IEEE TRANSACTIONS ON COMPUTERS, VOL. 61, NO.6, JUNE 2012

817

Locality-Sensitive Bloom Filter
for Approximate Membership Query

Yu Hua, Member, IEEE, Bin Xiao, Senior Member, |IEEE,
Bharadwaj Veeravalli, Senior Member, IEEE, and Dan Feng, Member, IEEE

Abstract—In many network applications, Bloom filters are used to support exact-matching membership query for their randomized
space-efficient data structure with a small probability of false answers. In this paper, we extend the standard Bloom filter to Locality-
Sensitive Bloom Filter (LSBF) to provide Approximate Membership Query (AMQ) service. We achieve this by replacing uniform and
independent hash functions with locality-sensitive hash functions. Such replacement makes the storage in LSBF to be locality
sensitive. Meanwhile, LSBF is space efficient and query responsive by employing the Bloom filter design. In the design of the LSBF
structure, we propose a bit vector to reduce False Positives (FP). The bit vector can verify multiple attributes belonging to one member.
We also use an active overflowed scheme to significantly decrease False Negatives (FN). Rigorous theoretical analysis (e.g., on FP,
FN, and space overhead) shows that the design of LSBF is space compact and can provide accurate response to approximate
membership queries. We have implemented LSBF in a real distributed system to perform extensive experiments using real-world
traces. Experimental results show that LSBF, compared with a baseline approach and other state-of-the-art work in the literature
(SmartStore and LSB-tree), takes less time to respond AMQ and consumes much less storage space.

Index Terms—Approximate membership query, bloom filters, locality sensitive hashing.

1 INTRODUCTION

IN many real-world and large-scale network applications,
it is more attractive and interesting to support Approx-
imate Membership Query (AMQ), i.e., “q — S?,” rather than
exact-matching membership query, i.e., “q € S?.” By transform-
ing “g€ S?” to “g— S?,” we do not need to probe the
presence of point ¢ but its proximity to any member in the
set S under a given metric. Existing data ocean makes exact-
matching queries costly that are too fragile and sensitive to
data inconsistency and staleness. The brute-force searching
to respond the exact-matching query can cause extremely
high cost. In contrast, AMQ can relax constraints on user
request to take much shorter time for the user to get
satisfactory results. It also helps to identify uncertain and
inaccurate inputs. In fact, the exact and approximate
membership queries are not a new problem [1] but become
crucial to existing and possible future applications due to
their wide applications and performance requirements for
query optimization that is unfortunately not fully addressed
by conventional approaches. Recent research in [2], and [3]
reveals that improvements made to AMQ can benefit both
users and system performance.

e Y. Hua and D. Feng are with the School of Computer Science and
Technology, Wuhan National Lab for Optoelectronics, Huazhong Uni-
versity of Science and Technology, Wuhan 430074, China.

E-mail: {csyhua, dfeng)@hust.edu.cn.

e B. Xiao is with the Department of Computing, The Hong Kong Polytechnic
University, Hung Hom, Kowloon, Hong Kong.

E-mail: csbxiao@comp.polyu.edu.hk.

e B. Veeravalli is with the Department of Electrical and Computer
Engineering, The National University of Singapore, 4 Engineering
Drive 3, Singapore 117576. E-mail: elebv@nus.edu.sg.

Manuscript received 3 May 2010; revised 23 Dec. 2010; accepted 11 May

2011; published online 14 June 2011.

For information on obtaining reprints of this article, please send e-mail to:

tc@computer.org, and reference IEEECS Log Number TC-2010-05-0269.

Digital Object Identifier no. 10.1109/TC.2011.108.

0018-9340/12/$31.00 © 2012 IEEE

AMQ aims to determine whether a given query g¢ is
approximate to a data set S. Specifically, given a d-dimensional
metric space U represented as (U, d), let S be the set of points
in this space and S C U. Given a constant parameter R, the
query point ¢ is accepted as an approximate member if
Jp € S, the pair distance is true for ||p, q|| < R. Furthermore,
the points approximate to set S essentially constitute a set S’
that is a superset of set S, i.e.,, S C 5. The approximate
members of set S are the exact members of set S'.

1.1 Motivations

In query service tools, standard Bloom filters have been very
powerful for the compact set representations with low false
positive and negative probabilities [4]. The O(1) complexity
in Bloom filters to support fast exact-membership query
involves simple hashing, setting, and testing “0/1” bits in a
bit vector. Their space-efficient structures hence have been
widely used in many network applications, such as heavy
flow identification [5], content summary [6], optimal
replacement [7], the longest prefix matching [8], route
lookup [9], and packet classification [10]. Unfortunately,
standard Bloom filters are unable to support AMQ and
ignore the potential hits of proximate items, since they use
uniform and independent hash functions (e.g.,, MD5 and
SHA-1) to provide boolean-based answers.

The Locality Sensitive Hashing (LSH) [11] technique
paves the way for solving AMQ. LSH can faithfully keep the
locality of items in a data set by mapping similar items into
the same hash bucket with a high probability. However,
to get the AMQ result, LSH needs to use L locality hash
functions to store a member L times into L hash tables, which
is space consuming.

Yet, we do not have a single space-efficient data structure
to accurately support AMQ. Although some existing work
proposed the use of Bloom filters in the AMQ, such as
distance-sensitive Bloom filters [12] and optimal Bloom filter

Published by the IEEE Computer Society

818

replacement [7], they did not provide the detailed data
structure design using LSH for real implementations. None-
theless, they did not take into account the potential false
answers from false positives and negatives. The false
answers often occur in large-scale (e.g., EB 10'® bytes or ZB
10*' bytes data) distributed database systems due to data
inconsistency and staleness. Our work is motivated by real
application requirements and makes further improvements
upon above work by extending data attributes to high
dimensions and using simple but efficient verification
schemes to reduce false answers.

1.2 Our Contributions

In this paper, we propose a novel structure, Locality-
Sensitive Bloom Filter (LSBF), to efficiently support fast
AMQ without compromising query performance. LSBF is a
space-efficient structure using bit-wise vectors. It functions
as normal LSH to hash an item to buckets where a bucket is a
binary bit, from which a bit vector can indicate the existence
of proximate items. The design is based on the observation
that Bloom filters can map original items into a relatively
succinct storage space with the aid of variant hash functions.
Therefore, it is feasible to replace independent and uniform
hash functions in Bloom filters with LSH functions while
maintaining item proximity (due to LSH property) and
storage-space efficiency in a bit vector (due to Bloom filter
property). Moreover, when facing query errors caused by
Bloom filters and LSH functions, we propose new verifica-
tion schemes in LSBF to dramatically improve query
accuracy. Through theoretical analysis and extensive experi-
ments on distributed system implementations, we show the
efficiency of LSBF to handle AMQ in terms of quick query
response, high query accuracy, low 1/O cost, and space
overhead. Our contributions are summarized as follows:

e We propose an LSBF structure that replaces conven-
tional random and independent hash functions with
locality sensitive hash functions [11] to measure
locality of items and support AMQ. The query time
is O(dL) + O(k) complexity and the space overhead
is O(dn/w) + O(n - k/ In 2) bits when we store n items
with d-dimensional attributes in LSBF, using L
locality-sensitive hash functions, a predefined inter-
val size w in a projected line, and k uniform hash
functions in a standard Bloom filter.

e We present a bit-based verification scheme by adopt-
ing a verification Bloom filter to significantly reduce
False Positives (FP) and an active overflowed scheme
to decrease False Negatives (FN), respectively. These
schemes are critical for improving query accuracy
because approximate queries in LSBF can cause FP
and FN due to hash collisions and the probabilistic
hashing property in LSH. Specifically, a nonapprox-
imate member may be viewed as a member in an FP
when its associated bits are hashed multiple times by
others. Nevertheless, LSH can hash proximate items
into neighboring bits with some probability, which
may resultin an FN answer to a real approximate item.

e We give rigorous theoretical analysis of LSBF for its
FP, EN probability, and space overhead. To verify
LSBF in real applications, we implement the pro-
posed LSBF and examine its performance through

IEEE TRANSACTIONS ON COMPUTERS, VOL. 61, NO. 6, JUNE 2012
real-world traces representing operations on file
systems and high-dimensional environmental data.
The performance has been compared with other
state-of-the-art work to show its fast query accuracy
and space efficiency.

The rest of the paper is organized as follows: Section 2
shows the AMQ problem and some backgrounds. We
present the design of LSBF in Section 3. Section 4 shows
theoretical analysis of the proposed LSBF in terms of query
accuracy, time, and space complexity. We carry out
performance evaluation of LSBF in Section 5. Section 6
gives examples of using LSBF structure in real-world
applications and Section 7 shows related work. We
conclude our paper in Section 8.

2 AMQ PROBLEM AND BACKGROUNDS

In this section, we first define the AMQ problem. We then
show the backgrounds of Bloom filter and LSH functions
that are key components in our design of LSBF.

2.1 Problem Description

We propose LSBF to maintain locality of items in a data set
to support AMQ. Given an item ¢, LSBF needs to determine
whether it is approximate to any item in a data set S in a
constrained metric by examining the distance measured by
ls norm where the metric can be Hamming or euclidean
distance [13]. We use ||*| to denote the measured distance
between two items in a d-dimensional space. Now, we
present the AMQ problem.

Problem 1 (Approximate Membership Query). Given a
parameter R, a queried item q is regarded as an approximate
member of a data set S if 3p € S, ||p,q|| < R.

Problem 2 (c-Approximate Membership Query). Given
parameters ¢ and R and a query point q, data set S accepts
q as a c-approximate member if Ip € S, |q,p|| < cR and
c> 1.

The AMQ problem is the special case of the c-approximate
Membership Query problem when we set ¢ = 1, which is the
focus of this paper. In addition, LSBF may cause both false
positives and negatives for AMQ due to the used Bloom
filter and locality sensitive hashing functions.

Definition 1 (False Positive of AMQ). A queried item q is a
false positive to data set S if the query receives positive answer
while in fact Vp € S, ||p, q|| > R for a given parameter R.

Definition 2 (False Negative of AMQ). A queried item q is a
false negative to data set S if the query receives negative answer
while in fact Ip € S, ||p, q|| < R for a given parameter R.

The false positives and negatives of the c-approximate
membership query can be defined similarly by replacing R
with cR.

To alleviate false positives and negatives and ensure
high query accuracy of AMQ, we propose simple computa-
tion to verify the existence of proximate items as shown in
Section 3. Note that if ¢ is in fact a member of S, AMQ
becomes the exact membership query that can be supported
by standard Bloom filters. Although our LSBF can also
support conventional exact membership query, this paper

HUA ET AL.: LOCALITY-SENSITIVE BLOOM FILTER FOR APPROXIMATE MEMBERSHIP QUERY

&lp)

3

819
4 q
W o .pl b .
ps3 ° re
Hash tables
‘ [® oo [e] |
P e] Te
\a
i o o0 ool [e]
[_lo®[e [e] |

(a) Illustration of measured distance.

(b) Geometry result of hash functions.

A\

(c) Storage form.

Fig. 1. An example of LSH scheme to hash proximate points into the same bucket in hash tables with a high probability.

only focuses on the response to AMQ using compact Bloom
filters, which has rarely been addressed by previous work.

2.2 Key Components

This section mainly describes backgrounds of Bloom filters
and LSH functions, which will be used in our LSBF design.

2.2.1 Bloom Filter

A standard Bloom filter is a bit array of m bits for representing
a dataset S = {aj,as,...,a,} of nitems. All bits in the array
are initially set to 0. Then, a Bloom filter uses k independent
hashing functions {h, ..., h;} to map the set to the bit vector
[1,...,m]. Each hash function h; maps an item a to one of the
m-array positions with uniform random distribution. To
determine whether an item a is an exact member of set S, we
need to check whether all h;(a) are set to 1. Otherwise, a is not
in the set S. The membership query in a Bloom filter possibly
introduces a false positive, indicating that an item « is a
members of set S although it in fact is not. The false positive
rate of standard Bloom filter is fstundaranr =~ (1 — e*%’)k when
the Bloom filter has m bits and k& hash functions for storing
n items. The probability can obtain the minimum (1/ 2)% or
(0.6185)™" when k = (m/n)In2.

From the standard Bloom filter, many variants are
investigated, including counting Bloom filters [14], com-
pressed Bloom filters [15], group-hierarchical Bloom filter
array [16], space-code Bloom filters [17], spectral Bloom
filters [18], multidimension dynamic Bloom filters [19],
parallel Bloom filters [20], load balanced Bloom filters [21],
combinatorial Bloom filters [22], and incremental Bloom
filters [23]. Other details can be referred to the survey of
Bloom filters [24].

2.2.2 Locality Sensitive Hashing

Locality Sensitive Hashing introduced by Indyk and
Motwani in [11] maps similar items into the same hash
buckets with a high probability to serve main memory
algorithms for similarity search. Then, for a given request
for similarity search query, we need to hash query point ¢
into buckets in multiple hash tables, and furthermore unite
all items in those chosen buckets by ranking them according
to their distances to the query point g. We can hence select
closest items to a queried one. LSH function family has the
property that items that are close to each other will have a
higher probability of colliding than items that are far apart.

We define S to be the domain of items and ||*|| to be the
distance metric between two items.

Definition 3. LSH function family, ie., H={h:S — U} is
called (R, cR, Py, Py)-sensitive for distance function ||x|| if for
any p,q € S

e If|p,q| < R then Pru[h(p) = h(q)] > P1.
o If|lp,qll > cR then Pry[h(p) = h(q)] < Ps.

To allow the similarity search, we choose ¢ >1 and
P, > P5. In practice, we need to enlarge the gap between P,
and P, by using multiple hash functions. Distance functions
|I*]| correspond to different LSH families of I, norms based
on s-stable distribution to allow each hash function h, :
R'— Z to map a d-dimensional vector v onto a set of
integers. The hash function in IH can be defined as:

{MJ’ 1)

hmb(v) - w

where a is a d-dimensional random vector with chosen
entries following an s-stable distribution and b is a real
number chosen uniformly from the range [0, w) where w is a
large constant.

Fig. 1 shows an example to illustrate the LSH working
scheme in terms of measured distance, geometry result of
hash functions, and the storage form of hash tables.
Specifically, LSH can determine the proximate locality
between two points by examining their distance in a metric
space. If the circle centered at ¢ with radius R covers at least
one point, e.g., p1, as shown in Fig. 1a, LSH can provide a
point with no more than cR distance to g as a query result.
We can observe that there is an uncertain space in LSH
from R to cR distance and the query ¢ will obtain a reply of
either point p; or py, since both points locate within distance
cR, ie., ||p1,q|| < cR and ||p2,q|| < cR. On the other hand,
point p3 is not close to the queried ¢ due to its distance
larger than cR.

Fig. 1b further exhibits the geometry result of locality-
sensitive hash functions in a 2D space. Given a vector a and
query point g, g - a is the dot product of them. We uniformly
choose b from the interval [0, w). We can observe that ¢ - a is
the projection of point ¢ onto vector a, denoted as h(g). From
it, we get g(¢) with a shifted distance b. Since the vector a line
is divided into intervals with length w, each interval
corresponds to the position sequence number of point ¢. In
such transformation, proximate points, e.g., g and p;, have a
high probability to be located into the same interval.

820
g(*): Locality-sensitive Item P
hash function Item g
/,
//// N\ /%R\
// // \\ // h \\
) P gl(]’)\/// I N
g D, 7z /
G N N1
7 2:p)/ 7 \ ! 82(9) N
\
s 7 gi@ o AN
» 175 L 84 -
loft1fof1] waw [1fofofo]1]
1 m

Fig. 2. Basic LSBF in the bit-vector implementation.

LSH implements the locality-sensitive approach by using
multiple hash tables as shown in Fig. 1c, in order to produce
a higher probability of containment within one bucket for
proximate items. Since query point ¢ is a close neighbor to
point p;, they are stored into one bucket of hash tables with
a high probability. For instance, they are in the same bucket
in the first and second hash tables in Fig. 1c. In contrast,
point p3 has a very low opportunity to locate together with
point ¢ into one bucket due to their long euclidean distance.
In addition, LSH exhibits its approximate property by
presenting the uncertain location for point p, because p,
locates between R and cR.

Constructing an LSH-based structure needs to determine
two parameters: M, the capacity of a function family G, and
L, the number of hash tables. First, we define a function
family Gi = {g: S — UM} such that, for a d-dimensional
vector v, g(v) = (h1(v),...,hy(v)), where h;j € H for 1<
j< M. g(v) hence becomes the concatenation of M LSH
functions. Second, we randomly select L functions g1, ..., gz
from G, each of which, g;(1 < i < L), is associated with one
hash table, thus requiring L hash tables. A vector v will be
further hashed into a bucket (positioned by g;(v)) in each
hash table. Since the total number of hash buckets may be
large, we can only maintain nonempty buckets by using the
regular hashing in a real implementation. The optimal A/ and
L values actually depend upon the definition of nearest
neighbors’ distance R. In practice, we use multiple sets of
hash tables to cover different R values.

3 LocALiTYy SENSITIVE BLoom FILTER

In this section, we first show the basic LSBF structure and
explain reasons for false positives and negatives of query
results. To ensure high accuracy for AMQ, we, respectively,
present the bit-based verification scheme to alleviate false
positives and the active overflowed scheme to alleviate false
negatives in the basic LSBF. Thus, the LSBF structure with

&(p2)

8(py) A
o@ X |

2@ X | “

W

IEEE TRANSACTIONS ON COMPUTERS, VOL. 61, NO.6, JUNE 2012
extra schemes can accurately support AMQ while obtaining
significant space savings and providing quick query
response by using Bloom filters and locality sensitive
hashing computation.

3.1 Basic LSBF Structure

A locality-sensitive Bloom filter consists of an m-bit array
where each bit is initially set to 0. There are totally L
locality-sensitive hash functions, g;(1 <i < L), to hash an
item into bits, rather than its original buckets in hash tables,
to significantly decrease the space overhead. An item as an
input of each hash function g; is mapped into a bit based on
the hash computation. A bit is hence possibly set to one
more than once and only the first setting takes effect. All
items belonging to a data set S can be inserted into the m-bit
array space that then serves as a summary vector of the data
set S to support approximate queries. When an approx-
imate query request for item ¢ arrives, we execute the same
operations to insert an item by hashing ¢;(¢)(1 <i < L) to
L bits. If all L bits are “1,” we determine the item ¢ is an
approximate member of the data set S in the metric R, ie.,
dpe S, |Ip, ¢l < R. Fig. 2 shows an example to illustrate the
proposed LSBF structure when we insert two items p and g¢.

In LSBF, a positive answer should be returned when a
queried item is within the distance R to an existing one in a
data set S. Fig. 3 shows the geometry description of query
results from the LSH computation. Given 2D vectors, a and
b, Fig. 3a shows the approximate query where the queried
point ¢ is covered (the radius to be R) by an existing item p,
in the data set S. We then probe the corresponding bits in
LSBF by checking the g,(¢) and g,(g), both of which should
be “1” that have been set by item p;. The point ¢ is hence
viewed as an approximate member of data set S.

While inheriting the benefits of Bloom filters for fast
query and space saving, LSBF has to deal with the potential
false positives. Conventional false positives in Bloom filters
for an exact-matching membership query say an item is a
member of a data set while it in fact is not. Therefore, the
false positive of exact-matching query in a standard Bloom
filter is essentially a boolean decision. On the other hand,
for an AMQ in LSBF, we need to calibrate the conventional
false positive to be that a queried item ¢ is falsely viewed as
an approximate member of a data set S while in fact Vp € S,
lp,qll, > R, in the s-stable metric space. Therefore, the
approximate membership only exhibits a relative relation-
ship and heavily depends upon the parameter R and the
used s-stable metric space. Note that when the context is
clear, we ignore the subscript s.

b

ap) X .
2i(q)

Fig. 3. Geometry description of correct and false answers due to the probabilistic hash collision property of LSH. (a) Queried point ¢ covered by one
existing item p; in a data set S. (b) False positives from multidimensional inconsistency. (c) False negatives from multidimensional checking.

HUA ET AL.: LOCALITY-SENSITIVE BLOOM FILTER FOR APPROXIMATE MEMBERSHIP QUERY 821

3.2 False Positive and False Negative

Given a certain parameter R, LSBF possibly produces both
false positives and false negatives for AMQ. False positives
are the results of potential hash collisions and lack of
identity consistency verification in terms of multidimen-
sional attributes from distinct items. Multiple hashes in
LSBF may give rise to hash collisions where a queried item
can be wrongly treated as an approximate member but in
fact its hashed bits are set by other items.

Besides the hash collision, multidimensional attributes of
an item may also cause false positives. For example, the
inconsistency of checked multidimensional attributes may
produce false positives as shown in Fig. 3b. Although the
queried point g is not covered neither by point p; nor by p,,
point q is still considered as an approximate member of the
queried data set S because in the m-bit array, both hashed
bits are “1.” The main reason for false positive is the loss of
the union of multidimensional attributes to one identity
and we can only determine that the queried point ¢ is
approximate to the data set in each dimension. Unfortu-
nately, LSBF is unable to tell whether the approximate
membership in each dimension comes from an existing
item or from multiple items. We need to develop a
verification scheme to reduce such kind of false positives.

On the other hand, false negatives essentially come from
the probabilistic property of locality-sensitive hashing
functions that can hash proximate items into the same bit
with a high, but not 100 percent, probability. Two close-by
items thus may be hashed into the same, adjacent or even
remote bits. Fig. 3c shows an example to illustrate the false
negative in LSBF where two close points p; and ¢ are
mapped to the same bit (or the same interval) when
projected onto vector a. However, they are mapped to
adjacent bits (different intervals) for vector b. The approx-
imate query for point ¢ obtains “1” in bit g,(g) but “0” in
bit g,(¢), implying that the bit g;(g) is not previously set by
other items in the data set S. Since it is not all bits “1,” ¢ is
not regarded as an approximate member although it is, thus
producing a false negative.

In a summary, the false positive mainly comes from hash
collisions and inconsistency of multidimensional attributes.
Hash collisions are an inherent property of hash functions
and related research (e.g., reducing false positive from the
hash function perspective) is beyond the scope of this
paper. We mainly focus on the latter, i.e., inconsistency
problem, by proposing a simple bit-based verification
scheme as shown in the following Section 3.3. Instead, the
false negative depends upon the given value of the
parameter R and we observe that the false negatives can
be significantly reduced by probing not only the hashed
bits, but also their adjacent ones within limited steps. The
main reason is that locality sensitive hashing functions can
hash proximate items into the same or neighboring bits.

Checking operations on both the hashed bits and
neighbors can cover more approximate members, thus
improving query accuracy. A side effect of performing the
checking on more bits is the possible increments of false
positives. Therefore, it is important to determine the number
of checked bits when taking into account both false positives
and false negatives. An intuitive idea is that if the false
negatives count more, the number should be relatively large.
Otherwise, the number should be relatively small.

8(*): Locality-sensitive Item p
hash function JRZAN
s \\\
//, ,// \\
) .- / N &ilp)
,/// // 820p) \\\
1 5 » X m
Source 0‘]0|l| """ |l|0|0|0|
Coded 0000 0001 0010 0011 1100 1101 1110 1111
Concatenated 0001 + 0011 + 1100 = 00010011------ 1100
]
|\ signature
v

Verification Bloom filter ..“.

Fig. 4. Bit-based verification to decrease false positives.

3.3 Bit-Based Verification Scheme for Decreasing
FP

We present a bit-based verification scheme to decrease false
positives in LSBF as shown in Fig. 4. The verification scheme
needs to code each bit of LSBF according to its position with a
binary number, related to the array size m. The code size can
be taken as [log, m]. Fig. 4 shows an example of the 4-bit code
for each position. When an item p of a data set S is inserted
into LSBF, the codes at the hashed “1” bits are utilized. We
thus obtain the codes of item p as “0001,” “0011,” “---” and
“1100,” which stay at the hashed positions and are further
concatenated to produce the L - [log, m]-bit signature of item
p, i.e., “signature(p) = 00010011...1,100.” The signature of
item p is hashed into a wverification Bloom filter that is a
standard Bloom filter and consists of m' = [£4] bits to
maintain the signature of stored n items in the data set S.
According to the conclusion of Bloom filter size in [24] to
obtain the minimum false positive probability (1/2)"
(= (0.6185)'”,/ ™), k should take %ln 2 where k is the number
of hash functions, m/' is the array size of the standard Bloom
filter and n is the number of inserted items. The required
space for the verification Bloom filter is very small in
practice, i.e., m’' = [lkn—’é] bits. An AMQ hence needs to first
examine the LSBF array for approximate membership and
then verification Bloom filter for consistency. The verifica-
tion scheme can satisfy the requirements for query accuracy
for most real-world applications.

Given such verification scheme, an approximate mem-
bership query of item ¢ needs to check the LSBF array and
possibly the verification Bloom filter. First, we hash ¢ into
the LSBF array by using locality-sensitive hashing functions
to check whether all hashed bits are “1.” If this is the case,
we proceed with the concatenation operation on the codes
positioned at all hashed “1” bits to generate the signature of
item g. We further hash the signature into the verification
Bloom filter to check the exact-matching presence of the
signature of item ¢. If it is a member in the verification
Bloom filter, we say that item ¢ is an approximate member.

3.4 Active Overflowed Scheme for Decreasing FN

Although performing above verification scheme decreases
the potential false positive, it cannot help to mitigate false
negatives that come from probabilistic property of locality
sensitive hashing functions when hashing proximate items.
To minimize false negatives, we propose an active overflowed
scheme to identify proximate items that are unfortunately
hashed into the neighboring bits.

822

Item p
8(*): Locality-sensitive LN gup) Item 1[’,
hash function L // N =27
8i0) 7" Joap) Nt !
-7 / Pragbye \
/;'/’(‘L) 1,/:”/ :// \\\ \t\g"(q)
e 2 (] \ |
1 D . X \ m
Source|0‘10|1 ‘1|0|0|0|
Overflowed tt
1oy o =1
Coded 0000 0001 0010 0011 1100 1101 1110 1111
Concatenated 0001+ 0011 + 1101 = 00010011+ 1101
|
\ signature
v

Verification Bloom filter | [[- .o []

Fig. 5. Active overflowed scheme to decrease false negatives.

In essence, the active overflowed scheme belongs to
multiprobe LSH scheme, which exploits the fact that LSH
can hash two close-by items into the same or adjacent
buckets. Typical variants include multiprobe similarity
search [2], prior knowledge-based multiprobe LSH [25]
and bounded LSH [26]. If two close-by items p and ¢ are not
hashed into the same bucket, it is highly possible for their
hashing to “close-by” buckets. Therefore, performing the
multiprobe on neighboring buckets is likely to improve
query quality. The active overflowed scheme will concate-
nate binary-bits representing queried result positions,
which avoids potential complex union and rank operations.

Fig. 5 illustrates the scheme that adds extra overflowed
check on adjacent ¢ (here ¢ =1) bits, ie, gr(g) —1 and
g1(q) + 1, when the hashed bit is “0.” If any of adjacent +¢
neighbors is “1,” we conjecture that the hashed bit at g1,(¢)
should be “1” to further generate its signature. In Fig. 5, the
left neighbor, g1,(¢) — 1, is “1” and thus the code “1101” will
be used to represent the hashed bit to carry out the same
verification of item ¢ as in the basic scheme.

The active overflowed scheme can decrease false
negatives by exploiting the locality-sensitive distribution
when hashing proximate items. However, it possibly leads
to increased false positives since we need to check
neighboring bits of hashed bit in the verification process.
In the active overflowed scheme, false positives and
negatives depend upon two main factors. The first factor
is related to the condition to take the approach, that is, the
number of g functions with hashed “0” bits to proceed with
the overflowed checking. The larger the number of such
g functions that we choose, the smaller the false negatives
that we can achieve. However, it will inevitably lead to the
increment of false positives since we check more bits. The
second factor is the t value, that is, the number of adjacent
neighbors to check. Like the first one, a larger ¢ will benefit
false negative but throttle against false positives. In
addition, Fig. 5 shows that the left neighbor of hashed bit
is “1,” which then indicates the approximate membership of
queried item q for further verification. However, if the right
neighbor of hashed bit is “1,” we will also have to take into
account it as one representative to execute the following
verification by using “1110.” Thus, we use 2 bits (left and
right neighbors) to represent item ¢ and when one is
verified to be approximate member, the item ¢ is accepted,
which meanwhile may introduce false positives.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 61, NO.6, JUNE 2012

§': exact member
S : approximate member
S ”: non-approximate member

Fig. 6. lllustration of false positive and false negative occurrence.

Therefore, we should balance false positives and nega-
tives when using the active overflowed scheme, depending
on the accuracy requirement in different real-world applica-
tions. We can set a balanced false rate fyuance, i-€.,

fbulance -)\f+ + (1 -)\)f77

where A € (0,1) is a trade-off parameter, f* and f~,
respectively, indicate false rates of positives and negatives.
In practice, if the win (1) is reasonably large, most proximate
items can be hashed to the same bit [2]. Therefore, we
restrict our attention to carry out the overflowed check for a
single g function with “0” bit and ¢ = 1.

4 THEORETICAL ANALYSIS

We analyze characteristics of the proposed LSBF structure.
First, we study the query quality by examining the probability
of false positive and false negative. Then, we show the query
time complexity and required space overhead.

In LSBF, L locality-sensitive hash functions are designed
independently and can share the same hash collision
probability for approximate items by satisfying Definition 3.
Fig. 6 illustrates the occurrence of false positive and false
negative in the LSBF structure where data sets S, S, and 57,
respectively, represent, to the original items, the set of exact-
matching members, approximate members and nonapprox-
imate members but are wrongly considered as approximate
members. False positives must occur for queried items in S”
while false negatives possibly occur in both S and 5" due to
the probabilistic hashing property of LSH.

4.1 False Positive Probability
The false positive probability in the LSBF structure mainly
comes from the potential hash collisions in L LSH hash
functions. The hash family of locality sensitive functions
follows the s-stable distribution that is defined as the limits
of normalized sums of ii.d. variables. Typical s-stable
distributions include Cauchy distribution where s =1 and
Gaussian (normal) distribution where s = 2.

We first examine the false positive of the basic LSBF (as
in Fig. 2) for its hash collision probability and then the one
using the bit-based verification scheme (as in Fig. 4).

Definition 4 (s-stable Distribution). Given a distribution D,
it is called s-stable if for n real numbers pi,...,pn, and
variables X1, ..., X,, which exhibit independent and identical
distribution D, the variable Y, p; X; has the same distribution
as wvariable (Y, |wi|")"* X, where variable X follows the
distribution D.

HUA ET AL.: LOCALITY-SENSITIVE BLOOM FILTER FOR APPROXIMATE MEMBERSHIP QUERY 823

We further study the c-approximate false positive
probability of the basic LSBF structure, which mainly comes
from the potential hash collisions [27].

Theorem 1 (False Positive Probability of Basic LSBF). For a
queried item q, the basic LSBF uses g;(1 < i < L) locality-
sensitive hash functions that follow the s-stable distribution to
identify an approximate membership and its false positive
probability is

Fhre = €m0 T 0-0), 2)

where q; = Pr.qplhap(pi) = hap(q)] and p; is an item in a
data set S with n items (1 < i < n).

Proof. A false positive occurs when a nonapproximate item
has its hashed bits to be “1” for all L locality sensitive
hash functions in the condition of hash collisions. The
false positive probability is hence tightly associated with
collision probability of LSH that follows the s-stable
distribution.

Let f;(t) be the probability density function of s-stable
distribution. According to the conclusion in [28], the
probability that two items p; and ¢ collide for a LSH, g;, is

Pr.gp[hap(pi) = hap(@)] = /Uw%fs (é) (1 - é) dt, (3)

where « = ||p; — ¢l|,, vector a is drawn from an s-stable
distribution and vector b is uniformly drawn from [0, w).
Note that ¢; is no less than P, if k < R and no bigger than
Py if k > cR according to Definition 3.

The false positive for the query of item ¢ means for
each LSH hash function, it must collide with an item in
set S. We use ¢; to denote the collision probability to
item p;. Thus, the probability is (1 — ¢;) that ¢ does not
collide with item p; for the first LSH hash function,
which implies ¢ does not collide with any one with the
probability []" (1 —¢). As a result, for the first LSH
function, the collision probability is 1— [(1 — ¢).
Since false positive of ¢ infers L LSH hash collisions, its
probability is (1 — [/, (1 — ¢))", that is,

n L .,

fbtlsi(t = (1 - H(l — qL)> = eL'ln(lil_L:l(lf(Ii)).
i=1

O

The improved LSBF as shown in Section 3.3 uses an extra
verification Bloom filter to reduce false positives. The Bloom
filter, storing the hashed verification values of n items,
functions as a double-check of approximate items. In other
words, item ¢ is regarded as an approximate item when both
L LSH hash functions return “1” and the Bloom filter shows
a positive answer. Thus, the false positive for the improved
LSBF appears only if it occurs in both the basic LSBF and
verification Bloom filter, involving two independent hash-
ing processes. Recall that the basic LSBF and verification
Bloom filter, respectively, employ LSH and uniform hash
functions as shown in Fig. 4. The false positive in verification
Bloom filter can achieve the minimum about (0.6185)"/".
Therefore, we have the following false positive probability of
LSBF when it takes the simple but efficient verification
scheme in the additional Bloom filter.

Corollary 2 (False Positive Probability of LSBF). LSBF uses
9i(1 <4 < L) locality-sensitive hash functions and a bit-based
verification Bloom filter. For a queried item g, its false positive
probability is

k
itnpro’ued = fl;;wc*(l/z)
& fier(0.6185)"/"
— eth(l*HL] (lfq,'))*(0.6185)777//717

while assuming that LSH functions follow the s-stable
distribution to identify an approximate membership.

4.2 False Negative Probability

A false negative occurs for the queried item ¢ if ||p,q|| < R
and [h(p) # h(q)] (named a hash miss) for one LSH function
when p is a member of the queried data set S. According to
Definition 3, the probability for the hash collision of p, g is
not less than P;.

Theorem 3 (False Negative Probability of Basic LSBF).
Given a queried item g, the basic LSBF uses L locality-
sensitive hash functions to examine its approximate member-
ship and the false negative probability is

fl;zsic<]'_PlL'

Proof. The false negative appears if at least one of hit bits is
“0,” which is different from false positives that occur if all
hit bits are “1.” Note that the probability of hash collision
should be no less than P; in one LSH hash function for
items p and ¢. Thus, the probability is no less than P} for
their hash collision in L LSH hash functions. Therefore,
the probability is less than 1 — P} that ¢ is not regarded to
be the approximate member of p. Due to the hashing
probabilistic property in LSH, even if p and ¢ do not
collide for one LSH hash function, the hit bit for ¢ can
likely be set to “1” by others. In this case, the false negative
will not occur. Hence, the false negative probability must
be smaller than 1 — P}, ie., f;,,. < 1— PL. O
The P, value describes the acceptable quality of queried

results. Given a data set under a specified metric space, we

can determine P, value based on predefined parameters [13].

Observation 1 (P, Principle). We define p = }2}?2 and LSH can

guarantee to run with time complexity O(n”) sublinearly to n if
p<1je

The P, value depends on special applications using
different metric spaces.

Case 1 (Hamming Distance). Ve, R in a d-dimensional
Hamming space, the probability Pr.p[hap(p) = hap(q)] is
equal to the rate when the coordinates of p and g collide. Thus,
P =1-% P =1-and p=1/c[11].

Case 2 (¢; Distance). The picking probability of hashed points
into segments with w follows the Gaussian distribution. For
Uy euclidean distance and s-stable distribution and s € [0,2),
we have p < 1/c [27].

Case 3 (Arccos). Given points p,q € R? and their distance
. a . o

measured %Jy cosine angle of cos(pfrfa), the colll.szon probability

of pand qis 1 — arccos(pfrfor) /™ when we take into account the

hash function as the space partition [29].

824

pi-1 P1piFl

Fig. 7. Neighboring slots for approximate query of a point g.

We give the false negative probability of the improved
LSBF by using the active overflowed scheme below. The
active approach is similar to and further improves upon the
multiprobe LSH [2] to probe neighboring bits when taking
t = 1. Given a queried item ¢, assume that its approximate
item in a database S is p;. Let the hash collision probability
be ¢ for item p; and ¢ that can be computed by (3). Note
that ¢g; > P;. From the conclusion in the multiprobe LSH,
the projection difference of (a - p; +b) — (a- ¢+ b) follows a
normal distribution. When w is large enough, item ¢ can fall
into the same slot as item p;, or its left and right neighboring
slots (denoted by 6 € {0,—1,+1} slot, respectively) as
shown in Fig. 7.

From [2], we know that item ¢ falls into one of two
ne1ghbor1ng slots of item p; w1th the approximate prob-
ab111ty fi e dv ~ e~ for a locality-sensitive hash
functlon where the variance o? is proportional to the
distance ||p; — ¢||*, the constant C' depends upon the distance
lp1 — qf| and

o) = d @ a+b)—
4) {w—(a-q+b)

La,-g+bJ X w,
La (I+bJ X w,

if § = —1,
if § = +1.

Therefore, the probability that ¢ falls into the neighbor-
ing slots (ie, 6 € {—1,+1}) of item p; becomes ¥(z)~
Y€ *® In our active overflowed scheme to
reduce false negatives, we need to check neighboring 2 bits
for a single hash miss by setting ¢ = 1. The single miss will
not lead to negative answer for the proximity of item p and
q if any neighboring bit is 1. Thus, the probability is
approximately (1 —q1)> 5, . € %" for one hash func-
tion and the hash collision of ¢ only occurs in either left or
right neighboring slot of item p;.

Theorem 4 (False Negative Probability of LSBF). Given that
the improved LSBF uses L locality-sensitive hash functions
and the active overflowed scheme probes adjacent t =1
neighbors for a single hash miss of a queried item q, the false
negative probability of LSBF is

Tl-aq) Y

b=—1,4+1

_ A 2
fz'mprm,ved ~1-— qf —-L- (]f & Ci(8) . (5)

Proof. A false negative occurs for queried item ¢ when there
are two or more hash misses or a single miss but without
falling into p’s neighboring slots for ¢ =1 among L
hashing functions. Thus, the false negative probability for
the improved LSBF is 1 — Pr.(no miss) — Pr.(a miss but
within neighboring slots). From the proof of Theorem 3,
we have Pr.(nomiss)=q- and Pr.(amiss) = (})-

1
¢*"'(1 — q1). Therefore, based on the fact that the

IEEE TRANSACTIONS ON COMPUTERS, VOL. 61, NO.6, JUNE 2012

differentiated projection of item p and ¢ follows Gaussian
distribution, we can obtain

Pr.(a miss but within neighboring slots)

= Pr.(a miss)¥(x)

L\ e
o=—1,+1
=L 1—q) Y e Cu0r,
o=—1,+1

4.3 Query Time and Space Overheads

We give the query time and space overheads for LSBF using
the verification scheme to improve query accuracy for a
data set S containing n items. LSBF is composed of two
components, the basic LSBF and verification Bloom filter.

Theorem 5 (Query Time and Space Overheads). The query
time and space overheads for LSBF in response to approximate
query services are, respectively, O(dL) + O(k) complexity and
O(dn/w) + O(n - k/In2) bits.

Proof. Suppose the approximate query is processed
sequentially for each locality-sensitive function. The
query operation needs to first check d dimensions of a
queried item, each of which requires to verify L LSH
functions to examine the approximate membership in
the basic LSBF. The first step requires O(dL) computa-
tional complexity. To improve query accuracy, LSBF
uses a verification Bloom filter and the check on it
requires another O(k) complexity due to the computa-
tion of k hash functions in the Bloom filter.

The storage space in LSBF consumes 2-bit vectors,
respectively, in the basic LSBF and verification Bloom
filter. The space overhead in the basic LSBF depends
upon, besides the number of items n and dimensions d,
the amount of slots divided by w. Given a certain length
of projected line, the larger the w is, the smaller the
number of slots will be, each of which is correlated with
a “0/1” bit. Thus, the basic LSBF requires O(dn/w)-bit
space. In addition, the verification Bloom filter constructs

an m/-bit vector as stated in Section 3.3, which is
O(n - k/in2).]

5 PERFORMANCE EVALUATION

This section examines the performance of LSBF by using real-
world traces with high dimensions. We compare its
performance with other state-of-the-art work to support
AMQ. To answer a query of ¢, LSBF first verifies its
approximate membership presence in the basic LSBF and
verification Bloom filter. LSBF then makes use of an active
overflowed scheme to reduce FN only if a single hit bit is “0.”
Specifically, we present the implementation details, includ-
ing environment setting, used data traces, generated query
requests, and compared methods. We further demonstrate
the real performance results in terms of query latency, query
accuracy, I/O access cost, and space overhead.

HUA ET AL.: LOCALITY-SENSITIVE BLOOM FILTER FOR APPROXIMATE MEMBERSHIP QUERY 825

5.1 Implementation Details

5.1.1 Environment Setting

We have implemented the proposed LSBF structure in a
distributed environment that consists of a cluster with
30 nodes, each of which runs on the Linux and is equipped
with dual-AMD processors and 2 GB memory and
connected with a high-speed network. We carry out
experiments 20 times to validate the results.

5.1.2 Traces and Queries

In order to comprehensively evaluate the performance of
LSBF structure, we use real-world traces, including MSN [30]
and Forest CoverType [31], to examine and compare LSBF
performance with other comparable work. The following
real-world data traces have been used in our evaluation.

e MSN Trace. The MSN trace [32] maintains metadata
information and correlated users within a 6-hour
period and has been divided into 10-minute inter-
vals. This trace contains 1.25 million files and records
3.3 million “READ” and 1.17 million “WRITE”
operations. The queried objects using this trace are
the files that exhibit multidimensional attributes,
including access time, amounts of READ, amounts of
WRITE, operational sequence IDs and file size within
an examined interval.

e Forest CoverType Trace. The Forest CoverType data
set contains 581,012 data points and each has 54D
attributes. Specifically, these 54D attributes include
10 quantitative variables, 4 binary wilderness areas
and 40 binary soil type variables. All data records for
forest cover types exhibit locality distribution. The
detailed information of the data set can be found at
the website [31]. We further carry out a simple
preprocessing by extracting 11D attributes to be
used in our experiments due to their significant
differentiation on data points.

Query requests are generated from the attribute space of
above typical traces and are randomly selected by con-
sidering the 1,000 uniform and 1,000 Zipfian distributions,
respectively. We set the Zipfian parameter H to be 0.85. We
select these 2,000 query requests to constitute the query set
and examine the query accuracy and latency.

5.1.3 Compared Methods

AMQ in fact can be interpreted as top-1 Nearest Neighbor
(NN) query by first identifying the closest neighbor to the
queried point and then measure their distance. If the distance
is smaller than the metric R, we say the queried point is an
approximate member to data set S. Therefore, we compare
LSBF with query methods for top-1 NN searching.

We have implemented LSBF in real distributed systems to
facilitate comparisons with the baseline approach and other
state-of-the-art work, including SmartStore [33] and LSB-
tree [34] for AMQ. In fairness, SmartStore will first search
top-1 nearest neighbor point and then compute the distance
between the queried point and this top-1 nearest neighbor. If
the distance is smaller than R, SmartStore will return a
positive answer to the approximate membership query. We
choose LSB-tree for comparisons because LSB-tree is the

)
®

= o

N aa a®

o s wg
@

@ a

- a
.- e - ® o

-

Fig. 8. Two typical data distributions. (a) Uniform. (b) Gauss.

most recent work that can obtain high-quality AMQ results.
We compare LSBF with state-of-the-art methods for approx-
imate data query, including:

e Baseline. The baseline approach utilizes the basic
brute-force retrieval to identify the closest point in
the data set and determine the approximate mem-
bership by computing the distance between the
queried point and its closest neighbor.

e SmartStore. The SmartStore system uses informa-
tion retrieval tool, latent semantic indexing (LSI), to
semantically aggregate associated file metadata into
the same or adjacent groups in an R-tree [35] to
support approximate query service in Exabyte-scale
file systems.

e LSB-tree. The LSB-tree uses LSH to provide approx-
imate query service in the high-dimensional NN
search by converting each point to the one in an
m-dimensional space, where Z-order method is used
to produce associated values that are indexed by a
conventional B-tree.

5.1.4 Parameter Selection

The performance of LSBF structure is tightly associated with
the parameter settings. One of the key parameters is the
metric R to regulate the measure of approximate member-
ship. The LSH-based structures can work well if R is roughly
equivalent to the distance between the queried point ¢ and
its exact NN. Unfortunately, identifying an optimal R value
is a nontrivial task due to the uncertainties and probabilistic
properties of LSH. Too large or too small R values possibly
result in bad query results [26]. Even worse, the optimal
R value in fact does not exist at all and sometimes exhibits
case-by-case fashion, i.e., a good R working for some cases
may be bad for others [34]. In particular, a heuristic
approach [36] attempts to find a “magic” radius predeter-
mined by the system. Unfortunately, it is difficult to choose
an optimal R value that can measure the nearest neighbor
distances for all queries. For instance, as shown in Fig. 8, if a
query falls in the uniform distribution, the distance to its
NN must be much larger if the query falls into the Gauss
distribution. Therefore, performing the selection of R value
has to face with the dilemma between query efficiency and
quality guarantee of approximation.

In order to obtain R values for carrying out experiments,
we use the sampling method that is proposed in the LSH
statement [27] and practical applications [34]. We further
define “proximity measure x = ||p} — ¢||/|lp1 — ¢||” to evaluate
the top-1 query quality for queried point ¢, where p; and p;,
respectively, represent the actual and searched nearest

826

09 | i

[
e
S osf —B-MsN
] —5— Forest
© o7l
)
= o6f
2> osf
E oaf
3 osf
2
o o02f
01 f
& & &
o £ gy
1 10 160 1000 10000
R value

Fig. 9. Parameter R tuning for two typical traces by examining the
weighted average value of proximity measure x.

neighbors of point ¢ by computing their euclidean distance.
Fig. 9 shows the weighted average values of proximity
measure ratios of typical traces. We observe that when the
R value is too small, the ratio is close to 0 due to no
retrieved results. With the increments of R value, we can
obtain relatively satisfying ratios. However, if the R value is
considerably large, the ratio may become worse because
approximate points are too many and this could deteriorate
their difference. Due to the space limitation, we ignore the
details of discussing the distribution of measured points
[26], [34]. We determine the R values to be 600 and 2,000,
respectively, for MSN and Forest traces. We further initialize
the size of LSBF structure to be m = 10 KB and correspond-
ing verification Bloom filter to be m’ = 2 KB. In addition,
we use L =7 LSH to support AMQ with w = 0.85, M = 10
and use eight hash functions, i.e., k = 8, in the verification
Bloom filter in the function of MD5. We select A = 0.3 for
the computation of false rates since false negatives may
generally lead to more severe effects than false positives.
For the active overflowed approach, we set ¢t = 1.

5.2 Performance Analysis

5.2.1 Query Latency

Figs. 10 and 11, respectively, show the query latency in the
MSN and Forest traces. The Baseline uses linear searching
on the entire data set and thus has the longest query
latency, which can potentially cause inaccurate query
results due to stale information of delayed updates.
SmartStore leverages semantic grouping to reduce search-
ing scope into several groups. However, it requires
precomputation on matrix-based correlation analysis. Both
the LSB-tree and LSBF make use of LSH to determine the
approximate memberships. The main difference is that LSB-
tree needs to index a B-tree with O(logn) — scale complexity
after the hashing computation, while LSBF examines the
verification Bloom filters with O(1) complexity. In addition,
we also observe that the query latency in the MSN trace is
relatively smaller than that in the Forest trace, although the
former contains more points than the latter. We conjecture
that the main reason is that the Forest trace has much higher
dimensions, thus requiring longer checking time.

5.2.2 Query Accuracy

We examine the query accuracy of LSBF and compared
methods by using the metric of average “proximity measure”
in the MSN and Forest traces as shown in Figs. 12 and 13. Note
that false results here take into account both false positives
and false negatives. We observe that the LSBF structure can

IEEE TRANSACTIONS ON COMPUTERS, VOL. 61, NO.6, JUNE 2012

400

350 —E— Baseline
—— SmartStore
—#— LSB-tree

—<— LSBF

300 |

250
200
150
100 |

Y
50 ;&;ﬁﬁ:

0 I I I I I ! I
200 300 400 500 600 700 800 900 1000

Number of Query Requests

Average Query Latency (ms)

(a) The uniform requests.

400

—_
(7]
E 1]
-
> 350
o
S 300 |
2 —E— Baseline
© 250 —%— SmartStore
- —#— LSB-tree
> wlf —5— LSBF
)
150 |
(¢}
O 100 | d
=2 W/Z
S spe=——"3* F+— >]
3 L s
I ! I | I I I
<

0
200 300 400 500 600 700 800 900 1000

Number of Query Requests

(b) The Zipfian requests.

Fig. 10. Query latency with the MSN trace.

450

400

350

300

250 —H&— Baseline
—5— SmartStore
—#— LSB-tree

0 b —o— LSBF

150
100 L
507?—_4—_45’/50/_%

0
200 300 400 500 600 700 800 900 1000

Number of Query Requests

Average Query Latency (ms)

(a) The uniform requests.

450

400

350 |

—B— Baseline
—5— SmartStore
—#— LSB-tree

—&— LSBF

300

250

200 |-
150

100 | _ - v
3 5 % i
soF 5 e

0
200 300 400 500 600 700 800 900 1000

Number of Query Requests

Average Query Latency (ms)

(b) The Zipfian requests.
Fig. 11. Query latency with the Forest trace.

obtain accuracy advantage over SmartStore, LSB-tree, and
baseline approaches. The main reason is that LSBF uses
simple but efficient verification mechanism to guarantee
query quality without compromising query performance. As
illustrated in Fig. 12, SmartStore has higher accuracy than the
LSB-tree in the MSN trace since the semantic grouping in the

HUA ET AL.: LOCALITY-SENSITIVE BLOOM FILTER FOR APPROXIMATE MEMBERSHIP QUERY 827

1
o 0ssf
e
a 0.95F ,) L
g]
085 [
=
> 0.8
=
E s
X -
o 0.7 [|~ Baseline
= —— SmartStore
T
- —— LSBF
0.6 L L L L L L L p
200 300 400 500 600 700 800 900 1000
Number of Query Requests
(a) The uniform requests.
1
095 [
0 5_*6\9\9\6
5 osf
0 4 ,
8 0.85°F ¥ " |
s 08 | h |
b 0.75 —H— Baseline
- i —<— SmartStore
1 0.7 —%— LSB-tree
X o0es | <~ LSBF
g
& 0sf
055 |
1]

0.5
200 300 400 500 600 700 800 900 1000

Number of Query Requests
(b) The Zipfian requests.

Fig. 12. Query accuracy with the MSN trace.
1

095 f
09 M

o

0.85 | = -

T
/
<=

0.8
i

0.75

0.7

—H— Baseline
0.65 |- |—7— SmartStore
—#— LSB-tree
06 | | <—LsBF

0.55 ! ! I I I I I
200 300 400 500 600 700 800 900 1000

Proximity Measure

1]

Number of Query Requests

(a) The uniform requests.

0.95 |
09 M
0.85

1
08 # |

0.75

0.7

—H— Baseline
0.65 | |—7— SmartStore
—+— LSB-tree
06 | |—<—LSBF

Proximity Measure

0.55
200 300 400 500 600 700 800 900 1000

Number of Query Requests

(b) The Zipfian requests.

Fig. 13. Query accuracy with the Forest trace.

former helps identify approximate members within one or a
small number of groups. However, this is not the case for the
Forest trace, as shown in Fig. 13, since SmartStore has to
spend much more time to compute the correlation matrix
that comes from the high-dimensional Forest trace, thus
leading to stale results. In addition, the uniform distribution
receives higher query accuracy than the Zipfian because the

W Baseline SmartStore M LSB-tree M LSBF SmartStore M LSB-tree M LSBF

900 900

W Baseline

800 800
700 700
600 600

500 500

1/0 Cost
1/0 Cost

400 400
300 300
200 200
100 100

0 0
200 400 600 800 1000 200 400 600 800 1000

Number of Query Requests Number of Query Requests

(a) The uniform requests. (b) The Zipfian requests.

Fig. 14. 1/0O costs with the MSN trace.

W Baseline SmartStore M LSB-tree M LSBF
1000 1000

W Baseline SmartStore M LSB-tree M LSBF

900 900
800 800
- 10 - 700
§ 600 § 600
500 500
2 2
300 300
200 200
100 100
0 200 400 600 800 1000 0 200 400 600 800 1000
Number of Query Requests Number of Query Requests
(a) The uniform requests. (b) The Zipfian requests.
Fig. 15. I/O costs with the Forest trace.

TABLE 1
Normalized Storage Space for Real-World Traces

| | SmartStore | LSB-tree | LSBF |

MSN 1.0 0.68 0.15
Forest 1.0 0.42 0.09 |

items in the latter are naturally closer and it is difficult to
clearly identify them. The baseline approach uses brute-force
search to obtain queried points but has the worst perfor-
mance. Its slow response to update information in multiple
nodes greatly degrades the query accuracy.

5.2.3 I/O Access

We count the I/O access times to evaluate query efficiency.
Figs. 14 and 15 illustrate the I/O costs for approximate
membership queries. The counted I/O access includes the
visits on high-speed memory and low-speed disk. The
baseline exhibits the largest number of accesses due to its
checking on the entire data set. Performing the index on a
B-tree makes LSB-tree to produce a little more visits than
SmartStore. LSBF requires the smallest I/O visits since it
only needs to verify limited bits by using hash-based
computation and its space savings allow most visits to be in
the memory.

5.2.4 Space Overhead

Table 1 shows the compared space overhead that is
normalized to the space size of SmartStore. LSBF shows
its advantage of significant space savings over other
designs due to its bit-form storage for its basic LSBF and
verification Bloom filter. We can thus put the entire LSBF
structure into high-speed memory to obtain quick query
responses. We also observe that more space consumption
is intended for SmartStore than LSB-tree since the former
needs to maintain complete information for high-dimen-
sional items into an R-tree, while the latter only keeps the
simple Z-order codes in a B-tree.

828

5.3 Performance Summary

Compared with state-of-the-art schemes, such as LSB-tree
and SmartStore, LSBF can obtain significant performance
improvements, in terms of approximate query accuracy and
latency, storage space overhead and I/O costs, when we use
traces from typical real-world applications for testing.
Specifically, compared with LSB-tree and SmartStore, LSBF
improves the query accuracy on average by 11.36 and
17.92 percent, decreases the query latency by 36.28 and
47.51 percent, saves almost 90 percent and 77 percent space
overheads, and reduces 62.8 and 70.3 percent I/O costs,
respectively.

6 REAL-WORLD APPLICATION SCENARIOS OF
LSBF

We can exploit the LSBF structure in many network
applications because it has the following properties:

e First, LSBF makes use of LSH functions to efficiently
support AMQ, which is very helpful to quickly
respond query requests from users to return approx-
imate answers. The conventional exact-matching,
however, may require prohibitively brute-force
searching costs and cause a long time delay, which
limits its potential applications. For instance, in the
decision support systems, exact answers are not
required while approximate but early feedback can
help to identify interesting regions.

e Second, LSBF can tolerate certain occasional input
errors that often occur in practice due to human
behaviors. It allows us to obtain approximate results
from the uncertain and inaccurate inputs by lever-
aging the locality-aware hashing computation.

e Third, LSBF can provide the results close to the input
requests, even if we have little knowledge of stored
data. A client can send queries with vague descrip-
tion of multidimensional attributes of queried items
and receive useful answers from LSBF since it is a
structure exploiting the locality of multidimensional
attributes.

The proposed LSBF structure can be efficiently used in
many real-world applications due to its properties of input
mistake tolerance, fast query response, assistance to similar
query and system performance improvement. We demon-
strate these properties in the following examples.

Example 1 (Mistake Tolerance). LSBF can tolerate certain
occasional input mistakes. For example, “I would like
to find a file created in June 2009, unfortunately, I
mistakenly type the input as July 2009”.

Example 2 (Fast Query Response). For example, in the file
archiving application, it is normal for a user to forget
the exact filename of previously stored files (e.g.,
emails/images). In order to avoid linearly brute-force
searching on all files, LSBF can definitely help to find
similar files by carrying out a multiattribute query, such
as “Timegreated = July, 2006” and “Size ~ 20 KB”.

Example 3 (Similar Query). For example, AMQ can be very
valuable for the indexing service of similar images on the

IEEE TRANSACTIONS ON COMPUTERS, VOL. 61, NO.6, JUNE 2012
web [2]. Performing the AMQ over LSBF can identify
“computer”-related images that are represented by
multidimensional attribute vectors.

Example 4 (System Performance Improvement). We can
apply LSBF to improve approximate query performance,
reduce searching space and provide good compatibility
by using simple I/O interfaces. In fact, LSBF is
orthogonal to existing schemes, such as Magellan [37]
and SmartStore [33].

7 RELATED WORK

AMQ has received lots of attentions due to their wide
applications. Locality Sensitive Hashing introduced by
Indyk and Motwani in [11] has been successfully applied
in approximate queries of vector and string spaces. We can
refer to [13] as a detailed survey. Existing variants include
distance-based hashing [38], multiprobe LSH [2], and
bounded LSH [26]. Distance-based hashing [38] extends
conventional LSH into arbitrary distance measures by
taking statistical observation from sample data. Multiprobe
LSH [2] checks the hashed buckets more than once to
support high-dimensional similarity search and improve
indexing accuracy based on statistic analysis. Most of
existing LSH-based designs have to consume a large storage
space to maintain multiple hash tables to improve the
accuracy of approximate queries. Bounded LSH [26] maps
nonuniformly distributed data points into load-balanced
hash buckets to contain approximately equal number of
points, thus obtaining space savings.

Another research branch aims to extend space-efficient
Bloom filters to support approximate queries with accep-
table false rates. A new multiset data structure [7] serves as
a substitute for standard Bloom filters for constant lookup
time, smaller space usage, and succinct hash function
encodings. It stores an approximation set S’ to a set S such
that S C $' and guarantees that any element not in S
belongs to S’ with a probability at most e. Distance-sensitive
Bloom filters [12] allow Bloom filters to answer queries of
the form, “Is = close to an element of S in a given metric?”.
The distance-sensitive Bloom filters are essentially standard
partitioned Bloom filters where the random hash functions
are replaced by distance sensitive hash functions. Beyond
Bloom filters [3] can represent concurrent state machines by
supporting “false positive,” “false negative,” and “don’t
know” query responses. These filters specifically use d-left
hashing to provide membership checking in a dynamic set.

False positives and false negatives become an essential
topic of Bloom filters due to hash collisions and environ-
mental settings [39]. Weighted Bloom filters [40] incorpo-
rate the information on the query frequencies and the
membership likelihood of elements into its optimal design.
Data popularity conscious Bloom filters [41] study the
problem of minimizing the false positive probability of
Bloom filters by adapting the number of hashes used for
each object to its popularity in set and membership queries.
A partitioned hashing method [42] tries to reduce the false
positive rate of Bloom filters by tailoring the hash functions
for each item to set far fewer Bloom filter bits than standard
Bloom filters. Incremental Bloom filters [23] consider the

HUA ET AL.: LOCALITY-SENSITIVE BLOOM FILTER FOR APPROXIMATE MEMBERSHIP QUERY

problem of minimizing the memory requirements in cases
where the number of elements in a set is unknown in
advance but only with its the distribution or moment
information. Retouched Bloom filters [43] present a
combination of false positive and negative rates by allowing
the removal of certain false positives at the cost of
producing random false negatives. Other details can be
referred to the survey of Bloom filters [24].

The above existing work motivates our design of LSBF
that makes further improvements upon them. LSBF is a
novel structure to use LSH to map proximate items into the
same or adjacent bits in a Bloom filter, thus supporting
AMQ and obtaining space savings without compromising
query performance.

8 CONCLUSION

In this paper, we proposed a novel structure, called LSBF, to
support AMQ. LSBF is essentially a space-efficient Bloom
filter but replaces original uniform hashing functions with
LSH functions that can faithfully maintain the proximity of
hashed items. A simple replacement with LSH in Bloom
filters, however, may cause unsatisfactory answers due to
false positives and negatives. To decrease false positives, we
presented a verification scheme by using an extra small-size
Bloom filter to keep consistency of multidimensional
attributes of items. The proposed active overflowed scheme
can further help decrease false negatives by probing very
limited neighbors of hashed bits. We showed theoretical
analysis on LSBF, e.g., its FP, FEN, and compact storage
space overhead. Extensive experiments in a distributed
environment verify that the LSBF design can be used in
real-world applications for its space efficiency and respon-
sive query answers.

ACKNOWLEDGMENTS

This work was supported in part by National Natural Science
Foundation of China (NSFC) under Grant 61173043; National
Basic Research 973 Program of China under Grant
2011CB302301; NSFC under Grant 61025008, 60703046; HK
RGC PolyU 5314/10E; Fundamental Research Funds for the
central universities, HUST, under grant 2010MS043; National
High Technology Research and Development 863 Program of
China under Grant 2009AA01A401 and 2009A A01A402; the
Program for Changjiang Scholars and Innovative Research
Team in University under Grant IRT-0725. The authors
greatly appreciate anonymous reviewers for constructive
comments.

REFERENCES

[1] L. Carter, R. Floyd, J. Gill, G. Markowsky, and M. Wegman, “Exact
and Approximate Membership Testers,” Proc. 10th Ann. ACM
Symp. Theory of Computing (STOC '78), pp. 59-65, 1978.

[2] Q. Lv, W. Josephson, Z. Wang, M. Charikar, and K. Li, “Multi-
Probe LSH: Efficient Indexing for High-Dimensional Similarity
Search,” Proc. 33rd Int'l Conf. Very Large Data Bases (VLDB '07),
pp- 950-961, 2007.

[3] F. Bonomi, M. Mitzenmacher, R. Panigrahy, S. Singh, and G.
Varghese, “Beyond Bloom Filters: From Approximate Member-
ship Checks to Approximate State Machines,” Proc. ACM
SIGCOMM, 2006.

4

(5]

(6]

(]

(8]

]

(10]

(1]

(12]

(13]

(14]

[15]

(16]

(171

(18]

[19]

[20]

[21]

(22]

(23]
[24]
[25]

[20]

(27]

(28]

(29]

829

Y. Zhu and H. Jiang, “False Rate Analysis of Bloom Filter
Replicas in Distributed Systems,” Proc. Int'l Conf. Parallel
Processing (ICPP '06), pp. 255-262, 2006.

W. Chang Feng, D.D. Kandlur, D. Saha, and K.G. Shin, “Stochastic
Fair Blue: A Queue Management Algorithm for Enforcing Fair-
ness,” Proc. IEEE INFOCOM, 2001.

F.M. Cuenca-Acuna, C. Peery, R.P. Martin, and T.D. Nguyen,
“PlantP: Using Gossiping to Build Content Addressable Peer-to-
Peer Information Sharing Communities,” Proc. IEEE 12th Int’l
Symp. High Performance Distributed Computing, 2003.

A. Pagh, R. Pagh, and S. Rao, “An Optimal Bloom Filter
Replacement,” Proc. 16th Ann. ACM-SIAM Symp. Discrete Algo-
rithms (SODA ’05), pp. 823-829, 2005.

S. Dharmapurikar, P. Krishnamurthy, and D.E. Taylor, “Longest
Prefix Matching Using Bloom Filters,” Proc. ACM SIGCOMM,
pp. 201-212, 2003.

A. Broder and M. Mitzenmacher, “Using Multiple Hash Functions
to Improve IP Lookups,” Proc. IEEE INFOCOM, pp. 1454-1463,
2001.

F. Baboescu and G. Varghese, “Scalable Packet Classification,”
IEEE/ACM Trans. Networking, vol. 13, no. 1, pp. 2-14, Feb. 2005.
P. Indyk and R. Motwani, “Approximate Nearest Neighbors:
Towards Removing the Curse of Dimensionality,” Proc. 13th Ann.
ACM Symp. Theory of Computing (STOC 98), pp. 604-613, 1998.
A. Kirsch and M. Mitzenmacher, “Distance-Sensitive Bloom
Filters,” Proc. Eighth Workshop Algorithm Eng. and Experiments
(ALENEX), 2006.

A. Andoni and P. Indyk, “Near-Optimal Hashing Algorithms for
Approximate Nearest Neighbor in High Dimensions,” Comm.
ACM, vol. 51, no. 1, pp. 117-122, 2008.

L. Fan, P. Cao, J. Almeida, and A. Broder, “Summary Cache: A
Scalable Wide-Area Web Cache Sharing Protocol,” IEEE/ACM
Trans. Networking, vol. 8, no. 3, pp. 281-293, June 2000.

M. Mitzenmacher, “Compressed Bloom Filters,” IEEE/ACM Trans.
Networking, vol. 10, no. 5, pp. 604-612, Oct. 2002.

Y. Hua, Y. Zhu, H. Jiang, D. Feng, and L. Tian, “Scalable and
Adaptive Metadata Management in Ultra Large-scale File
Systems,” Proc. 28th Int'l Conf. Distributed Computing Systems
(ICDCS '08), pp. 403-410, 2008.

A. Kumar, J.J. Xu, J. Wang, O. Spatschek, and L.E. Li, “Space-Code
Bloom Filter for Efficient Per-Flow Traffic Measurement,” Proc.
IEEE INFOCOM, pp. 1762-1773, 2004.

C. Saar and M. Yossi, “Spectral Bloom Filters,” Proc. ACM
SIGMOD Int’l Conf. Management data , pp. 241-252, 2003.

D. Guo, J. Wu, H. Chen, and X. Luo, “Theory and Network
Application of Dynamic Bloom Filters,” Proc. IEEE INFOCOM,
2006.

B. Xiao and Y. Hua, “Using Parallel Bloom Filters for Multi-
Attribute Representation on Network Services,” IEEE Trans.
Parallel and Distributed Systems, vol. 21, no. 1, pp. 20-32, Jan. 2010.
H. Song, F. Hao, M. Kodialam, and T.V. Lakshman, “IPv6
Lookups Using Distributed and Load Balanced Bloom Filters for
100Gbps Core Router Line Cards,” Proc. IEEE INFOCOM, 2009.
F. Hao, M. Kodialam, T.V. Lakshman, and H. Song, “Fast Multiset
Membership Testing Using Combinatorial Bloom Filters,” Proc.
IEEE INFOCOM, 2009.

F. Hao, M. Kodialam, and T.V. Lakshman, “Incremental Bloom
Filters,” Proc. IEEE INFOCOM, pp. 1741-1749, 2008.

A. Broder and M. Mitzenmacher, “Network Applications of
Bloom Filters: A Survey,” Internet Math., vol. 1, pp. 485-509, 2005.
A. Joly and O. Buisson, “A Posteriori Multi-Probe Locality
Sensitive Hashing,” Proc. ACM Multimedia, 2008.

Y. Hua, B. Xiao, D. Feng, and B. Yu, “Bounded LSH for Similarity
Search in Peer-to-Peer File Systems,” Proc. Int'l Conf. Parallel
Processing, pp. 644-651, 2008.

M. Datar, N. Immorlica, P. Indyk, and V. Mirrokni, “Locality-
Sensitive Hashing Scheme Based on p-Stable Distributions,” Proc.
Ann. Symp. Computational Geometry, pp. 253-262, 2004.

A. Andoni, M. Datar, N. Immorlica, P. Indyk, and V. Mirrokni,
“Locality-Sensitive Hashing Using Stable Distributions,” Nearest
Neighbor Methods in Learning and Vision: Theory and Practice,
T. Darrell and P. Indyk and G. Shakhnarovich, eds., MIT Press,
2006.

M. Charikar, “Similarity Estimation Techniques from Rounding
Algorithms,” Proc. 34th Ann. ACM Symp. Theory of Computing
(STOC '02), pp. 380-388, 2002.

830
[30] N. Agrawal, W. Bolosky, J. Douceur, and J. Lorch, “A Five-Year
Study of File-System Metadata,” Proc. Fifth USENIX Conf. File and
Storage Technologies (FAST), 2007.

The Forest CoverType data set, “UCI Machine Learning Reposi-
tory,” http:/ /archive.ics.uci.edu/ml/data sets/Covertype, 2011.
S. Kavalanekar, B. Worthington, Q. Zhang, and V. Sharda,
“Characterization of Storage Workload Traces from Production
Windows Servers,” Proc. IEEE Int’l Symp. Workload Characterization
(IISWC), 2008.

Y. Hua, H. Jiang, Y. Zhu, D. Feng, and L. Tian, “SmartStore: A
New Metadata Organization Paradigm with Semantic-Awareness
for Next-Generation File Systems,” Proc. ACM/IEEE Supercomput-
ing Conf. (5C), 2009.

Y. Tao, K. Yi, C. Sheng, and P. Kalnis, “Quality and Efficiency in
High-Dimensional Nearest Neighbor Search,” Proc. 35th SIGMOD
Int’l Conf. Management of Data (SIGMOD '09), 2009.

A. Guttman, “R-Trees: A Dynamic Index Structure for Spatial
Searching,” Proc. ACM SIGMOD Int’l Conf. Management of Data
(SIGMOD ’84), pp. 47-57, 1984.

A. Gionis, P. Indyk, and R. Motwani, “Similarity Search in High
Dimensions via Hashing,” Proc. 25th Int’l Conf. Very Large Data
Bases (VLDB '99), pp. 518-529, 1999.

A. Leung, I. Adams, and E.L. Miller, “Magellan: A Searchable
Metadata Architecture for Large-Scale File Systems,” Technical
Report UCSC-SSRC-09-07, Univ. of California, Nov. 2009.

V. Athitsos, M. Potamias, P. Papapetrou, and G. Kollios, “Nearest
Neighbor Retrieval Using Distance-Based Hashing,” Proc. IEEE
24th Int'l Conf. Data Eng. (ICDE), 2008.

Y. Hua, Y. Zhu, H. Jiang, D. Feng, and L. Tian, “Supporting
Scalable and Adaptive Metadata Management in Ultra Large-
Scale File Systems,” IEEE Trans. Parallel and Distributed Systems,
vol. 22, no. 4, pp. 580-593, Apr. 2011.

J. Bruck, J. Gao, and A. Jiang, “Weighted Bloom Filter,” Proc. IEEE
Int’l Symp. Information Theory, pp. 2304-2308, 2006.

M. Zhong, P. Lu, K. Shen, and]. Seiferas, “Optimizing Data
Popularity Conscious Bloom Filters,” Proc. 27th ACM Symp.
Principles of Distributed Computing (PODC '08), 2008.

F. Hao, M. Kodialam, and T. Lakshman, “Building High Accuracy
Bloom Filters Using Partitioned Hashing,” Proc. ACM SIG-
METRICS Int’l Conf. Measurement and Modeling of Computer Systems
(SIGMETRICS "07), pp. 277-288, 2007.

B. Donnet, B. Baynat, and T. Friedman, “Retouched Bloom Filters:
Allowing Networked Applications to Trade off Selected False
Positives Against False Negatives,” Proc. ACM CoNEXT Conf.,
2006.

B31]

[32]

(33]

(34]

(35]

[36]

[37]

(38]

(39]

(40]

[41]

[42]

(43]

Yu Hua received the BE and PhD degrees in
computer science from the Wuhan University,
China, in 2001 and 2005, respectively. He joined
the Department of Computing at the Hong Kong
Polytechnic University as a research assistant in
2006. Now he is an associate professor in the
School of Computer Science and Technology at
the Huazhong University of Science and Tech-
nology, China. His research interests include
computer architecture, cloud computing, net-
work storage, and cyber-physical systems. He has more than 30 papers
to his credit in major journals and international conferences including
IEEE Transactions on Computers (TC), IEEE Transactions on Parallel
and Distributed Systems (TPDS), USENIX ATC, INFOCOM, SC,
ICDCS, ICPP, and HiPC. He has been on the program committees of
multiple international conferences. He is a member of the IEEE and
USENIX.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 61, NO.6, JUNE 2012

Bin Xiao received the BSc and MSc degrees in
electronics engineering from Fudan University,
China, in 1997 and 2000, respectively, and PhD
degree in computer science from University of
Texas at Dallas in 2003. Now he is an associate
professor in the Department of Computing of the
Hong Kong Polytechnic University, Hong Kong.
His research interests include distributed com-
puting systems, data management, secured
communication networks, focusing on wireless
sensor networks, and RFID systems. Currently, he is the associate
editor of the International Journal of Parallel, Emergent and Distributed
Systems. He is a member of the IEEE Computer Society and a senior
member of the IEEE.

Bharadwaj Veeravalli received the BSc de-
gree in physics, from Madurai-Kamaraj Univer-
sity, India in 1987, the master's degree in
electrical communication engineering from In-
dian Institute of Science, Bangalore, India in
1991 and the PhD degree from the Department
of Aerospace Engineering, Indian Institute of
Science, Bangalore, India in 1994. He did his
postdoctoral research in the Department of
Computer Science, Concordia University, Mon-
treal, Canada in 1996. He is currently with the Department of Electrical
and Computer Engineering, Communications and Information Engi-
neering (CIE) division, at The National University of Singapore, as a
tenured associate professor. Currently, he is serving the editorial board
for IEEE Transactions on SMC-A, and Multimedia Tools & Applica-
tions, as an associate editor. His main stream research interests
include, multiprocessor systems, cloud/cluster/grid computing, sche-
duling in parallel and distributed systems, bioinformatics & computa-
tional biology, and multimedia computing. He is one of the earliest
researchers in the field of divisible load theory (DLT). He has
published more than 85 papers in high-quality International Journals
and several papers in international conferences. He had successfully
secured several externally funded projects. He has served the editorial
board of IEEE Transactions on Computers. He is a senior member of
the IEEE and IEEE Computer Society.

Dan Feng received the BE, ME, and PhD
degrees in computer science and technology
from the Huazhong University of Science and
Technology (HUST), China, in 1991, 1994, and
1997, respectively. She is a professor and vice
dean of the School of Computer Science and
Technology, HUST. Her research interests
include computer architecture, massive storage
systems, and parallel file systems. She has
more than 80 publications to her credit in
journals and international conferences, including /EEE Transactions
on Parallel and Distributed Systems (TPDS), JCST, USENIX ATC,
FAST, ICDCS, HPDC, SC, ICS and ICPP. She is a member of the IEEE.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

