bound queries that can potentially benefit various data indexing
services. Compared with previous data structures, BR-tree achieves space efficiency and provides quick response (<O(log n)) on
these four types of queries. Our extensive experiments in a distributed environment further validate the practicality and efficiency of the

proposed BR-tree structure.

Index Terms—BR-tree, multidimensional data, point query, range query, cover query, bound query.

1 INTRODUCTION

DISTRIBUTED computing, especially resource-constrained
systems, potentially requires space-efficient storage
structures to promptly respond to data operations and
efficiently support complex queries on multidimensional
data items, such as point query which is to determine whether
a given item is a member of a data set or not, range query
which finds all items whose attribute values exist in the
range of a query request, cover query which finds all ranges
that can cover a randomly given point, and bound query
which finds approximate but tight bounds of multidimen-
sional attributes of an existing item in a data set.

The performance of such queries heavily depends on the
provision of fast, highly scalable, and space-efficient query
services. To support fast query service and improve system
scalability, hash-based distributed structures, e.g., Distrib-
uted Hash Table, are studied in [1], [2], [3]. Such traditional
single dimensional data structures can only support exact-
matching point query since range attribute information is
stripped when hash computations are executed. Although
Group-Hierarchical Bloom filter Array (G-HBA) [4] and
RBF [5] were implemented for distributed and fast point
query, they failed to provide multiple-query services, while
inaccurate query results may be returned due to false
positives in Bloom filters.

In current emerging network applications such as envir-
onmental monitoring and geographical information systems
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[6], [7], queries invariably seek information about items
having multiple attributes. In these cases, traditional single
dimensional data structures are highly space inefficient as
the accuracy of their query results depends upon maintain-
ing the actual values of item identities and their attributes.

Multidimensional data indexing structures in a centra-
lized system [8], [9], [10] have received considerable
attention over years to facilitate data storage, management,
and manipulation. Although R-tree structure [7] can
support range query on multidimensional data items very
well, it cannot support point query efficiently since R-tree
only maintains the bounding boxes of multidimensional
attributes and the pointers to actual data. Even though an
item identity and its multiple attributes are provided, leaf
nodes in the R-tree must store item identities to get point
query result. This, in turn, requires a large storage space
when the amount of data items is large. Though Bloom filter
[11] structure is a space-efficient design for point query, it
cannot support range query, cover query, or bound query
services since it uses hash-based computation and has no
multidimensional range information of stored items.

This paper presents a Bloom-filter-based R-tree (BR-tree),
which integrates Bloom filters into R-tree nodes. The BR-tree
is essentially an R-tree structure to support dynamic
indexing, in which each node maintains a range index to
indicate the attribute range of existing items. BR-tree takes
advantage of the fact that range and cover queries are related
in that an item viewed as the answer to a range query can
trigger a partial solution for a cover query. This means that
both range query and cover query can be supported in a
single unified structure that stores both the items and the
ranges of their attributes together. In addition, point query
and bound query call similar operations to, respectively,
obtain the existence of queried data and approximate
bounds of attributes. Thus, in the BR-tree, the range query
and cover query are supported following the branch of
R-tree while point query and bound query are mostly served
in the branch of Bloom filters.
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In this paper, we focus on the design and implementa-
tion of the BR-tree data structure. Our contributions are
summarized as follows:

e First, we propose a new data structure, BR-tree, for
representing multidimensional data items and sup-
porting the aforementioned four types of queries on
such items. A BR-tree node contains multidimen-
sional attribute ranges to facilitate range and cover
queries, and an extra Bloom filter to improve query
efficiency and accuracy for point and bound queries.
Practical algorithms are given to carry out item
insertion, point query, range query, cover query, and
bound query operations in the BR-tree. To the best of
our knowledge, this is the first paper to exploit the
advantages of space-efficient Bloom filter and multi-
dimensional R-tree to provide multiple lookup
services in an integrated structure.

e Second, this paper presents a distributed and
scalable BR-tree system to handle multiple queries
with short query latency and high query accuracy
where each BR-tree can handle the queries locally.
We also provide a simple and effective strategy to
allow nodes to update their stale information in the
context of the distributed environment.

e Third, we show the query efficiency by providing
applied query operations with low computational
complexity. In a BR-tree with n nodes, all queries can
be answered in O(logn) steps. We implement a
BR-tree prototype system and test the system with
real data traces, like HP trace, BU-Web trace, Forest
CoverType trace, and Generating SpatioTemporal
Data sets (GSTD) trace in a cluster of 30 network
nodes. The experimental results showcase the query
accuracy and storage efficiency.

The rest of this paper is organized as follows: We review
and compare the related work in Section 2. In Section 3, we
present the proposed BR-tree structure. Section 4 illustrates
practical algorithms on the BR-tree and the complexity of
query operations. Section 5 shows the method of deploying
BR-tree in a distributed environment. Section 6 presents the
BR-tree prototype implementation and displays experimen-
tal results. Finally, Section 7 concludes our paper.

2 RELATED WORK

In this section, we briefly describe previous work in three
areas relevant to the proposed new data structure BR-tree:
Bloom filter, R-tree, and related tree structures supporting
distinct queries.

A Bloom filter is a space-efficient data structure to store
an index of an item and can represent a set of items as a bit
array using several independent hash functions [11]. Using a
Bloom filter to represent a set, one can make a point query in
O(1). The Bloom filter allows false positives in membership
queries [12], though they occur in a very small probability.

Bloom filters provide a useful tool to assist network
route lookup [13], packet classification [14], and the longest
prefix matching [15]. All of these applications, however,
have used Bloom filters mainly for items with a single
attribute. There have been data structures that have made
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use of Parallel Bloom filters (PBF) [16] to provide network
services for items with multiple attributes. However, PBF
cannot efficiently support range and cover queries [17].
Other forms of Bloom filters that have been proposed for
various purposes include counting Bloom filters [18],
compressed Bloom filters [19], Group-Hierarchical Bloom
filter Array [4], space-code Bloom filters [20], spectral
Bloom filters [21], multidimension dynamic Bloom filters
[22], and incremental Bloom filters [23].

The R-tree structure [7] can efficiently support range
query by maintaining index records in its leaf nodes
containing pointers to their data. The completely dynamic
index structure is able to provide efficient query service by
visiting only a small amount of nodes in a spatial search.
The index structure is height balanced. The path length
from the root to any leaf node is identical, which is called
the R-tree height. In essence, the family of R-tree index
structures, including R*-tree [24] and R*-tree [25], uses
solid Minimum Bounding Rectangles (MBRs), i.e., bound-
ing boxes, to indicate the queried regions. The MBR in each
dimension denotes an interval of the enclosed data with a
lower and an upper bound [26].

A lot of work which aims to support range query
efficiently has been done [27], [28], [29], [30], [31], [32], [33].
In essence, existing index structures for range query often
hierarchically divide data space into smaller subspaces,
such that the higher level data subspace contains the lower
level subspaces and acts as a guide in the range query. Such
work, however, cannot efficiently support both range query
and point query.

Some existing work may have similar design purpose
with our BR-tree, e.g., supporting two distinct queries in a
unified structure [5], [8], [29], [34], [35]. BR-tree, however,
enhances query functions to efficiently support four types
of queries for items with multiple attributes in O(log n) time
complexity. Moreover, our proposed BR-tree utilizes space-
efficient storage design and deviates internal nodes routing
(i.e., hash result probing on the same positions), providing
fast response to user queries.

One of the benefits using tree-based structures is to
efficiently support range-based queries, such as range
query and cover query, which cannot be supported by
conventional hash-based schemes. VBI-tree [34] provides
point and range query services and supports multiple index
methods in a peer-to-peer network, which, however, is
unable to support bound query. BATON [35], a balanced
binary tree, can support both exact match and range queries
in O(logn) steps in a network with n nodes. It requires
certain messages to provide load balance and fault
tolerance. Distributed segment tree (DST) [29] focuses on
the structural consistency between range query and cover
query. It needs to, respectively, insert keys and segments to
support these two queries. SD-Rtree [8] intends to support
point and window (range) queries over large spatial data
sets distributed at interconnected servers by using a
distributed balanced binary spatial tree. In addition, the
main difference between BR-tree and RBF [5] is that the
latter only hashes the content of the root into its correlated
Bloom filter which is then replicated to other servers.
Though RBF can achieve significant space savings, it cannot
provide exact-matching services or support complex
queries in a distributed environment.
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Fig. 1. An example of Bloom-filter-based R-tree structure.

3 BR-TREE STRUCTURE

In this section, we first briefly describe the basic architecture
of the proposed BR-tree. We then analyze load balance in
the proposed BR-tree and finally use a simple example to
explain possible multiple queries.

3.1 Proposed Architecture

A BR-tree is composed of root, internal, and leaf nodes. Fig. 1
shows an example of the proposed BR-tree structure. A
BR-tree node combines an R-tree node with an extra Bloom
filter where a Bloom filter is an m-bit array representing a
set with n items by applying k-independent hash functions
{h1,...,h} on the item set. Because an R-tree node can
exhibit a series of multidimensional attribute ranges and
a Bloom filter can display items in those ranges, the
combined structure encompasses multidimensional ranges
to cover an item’s attributes (e.g., p attributes) in the R-tree
node and stores the hashed value of an item identifier in the
Bloom filter.

The root node (e.g., BRO) represents domain ranges of all
possible attributes. Let R be the maximum number of
children of a node. Each internal node can contain r (% <
r < R) child nodes. We set alower bound on r to prevent tree
degeneration and to ensure an efficient storage utilization.
Whenever the number of children drops below r, the node
will be deleted and its children will be redistributed among
sibling nodes. The upper bound R can guarantee that each
tree node, in fact, can be stored exactly on one disk page.
Each internal node contains entries in the form of
(I, Bloomfilter, Pointer) where I = (Iy,I1,...,I,—1) is a
p-dimensional bounding box, representing an MBR as
shown in Fig. 1. I; is a bounded interval, which can cover
items in the ith dimensional space. Pointer is the address of a
child node. Bloom filter stores all hashed values of item
identities, whose multidimension attributes are covered by
the bounding box I.

An internal node (e.g., BR1) can illustrate the boundaries
of a p-dimensional bounding box and the pointer to the
addresses of its child nodes, and represent item identities
covered by the bounding box.

All leaf nodes (e.g., BR3, etc.) appear at the bottom level
and differ from internal nodes with the form (I, Bloom filter,
item-pointer) where item-pointer stores item identities and
their pointer addresses. BR-tree allows the stored item to be
either a point item or range for multiple queries. From the
union of child nodes, we get the bounding range of the
parent node in each dimension. The range union of siblings
from the same level spans the whole range as the root does.
This guarantees the data integrity in the BR-tree.
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Fig. 2. A BR-tree example.

3.2 Load Balance

Similar to the traditional R-tree, the BR-tree is a load-balanced
tree. Conventional approaches to storing items with multiple
attributes divide a range into multiple segments and insert
items into a segment covering their attributes. As a result,
some segments may represent too many items and become
overloaded. Nonetheless, conventional approaches are not
suitable for a Bloom-filter-based structure because over-
loaded Bloom filters are susceptible to producing high false
positive probabilities. BR-tree aims to be a load-balanced tree
such that the nodes in the same level have approximately the
same number of items. The load-balance property can
efficiently decrease the false positive probability of Bloom
filters in BR-tree nodes. A BR-tree based on an R-tree
reconfigures the segments of a multidimensional range after
using bounding boxes to cover items. This guarantees that the
BR-tree nodes in the same level contain approximately the
same number of items.

3.3 Example for Multiple Queries

Fig. 2 exhibits an example of BR-tree structure. Our current
data set, represented as a BR-tree with root node BRO,
contains two subsets, BR1 and BR2, respectively, having
subsets, BR3, BR4, BR5 and BR6, BR7. We store data
objects (represented as points p) and ranges (represented
as ranges r) into our BR-tree structure. Fig. 3 explicitly
describes multiple operations, including point, range, cover,
and bound queries, for items with two attributes, i.e., (z,y),
in a two-dimensional space.

The operations of point query using BR-tree become
very simple and can be fast implemented compared with

Range Query

p4 Cover Query
Bound Query

Fig. 3. An example of multiple queries in a BR-tree.
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Choose_Leaf (Item a, BR-tree)

Insert_Item (Item a, BR-tree)

CurNode = RootNode(BR-tree);
if (CurNode == LeafNode) then
Return CurNode;
else
Subtree= ChooseLeastMBREnlargement(CurNode, Item
a);
Choose_Leaf (Item a, Subtree);
end if

Fig. 4. The algorithm to locate a leaf node for item a.

previous R-tree structures. For example, if we need to know
whether item p10 belongs to our data set, we need to check
the Bloom filters along the query path from node BRO,
BR2, to BR7 by computing the hash values of item p10.
Bloom filters will return positive to the existence of p10 in
this example. Given the outside pll in Fig. 3, the Bloom
filters will return negative of its existence after the
computation of hash functions for item pl1. Note that the
point query in BR-tree actually can be executed with the
complexity of O(1) only in the root that will cause a small
false positive originated from Bloom filters, or O(logn) to
eliminate the false positive by multistep verifications on
Bloom filters along the query path in the BR-tree.

The processing of a range query starts from the root. If
there is a node entry whose MBR intersects the query
region, its subtree is recursively explored. When the range
query encounters a leaf node, we get all items whose
bounding rectangles intersect the query region. For exam-
ple, the shaded region in Fig. 3 intersects MBRs of both leaf
nodes, BR3 and BR5. As a result, items p2 and p7 will be
returned for the range query.

A cover query is to obtain all multidimensional ranges
covering a given item. For example, given an item X in Fig. 3,
a cover query can determine that the two-dimensional
bounding ranges r3 and r5 can cover it after query
operations along the path from BR0, BR2 to BR6 and BR7
that contain 3 and 5.

The operations of bound query are similar to those of point
query. Given an item represented as a point, we need to check
Bloom filters along the query path from the root to a leaf
node. When a leaf node containing the queried item is found,
the multidimensional ranges linked to the leaf node are the
queried bounds. For example, given an existed item p3 in
Fig. 3, we know that p3 is contained in the leaf node BR4.
Thus, the shaded area, i.e., BR4, denotes the multidimen-
sional bounds on item p3 that will be the bound query result.
In this way, we can quickly obtain approximate multi-
dimensional attribute ranges of an item without querying its
explicit attributes. In practice, the space-efficient index
structure of BR-tree can be fully deployed into high-speed
memory to provide fast query services. Although we can get
tighter bounds of items for bound queries by setting tighter
MBRs on leaf nodes, the BR-tree depth will become larger
and more storage space will be required.

4 LocAL OPERATIONS ON A BR-TREE

This section introduces practical operations applied on a
BR-tree in response to an item insertion and deletion, point
query, range query, cover query, and bound query. A
BR-tree needs to be updated when new items arrive and

LeafNode = Choose_Leaf (Item a, BR-tree);
if Entry(LeafNode) > R then
LeafNode=Quadratic_split(Lea f N ode);
end if
Insert(Item a, LeafNode);
CurNode = Leaf N ode;
while CurNode # NULL do
if a ¢ MBR(CurNode) then
ExpandMBR(CurN ode)
end if
Insert(Item a, BloomFilter(Cur N ode));
CurNode = ParentNode(Cur N ode);

end while

Fig. 5. The algorithm of inserting item a.

thus can correctly respond to multiple-query requests from
users. Note that our proposed algorithms here only show
the local operations that indicate how to obtain query
results from a BR-tree in a network node.

4.1 Item Insertion

Insertion of an item into a BR-tree includes operations on
the R-tree and corresponding Bloom filters. Since an
inserted item needs to be placed in a leaf node, we need
to first locate the leaf node and then insert it. Fig. 4 shows
the algorithm to locate a leaf node for a new arrival item a.
We use CurNode to denote a currently checked BR-tree
node. The suitable leaf node for the item can be found in
O(logn) time, by examining a single path as shown in the
R-tree design [7].

Fig. 5 presents the insertion algorithm when adding an
item a into our BR-tree structure. After locating the leaf
node for the new item, we can carry out node insertion. If
the leaf node has room for the new item, i.e., the number of
entries is less than R, we can execute direct insertion
operations by adding item pointer into the leaf node,
hashing the item into Bloom filters in the leaf node and all
its ancestors till the root. This process is in O(logn) time
complexity. Otherwise, we need to split the leaf node by
utilizing the quadratic-cost algorithm [7], [25], into two leaf
nodes, i.e., the old one containing old entries and the new
one containing item a. The insertion algorithm can be
applied to insert a point (or a range) object, while taking its
identity as the input to an associated Bloom filter.

4.2 Item Deletion
The item deletion to be conducted in a BR-tree node includes
both deletion operations on its R-tree node and Bloom filter.
The item deletion operation using Bloom-filter-based struc-
ture is deemed as a difficult problem, though some possible
solutions exist [12]. Unlike the standard Bloom filter that
cannot support the deletion operation because a bit 1 is
likely to be set by multiple items, a counting Bloom filter [18]
is the one that effectively supports inserting, deleting, and
querying items by replacing a bit in a standard Bloom filter
with a counter. When an item a is inserted or deleted, its
associated counters are increased or decreased by one
accordingly.

Fig. 6 shows the deletion operation on a BR-tree for an
item a. We first find the leaf node that contains the item to
be deleted by using Choose_Leaf function. The node

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on November 2, 2009 at 04:09 from IEEE Xplore. Restrictions apply.



HUA ET AL.: BR-TREE: A SCALABLE PROTOTYPE FOR SUPPORTING MULTIPLE QUERIES OF MULTIDIMENSIONAL DATA

1589

Delete_Item (Item a, BR-tree)
LeafNode = Choose_Leaf (Item a, BR-tree);
DecreaseHashedCounter(1, BloomFilter(Lea f N ode));
DeletePointer(Item a, Leaf N ode);
CurNode = Leaf Node;
while Entry(CurNode) < r do
SiblingNode = arg min, ogee Sivling(CurNode) ENtry(node);
if Entry(CurNode + SiblingNode) < R then
CombineNode(Cur Node, Sibling N ode);
CurNode = ParentNode(CurN ode);
end if

end while

Fig. 6. The algorithm of deleting item a.

CombineNode (nodeN (A), nodeN(B))
for (i = 1;7 < p;i+ +) do
N(A); = MazxInterval(N(A):, N(B):);
end for
InsertItemPointers(N (B), N(A));
BF(N(A)) = UnionBloomFilter(N(A), N(B));
Return N(A);

Fig. 7. The algorithm of merging two BR-tree nodes.

Boolean Member (Item a, BR-tree node)
Flag = True;
for (j =1;5 <k;j++) do
if Hashj(a) == 0 in the Bloom filter of node then
Flag = False, Break;
end if
end for

Return Flag;

Fig. 8. The function to check the presence of item a.

deletion on the Bloom filter in the located leaf node is done
by decreasing every counter by 1 by applying the counting
Bloom filter [18]. BR-tree further deletes the pointer to item
a in the leaf node. Due to the item deletion, the number of
items at the current leaf node may be smaller than a
predefined minimum threshold r. Consequently, BR-tree
will proceed with the node merging operation, which
combines two nodes that have fewer entries into a new one.
Fig. 7 illustrates node merging algorithm to produce a node
with the maximized MBR and a unioned Bloom filter.

4.3 Point Query

Point query allows us to determine whether a queried item
a is a member in a given BR-tree structure. The query result
can guide us to obtain actual data-related information from
pointer address in a leaf node. We can carry out point query
with O(1) complexity only in the root, which can generate
an immediate result with a relatively higher probability of
false positives inherently originated from Bloom filters. In
contrast, performing a query with O(logN) complexity in
the critical path from the root to a leaf node can ensure
membership presence of an item. To know the presence of
an item in a BR-tree node, we have the Boolean function
Member as shown in Fig. 8. Using the computation of hash
functions, we can check the counters of the corresponding
counting Bloom filters.

Fig. 9 shows the point query algorithm for an item with
multidimensional attributes. If we keep the instruction in the

Boolean Point_Query (Item a, BR-tree)

CurNode = Root, Flag = False;
while (Member(a, CurNode)) do

if CurNode == LeafNode then
Flag = True, Break;

end if

CurNode = ChildNode(CurNode);
end while
if Flag then

Flag = Verify_Item_by_identity(a);
end if

Return Flag;

Fig. 9. The algorithm of point query.

Range_Query (Range Request ()} ...,), Root)

CurNode = Root,;
while CurNode! = Leaf Node do
if Intersect(CurNode, Q) then
CurNode = ChildNode(CurNode);

else
CurNode = SiblingNode(CurNode);
end if
Range_Query(Q, CurNode);
end while

InsertLeafltems(/tems, Result, Q);
Return Result

Fig. 10. The algorithm of range query.

dashed box, the algorithm complexity is O(1) by only
checking the Bloom filter of the root for item a. Since the root
in a BR-tree structure takes the union operation of its
descendants in Bloom filters, the union operations usually
produce extra false positives. To get an exact query result,
we can remove the dashed box instruction and the algorithm
complexity becomes O(logN) since we need to check nodes
in a path from the root to a leaf node in the worst case.

4.4 Range Query

Fig. 10 shows the range query algorithm in the BR-tree. The
main function of this algorithm is to provide item identities
whose attributes fall into the request bounds of a range
query. All qualified items will be included in an item set
Result that is initialized to be (). We start the algorithm from
the root of BR-tree. Given a BR-tree, we carry out a two-step
process to implement the range query. In the first step, we
search subtrees that intersect the queried range @ with
p-dimensional attributes. If a Cur Node has intersection with
Q, it implies that its children may intersect @) as well. Thus,
its child nodes will be recursively checked in the branch.
Otherwise, we continue the check operation on its sibling
nodes. The second step is linked to the leaf nodes whose
MBRs intersect request Q.

4.5 Cover Query

Fig. 11 shows the cover query algorithm for an item with
multidimensional attributes, which will return a set of
multidimensional range objects. The returned range objects
can cover the given item identity a. Different from the range
query algorithm, we only check nodes covering a. In the
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Cover_Query (Item a, Root)

MBR Bound_Query (Item a, BR-tree)

CurNode = Root;
while CurNode! = LeafNode do
if Contain(CurNode,a) then
CurNode = ChildNode(CurN ode);

else
CurNode = SiblingNode(Cur N ode);
end if
Cover_Query(a, Cur Node);
end while

InsertLeafRangeObjects(RangeObjects, Result, Item a);
Return Result

Fig. 11. The algorithm of cover query.

BR-tree, a node that can cover a multiattribute item a means
its MBR containing a. If MBR of an internal node (e.g.,
CurNode) cannot enclose a, neither can be done for its
descendant nodes because an MBR is formed from the
union operation on descendant nodes. The checking
process will be recursively carried out to some leaf nodes
where some range objects can be found. All range objects
that can cover item a are inserted into the set Result.

4.6 Bound Query

Bound query can exhibit approximate range information of
multidimensional attributes of a queried item. This assists
fast attribute bound estimation but avoids frequent and
direct data access. The bound query can obtain its result by
executing similar operations as the point query does. The
main difference is that bound query returns the multi-
dimensional ranges indicated by the MBR of a leaf node.
Point query, however, determines whether the queried item
is a member of a data set.

Fig. 12 shows the bound query algorithm. Note that in
the bound query, the given item @ must exist in one leaf
node in a BR-tree. Thus, we should locate the leaf node that
makes Member(a, LeafNode) to be true. To attain it, we
need to traverse all child nodes whose Member(a, CurNode)
results are true in the BR-tree. After finding the right leaf
node, we return its multidimensional ranges represented by
MBR as the tight attribute bounds to item a.

4.7 Simple Summary of Multiple Queries

The four types of queries discussed above exhibit distinct
query requests from users in real-world applications. Point
query generally receives the most attentions due to its wide
application scope. Range query has been widely applied in
spatial database. Cover query and bound query, although
until recently they have been rarely touched, play a pivotal
role in emerging distributed applications, such as PetaByte-
scale distributed storage system and large-scale environ-
ment monitoring. There are two major differences between
cover query and bound query. First, the queried item can be
arbitrary in the cover query while it must be an existing one
in the queried data set in the bound query. Second, the
returned ranges must be explicitly stored in the data set in
the cover query while the bound query does not require
such knowledge.

The proposed BR-tree is a combination of Bloom filters
[11] with R-tree by integrating Bloom filters into R-tree
nodes, which is not trivial because BR-tree maintains the

CurNode = Root;

while CurNode! = LeafNode do
if Member(a, CurNode) then

CurNode = ChildNode(CurNode);

end if

end while

if Member(a, LeafNode) then
Return MBR(Lea f N ode);

end if

Fig. 12. The algorithm of bound query.

advantages of both Bloom filters and R-tree and further
facilitates mixed queries, like point query followed by bound
query and range query if the point query replies positive.

In a BR-tree, point and bound queries execute similar
operations in the Bloom filters stored in BR-tree nodes. The
difference is that after completing the item presence check
in a leaf node, point query returns the data while bound
query returns the MBR range information indicated by the
associated leaf node. Range and cover queries also carry out
similar operations. After completing the range check in a
leaf node, range query needs to return all stored data that
are represented as points in the leaf node while cover query
returns the stored range objects.

4.8 Comparisons of BR-Tree and Other
State-of-the-Art Structures
BR-tree is different from other state-of-the-art structures,
including Bloom filter [11], baseline R-tree [7], BATON [35],
VBI-tree [34], DST [29], SD-Rtree [8], and RBF [5]. BR-tree
can achieve comprehensive advantages. BR-tree has a
bounded O(logn) complexity for point query. The Bloom
filter in the root of BR-tree can provide fast query result with
O(1) complexity. However, the result may not be accurate
due to false positive. In applications requiring exact query
results, we can follow the Bloom filter branch of BR-tree to a
leaf node to verify the presence of the queried item, with the
searching complexity of O(logn). In such O(logn) complex-
ity for point query, the real query latency is very small. Since
Bloom filters have the same number of hash functions and
counters, we need to carry out the hash-based computations
for a queried item only once. The bit checking on Bloom
filters can directly probe the same counters, saving much
query time. Because we mainly follow the R-tree part in
BR-tree to obtain range and cover query services, these
queries have the same complexity as R-tree to be O(logn).
Meanwhile, BR-tree structure can support bound query by
checking the Bloom filters along query path from the root to
a leaf node, achieving O(logn) complexity. Bloom filter
structure is a space-efficient design, which is also adopted in
the BR-tree. The BR-tree structure is also able to support
distributed queries as described in the next section in detail.
No existing architectures provide the aforementioned
four types of queries for multidimensional data. BATON
and VBI-tree aim to provide virtual indexing frameworks.
Their practical performance heavily depends on the under-
lying used structures, not themselves. Although RBF is able
to support point query, its query result is probabilistic (not
exact matching). Normally, the baseline R-tree cannot
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Fig. 13. A scenario depicting the BR-tree replica broadcasting from
server A in a distributed system.

support point query. However, it can do so if we specially
concatenate multidimensional attributes of an item as its
identity. As a result, we can compare our BR-tree with
baseline R-tree in terms of point query, with SD-Rtree in
terms of point and range queries, and DST in terms of range
and cover queries. The experimental results have been
shown in Section 6 by testing real data traces.

5 DisTrRIBUTED BR-TREES

A large-scale distributed system consisting of many servers
potentially requires a distributed structure to facilitate
multiple-query scheme, while providing system scalability
in an efficient way. Hence, we exploit the simple and space-
efficient characteristics of BR-tree and deploy it in multiple
servers. The distributed BR-tree shows its advantages for
easy deployment, scalability, and feasibility. In this section,
we will first present distributed BR-tree structure. Then, we
will show the query operations in the distributed context and
describe how to update stale replicas to assure accurate
services.

5.1 Distributed BR-Tree Structure

The basic idea of our distributed BR-tree scheme is to locally
maintain replicas of all BR-tree roots distributed at servers,
which constitute a BR-tree Array. A replica, called BR-tree
vector, of a BR-tree root has the same MBR as the root, but a
standard Bloom filter transformed from a counter-based
Bloom filter. Thus, a nonzero value in a counter position is
transformed into bit 1 in the same bit position of the
standard Bloom filter. Otherwise, the bit 0 will be set.

The distributed BR-tree structure allows each server
(treated as a network node) to store a BR-tree representing
its local items and the replicas of BR-tree roots representing
items in all other (remote) servers. In a large-scale dis-
tributed system composed of n nodes, a network node needs
to store n BR-tree replicas in the BR-tree array, i.e.,
(n —1) replicas from other (n—1) nodes and one from
itself. Fig. 13 shows an example to exhibit BR-tree replica
information broadcasting among four servers. Each data
structure in a server is composed of two parts, the root of a
local BR-tree and BR-tree array (i.e., the replica table, serving
as an instantaneous local mirror reflecting the most recent
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data information in other nodes). Thus, a local query on a
single network node can obtain the global query result
through executing operations on a local BR-tree and stored
replicas. Since each network node only needs to maintain
replicas of BR-tree roots of other nodes, the deployment does
not require much storage space, and hence, we can place
BR-tree array entirely into memory to obtain fast query
services.

5.2 Operations on Distributed BR-Trees

Distributed BR-tree deployed in each server can efficiently
support query services, including point, range, cover, and
bound queries, through explicitly indicating “local hit” on
the local BR-tree root and BR-tree replica array (except
replica of the local BR-tree). A “local hit” refers to the
membership existence on Bloom filters for point and bound
queries or the intersection or inclusion of MBRs for range
and cover queries. If a local hit happens on the local BR-tree
root, a query result can be obtained from the local BR-tree.
Local hits taking place in the BR-tree array can trigger
request forwarding to remote nodes indicated by their hit
replicas, requiring further search on those nodes. Thus,
queries on the local BR-tree can directly obtain the lookup
results and those on replicas of other nodes can help to
select remote servers quickly and precisely. The reply from
the remote server can be sent back as the query results.

The distributed BR-tree structure needs to carry out,
besides query operations, stale content update operation to
assure high query accuracy. The update operation order is
issued from a local BR-tree to its replicas distributed in
other nodes. Because a local BR-tree uses the counter-based
Bloom filter and its replicas use standard Bloom filter, the
value change in a counter may not trigger corresponding
bit change. For instance, a counter increment or decrement
(nonzero) maps to the same 1 in the standard Bloom filter.
Thus, we need to count the number of real changes (from 1
to 0 or 0 to 1) made to its replica from a local BR-tree. Only
when the number of changes is over a predefined thresh-
old since the last update, the stale update message will be
sent out. This threshold value reflects data staleness degree
and links to query accuracy. Note that replicas in all other
(n — 1) nodes contain exactly the same information as the
local one at the time of the last update, assuming that the
last update operation has been performed successfully and
correctly in each node.

5.3 Update Stale Replicas

In a distributed system where multiple BR-tree servers are
deployed for the purpose of scalability, the process of
updating data information among them becomes critical in
providing accurate and reliable query results. Since the
content of a local BR-tree root may change dynamically and
the updating process takes time due to the network latency,
we need to design a simple and efficient scheme to update
stale replicas. The update must take place in both the Bloom
filter and MBR parts in a replica.

The changes in the Bloom filter part can trigger the replica
update. We compute the percentage of stale bits in the local
standard Bloom filter of a BR-tree. When the percentage is
over a predefined threshold, a node needs to broadcast the
update messages. The “stale bits” are those outdated bits in
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the standard Bloom filter that are different from the
dynamically changed counter-based Bloom filter. Stale bits
appear when a BR-tree carries out item insertion or deletion.
Inserting an item to a local BR-tree may increase a counter
value from “0” to “1.” The delayed updating on other
replicas can result in false negative for membership query in a
distributed environment. Stale bits in a replica may answer
“no” to a membership query of an item, although it actually
exists in a remote server. On the contrary, deleting an item
may decrease a nonzero counter to zero and cause false
positive in distributed lookups. Stale bits in a local replica
may answer “yes” to a membership query of an item,
although it actually does not exist in a remote server. In
practice, the penalty of false negative, which decreases
query accuracy, imposes a larger impact on membership
query than that of false positive. We still can eliminate false
positive result by a double verification on a remote BR-tree.
Thus, when performing the computation of the percentage
of staleness, we assign stale bits linked to false negative with
a larger weight than those with false positives.

The condition as when to send out a replica update can
be defined similarly by computing the percentage of “stale
space” in MBR because an MBR outlines multidimensional
attribute ranges. The “stale space” refers to the widened or
narrowed space presented by MBR due to inserting new
items or deleting old ones. The widened space may lead to
false negatives for range and cover queries, while the
narrowed space may lead to false positives. Normally, the
false negatives have a larger impact than false positive to
get accurate results and a larger weight will be assigned to
them. In addition, the larger the changed area, the larger the
impact on the query accuracy. For example, a 10 percent
space increment in MBR, if it is not updated timely in other
nodes, often makes more requests to obtain false or
incomplete answers than a 1 percent space increment when
query requests follow a uniform distribution. In our
following prototype implementation, we compute the
percentages of stale bits and space, any of which is larger
than a predefined threshold further triggering the replica
update operations to guarantee the query accuracy.

6 PROTOTYPE IMPLEMENTATION

We have implemented the proposed BR-tree structure and
tested operations, such as item insertion and multiple
queries for multidimensional data. We further deployed
BR-trees in a real cluster and used four traces to compare
the performance of BR-tree with R-tree [7], SD-Rtree [8], and
DST [29] in terms of query latency, accuracy, message
overhead, and storage space.

6.1 Constructing Experiment Environment

We present the construction of our prototype implementa-
tion by first introducing used traces, then describing
experiment settings in detail.

6.1.1 Available Traces

We utilize real-world and synthetic traces to comprehen-
sively evaluate our proposed BR-tree structure. We first select
real-world traces from two typical applications exhibiting the
data locality access pattern, i.e., BU-Web-Client [36], [37] and
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TABLE 1
An Overview of Experimental Data
Uniform Skew
distribution | distribution
HP Trace no yes (locality)
BU-Web Trace no yes (locality)
Forest CoverType Trace no yes (locality)
GSTD Trace yes no

HP file system [38], and then utilize the popular high-
dimensional data set, Forest CoverType trace from the UCI
machine learning repository website (http://archive.ics.
uci.edu/ml/datasets.html). In order to further test our
BR-tree for a data set following the uniform distribution,
we utilize the GSTD [39], which is a data set generator, to
artificially generate uniformly distributed data trace. Table 1
presents the overview of tested data traces in our perfor-
mance evaluation where HP, BU-Web, and Forest CoverType
traces exploit data locality and GSTD contains uniformly
distributed data. Four tested traces are as follows:

e  HP trace: The HP file system trace [38] is a 10-day,
500 GB trace recording file system accesses from
236 users at the HP Lab. We selected three attributes,
i.e., last “modified” time, “read” and “write” data
amounts as the range attributes of queried files for
range and cover queries. We concatenated the “device
number” and “file name” to be file ID for point and
bound queries.

e BU-Web trace: Internet traffic archive [36] in Lawr-
ence Berkeley National Laboratory provides a web
trace, BU-Web-Client [37]. We take the concatena-
tion of a user request identity and its time stamp as
the item identity to uniquely represent each item in
our data source model.

e  Forest CoverType trace: The Forest CoverType data
set contains 581,012 data points and each has
54-dimensional attributes. Specifically, these
54-dimensional attributes include 10 quantitative
variables, four binary wilderness areas and 40 binary
soil type variables. Data records for forest cover
types exhibit locality distribution. The detailed
information of the data set can be found at the
website [40].

e GSTD trace: We use standard GSTD generator [39]
tool to artificially generate a three-dimensional
2,000 x 2,000 x 2,000 data trace, following the uni-
form distribution. If the size of an item in the data set
is smaller than 1/10 cell, the item is considered as a
point object represented by its coordinates. Other-
wise, it is viewed as a range object.

6.1.2 Implementation Details

We implemented the BR-tree structure on the Linux kernel
2.4.21 running on a cluster that has 30 nodes, each equipped
with dual-AMD processors and 2 GB memory and
connected with a high-speed network. The artificially
generated querying points and ranges are distributed
within a simulated data space, following either uniform or
skew distribution. The skewed requests are generated using
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Fig. 14. Average query latency in the trace of HP file system. (a) Point query. (b) Range and cover queries. (c) Bound query.

a Zipfian distribution with parameter 1.0. Note that the
bound query needs to check the MBR of an existing item,
not a random item compared with other queries. Thus, we
only use item IDs that have appeared in the testing to be the
requests for bound query.

We designed the space for Bloom filters in BR-tree
structures according to the basic requirement in [11]. Each
Bloom filter has m ={% bits when applying & hash
functions for ¢ items. Here, we use k& = 7 hash functions.
There are about 4 million files evenly distributed in 30 nodes
using the HP trace. Hence, each standard Bloom filter tested
in the HP trace requires m = 160 KB space to represent local
files. Using the intensifying technique [4], [41], BU-Web,
Forest CoverType, and GSTD contain around 105 items,
thus requiring m = 40 KB space for a standard Bloom filter.
In Bloom filters, we use MD5 as hash functions because of
its well-known properties and relatively fast implementa-
tion. The MD5 hash functions allow an item identity to be
hashed into 128 bits by calculating the MD5 signature.
Afterwards, we divide the 128 bits into four 32-bit values

and apply the modulo operation on the filter size.
To update stale replicas, we adopt offline computation

on the percentage of stale bits and space as discussed in
Section 5.3. The weight associated with false negatives is
set to be 50 percent larger than that associated with false
positives. We set the threshold of updating stale replicas to
be 10 percent.

6.2 Performance Evaluation

To evaluate data structure effectiveness, we compare the
proposed structure, BR-tree, with the baseline R-tree [7],
SD-Rtree [8] for point query, SD-Rtree, and DST [29] for
range and cover queries in terms of query latency, accuracy,
message overhead, and storage space. Since only BR-tree
can support bound query, we show the performance of
distributed bound queries for BR-trees in 30 network nodes.

6.2.1 Query Latency

Figs. 14, 15, 16, and 17 show the average query latency
using the HP file system trace, BU-Web trace, high-
dimensional Forest CoverType data set, and artificial GSTD
trace, respectively. The average query latency increases
when there are more queries simultaneously submitted to
distinct data structures in a distributed environment. Note
that R-tree structure cannot efficiently support the point
query for an item only from its own ID (except using brute-
force searching approach), each queried item is given its
multidimensional attributes. To locate an item at a leaf node
in an R-tree, we follow the MBR branch that can match its
multidimensional attributes to move to the leaf node.

Fig. 14a shows the latency of point query and we observe
that BR-tree spends less time than baseline R-tree and
SD-Rtree on completing point query no matter what
distributions the query requests follow. There are two major
reasons for this. First, although BR-tree, R-tree, and
SD-Rtree have the same complexity of O(logn) for point
query, BR-tree in practice only checks Bloom filters along
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Fig. 16. Average query latency in the Forest CoverType trace. (a) Point query. (b) Range and cover queries. (c) Bound query.

the query path from the root to a leaf node by checking the
same counter positions after computing MD5 hash functions
only once. In contrast, R-tree and SD-Rtree have to check
each MBR along the same query path and conduct
matching-based operation in each node to determine the
item’s membership, thus requiring much more time.
Second, R-tree and SD-Rtree can determine the item
existence only after it checks a leaf node. In other words,
R-tree and SD-Rtree have to complete the verification along
the query path from the root no matter whether the queried
item in fact exists or not. However, BR-tree can immediately
get the negative answer from its root by checking on one
Bloom filter, resulting in much shorter query latency. We
also observe that the requests following the uniform
distribution have much smaller latency than skewed
requests. This is simply because the HP trace actually
contains files exhibiting the access locality property, mean-
ing that files have a nonuniform distribution in the data
space. As a result, requests following the uniform distribu-
tion can contain more queried but nonexisted items.
Consequently, BR-tree can give a quicker response based
on the checking on the root Bloom filter.

Fig. 14b displays the query latency for range and cover
queries. To get the query results, we need to compare MBRs
along query paths (from the root to a leaf node) in different
data structures. Note that here BR-tree and DST are evaluated
by using 1,000 range and 1,000 cover queries while SD-Rtree
being unable to support cover query is evaluated by using
2,000 range queries. It is observed that the query latency in

SD-Rtree and BR-tree is close, but much smaller than that in
DST. The main reason is that DST utilizes 2 branch segment
trees to extend the binary tree to maintain items that have
N-dimensional attributes. Thus, to get a result for a given
query, DST has to check multiple segment trees, which is a
process resulting in a large latency.

Since bound query can be supported in the BR-tree, but
not in the R-tree, we have the experimental result for bound
queries implemented in distributed BR-trees as shown in
Fig. 14c. Bloom filters were designed with storage space like
0.85m, 1m,1.5m, and 2m where 1m is the standard space
requirement as discussed in Section 6.1.2. Fig. 14c illustrates
that the query latency increases quickly when the allocated
space for Bloom filters is set to be 0.85m. Given such
crowded space allocation, Bloom filters will report more
false positives, leading to lengthy checking in both local
and remote BR-trees. We also tested the latency by
increasing the space size for Bloom filters to 1.5m and
2m. The results show that the query latency can be slightly
reduced due to false positive decrement. We further show
the query latency by using the BU-Web trace that records
real-world events in Fig. 15.

Fig. 16 shows the average query latency in a distributed
environment using the high-dimensional data set, Forest
CoverType trace. BR-tree can achieve the shortest query
latency compared with R-tree, SD-Rtree, and DST in point,
range, and cover queries. DST has the largest query latency
because it needs to first locally execute range split operation
(a time consuming process), and then carry out DHT-based
get operation.

20 ~180
18.1 g’ 160 [~ Uniform (BR-ree)

18 M Uniform 16.2 — —— Skgw (BR-tree)

16 |- Skew 147 > 140 —&— Uniform (SD-Rtree)

1) —— Skew (SD-Rtree)
| —#*— Uniform (DST)
—— Skew (DST)

40

Ratio of Average Query Latency

25

0
200

100 200 300 400 500 600 700 800 900 1000 400

Number of Range (Cover) Queries

(b)

Number of Point Queries

(@

600 800 1000 1200 1400 1600 1800 2000

Average Query Latency (ms)

|
200 300 400 500 600 700 800 900 1000

Number of Bound Queries

(©

Fig. 17. Average query latency in the GSTD trace. (a) Point query. (b) Range and cover queries. (c) Bound query.
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(c) Range and cover queries. (d) Hit rate for 1,000 bound queries.

Fig. 17 shows the latency comparisons by using an
artificial GSTD trace for 1,000 query requests. Fig. 17a plots
the ratio of baseline R-tree to BR-tree with regard to average
point query latency. BR-tree can achieve time savings by a
factor of 18.1 and 13.6 compared with R-tree, respectively, for
requests following skew and uniform distribution. Figs. 17b
and 17c show the average latency results for range, cover,
and bound queries that are consistent to other tested traces.

6.2.2 Query Accuracy

In a distributed environment, queries may not get correct
results due to stale information scattered among network
nodes or data structures themselves. We can improve the
query accuracy of BR-trees by applying the Double Checking
(DC) mechanism from which we need to verify the
presence of a queried item in the leaf node that contains
the real item ID. We conducted experiments to show the
accurate query results provided by BR-trees for multiple

queries and made comparisons with R-tree structure in
Figs. 18, 19, and 20 using four tested data traces.

Fig. 18 shows the query accuracy using the HP trace.
Fig. 18a illustrates the point query accuracy for R-tree
structure, BR-tree with and without the double checking
function. All files accessed in the HP trace are evenly
stored among all 30 nodes and each file has a single local
copy. The “query accuracy” (i.e., hit rate) denotes the
percentage of true hits, in which distributed BR-trees reply
only one BR-tree storing the queried item (i.e., one hit),
among all point queries for actually existing items. Zero or
multiple hits mean a false hit. We observe that only using
Bloom filters in BR-trees without DC the hit rate can be
around 90.1 percent. Using double checking on leaf nodes
can improve this rate up to 98.2 percent in 1,000 query
requests. The improved accuracy cannot rise to 100 percent
in practice. We conjecture that the main reason is that every
network node in the distributed experimental environment
maintains the stale information of item memberships.
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Fig. 21. Number of exchanged messages in all tested data traces. (a) HP trace. (b) BU-Web trace. (c) Forest CoverType trace. (d) GSTD trace.

We evaluate the accuracy of range and cover queries by
examining their “recall” rate in Fig. 18b. Given a query ¢, let
T(q) be the set containing all items for query ¢, and A(q) be
the set of items returned by using the BR-tree scheme. recall

%. We can use the brute-force

is defined as recall =
approach in parallel in all nodes to obtain the T'(g). The
“recall” rate of range and cover queries is over 90 percent,
but cannot reach 100 percent because staleness of replicas
limits the query accuracy.

Fig. 18c illustrates the hit rate for bound queries to obtain
the MBRs of existing items. Distributed BR-trees can provide
exact-matching (100 percent) accuracy for existing items by
simply displaying MBRs from either a local BR-tree or a
remote one. However, some items may be deleted from the
system and due to update delay, item deletion may not be
timely broadcasted to other remote nodes. A local BR-tree
response to bound queries can get 97.2 percent correct results
by checking its Bloom filter in the root node, as shown in
Fig. 18c. A remote BR-tree verification can complement the
bound query, securing a correct reply. We further examined
the query accuracy of BR-trees by using high-dimensional
data set, i.e., Forest CoverType trace, as shown in Fig. 19.

Fig. 20 shows the query accuracy using the BU-Web and
GSTD traces. The experimental results validate our pro-
posed BR-tree structure and its scalability. Compared with
standard R-trees, distributed BR-trees can provide more
accurate replies to distinct query requests, achieving over
90 percent accuracy in most cases.

8 5 3

—Hp
——BU-Web

—HP

——BU-Web

—— Forest CoverType
STD

—— Forest CoverType
TD

5

Average Latency (ms)
8
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Fig. 22. Insertion operation. (a) Number of messages. (b) Average
latency.

6.2.3 Message Overhead

We evaluate the communication overhead and scalability of
BR-trees by measuring the number of messages exchanged to
respond to 1,000 multiquery requests when the number of
nodes increased from 5 to 30. Fig. 21 shows the comparisons
between BR-tree, SD-Rtree, and DST by counting the number
of total messages (e.g., updating stale replicas, locating a
network node) in tested data traces. The number of messages
in BR-tree is not very sensitive to distinct query requests. This
is because each node contains approximately equal number
of items, hence achieving the load balance. SD-Rtree requires
more messages due to its verification forwarding scheme to
avoid the address error [8]. DST, on the other hand, utilizes
each segment tree for representing each dimension and its
update operations are more sensitive to the changes of stale
information, thus generating more message overhead.

Specifically, we test the communication overhead and
average latency when we insert items into distributed
BR-trees, totally 30 of them, as shown in Fig. 22. Item
insertion requires to first locate an appropriate network
node whose MBR covers the item, and then insert it into a
leaf node. More items inserted, longer the time to finish the
insertion process. The insertion of an item may cause the
local node containing updated information in its Bloom filter
and MBR. Thus, further messages are needed to update stale
replicas in other remote nodes.

6.2.4 Storage Space

We compare the required storage space of BR-tree with
SD-Rtree and DST. Table 2 shows the comparative results
that are normalized to the space used by the BR-tree
structure. An SD-Rtree needs to maintain a global image of
all distributed trees locally. A DST adds 2" branch segment
trees to support N-dimensional query services, thus
requiring a large storage space. Compared with SD-Rtree
and DST, BR-tree is a space-efficient data structure that can
support multiquery services for multidimensional data.

TABLE 2
Used Space Normalized to BR-Tree
BR-tree | SD-Rtree | DST
HP Trace 1.0 2.6 8.1
BU-Web Trace 1.0 2.8 9.3
Forest CoverType Trace 1.0 3.7 11.6
GSTD Trace 1.0 3.2 9.8

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on November 2, 2009 at 04:09 from IEEE Xplore. Restrictions apply.



HUA ET AL.: BR-TREE: A SCALABLE PROTOTYPE FOR SUPPORTING MULTIPLE QUERIES OF MULTIDIMENSIONAL DATA

7 CONCLUSION

In this paper, we proposed a Bloom-filter-based R-tree
structure, i.e., BR-tree, for supporting multiple queries of
items having multidimensional attributes. The proposed
BR-tree can efficiently support point, range, cover, and
bound queries. To the best of our knowledge, we are the first
to address the bound query. Note that bound query could be
widely applied into real applications that do not have the
exact-matching requirement. The BR-tree structure makes it
possible for fast point query and accurate bound query since
BR-tree keeps the correlated consistency between queried
data and their attribute bounds in an integrated structure.
We also present how to deploy BR-trees in a distributed
environment to provide scalable query services. The system
prototype implementation demonstrates that BR-tree struc-
ture is scalable while providing accurate responses to
distinct queries.
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