
IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, XXXX 2018 1

Optimizing File Systems with a Write-efficient
Journaling Scheme on Non-volatile Memory

Xiaoyi Zhang, Dan Feng, Member, IEEE, Yu Hua, Senior Member, IEEE, and Jianxi Chen

Abstract—Modern file systems employ journaling techniques to guarantee data consistency in case of unexpected system crashes or
power failures. However, journaling file systems usually suffer from performance decrease due to the extra journal writes. Moreover, the
emerging non-volatile memory technologies (NVMs) have the potential capability to improve the performance of journaling file systems
by being deployed as the journaling storage devices. However, traditional journaling techniques, which are designed for hard disks, fail
to perform efficiently in NVMs. In order to address this problem, we propose an NVM-based journaling scheme, called NJS. The basic
idea behind NJS is to reduce the journaling overhead of traditional file systems while fully exploiting the byte-accessibility
characteristic, and alleviating the slow write and endurance limitation of NVM. Our NJS consists of four major contributions: (1) In order
to decrease the amount of journal writes, NJS only needs to write the metadata of file systems and over-write data to NVM as
write-ahead logging, thus alleviating the slow write and endurance limitation of NVM. (2) NJS adopts a wear aware strategy for NVM
journal block allocation to provide wear-leveling, thus further extending the lifetime of NVM. (3) We propose a novel journaling update
scheme in which journal data blocks can be updated in the byte-granularity based on the difference of the old and new versions of
journal blocks, thus fully exploiting the unique byte-accessibility characteristic of NVM. (4) NJS includes a garbage collection
mechanism that absorbs the redundant journal updates, and actively delays the checkpointing to the file system. Evaluation results
show the efficiency and efficacy of NJS. For example, compared with Ext4 with a ramdisk-based journaling device, the throughput
improvement of Ext4 with our NJS is up to 131.4%.

Index Terms—Non-volatile memory, journaling, consistency, file system.

F

1 INTRODUCTION

JOURNALING techniques have been widely used in mod-
ern file systems due to offering data consistency for

unexpected system crashes or power losses [1]. In general,
the basic idea of a journaling technique is that, a file system
first logs updates to a dedicated journaling area, called
write-ahead logging, and then writes back the updates to the
original data area, called checkpointing. If a system crash
occurs, the consistent data are kept either in the journaling
area or in the original file system. However, the performance
of a journaling file system deteriorates significantly due to
the extra journal writes. For example, the write traffic of
Ext4 with journaling is about 2.7 times more than that with-
out journaling [2]. Therefore, how to reduce the journaling
overhead is an important problem to improve the file system
performance.

Recently, the emerging Non-Volatile Memory (NVM)
technologies have been under active development, such
as Spin-Transfer Torque Magnetic RAM (STT-MRAM) [3],
Phase Change Memory (PCM) [4], ReRAM [5] and 3D-
XPoint [6]. NVMs synergize the characteristics of non-
volatility as magnetic disks, and high random access speed
and byte-accessibility as DRAM. Such characteristics allow
NVMs to be placed on the processor’s memory bus along
with conventional DRAM, i.e., hybrid main memory sys-
tems [7]. NVM offers an exciting benefit to applications:

• X. Zhang, D. Feng, Y. Hua and J. Chen are with Wuhan National Lab-
oratory for Optoelectronics, School of Computer Science and Technology,
Huazhong University of Science and Technology, Wuhan 430074, China.
E-mail: {zhangxiaoyi, dfeng, csyhua, chenjx}@hust.edu.cn

The preliminary version appears in the Proceedings of the 35th IEEE Interna-
tional Conference on Computer Design (ICCD), 2017, pages: 57-64.

applications can directly access persistent data in main
memory via fast load/store instructions [8]. It is predicted
that NVMs will have the potential to play an important role
in computer memory and storage systems [9], [10]. Howev-
er, due to expensive price and limited capacity, NVMs can
not be used as a standalone persistent storage medium and
will co-exist with HDDs and SSDs in storage systems in the
near future. For instance, some previous research works use
NVMs to store hot data (e.g., data cache [2], [11]) or critical
data (e.g., file system metadata [12]) of storage systems. In
this way, NVMs play an important role in improving system
performance in a cost-effective way.

NVMs provide a new opportunity to reduce the journal-
ing overhead of traditional file systems. However, simply
replacing SSDs or HDDs with NVMs in building journal-
ing storage device needs to address new challenges. First,
for traditional journaling schemes, the software overheads
caused by the generic block layer will become the perfor-
mance bottleneck because these overheads are not ignorable
compared with the low access latency of NVMs [13]. Second,
NVMs have relatively long write latency and limited write
endurance [4], [5]. If NVMs are simply used as journaling
storage devices in traditional journaling schemes, the write
performance and endurance of NVMs will be inefficient due
to the heavy journal write traffic. Third, the characteristic of
byte-accessibility of NVM is not well explored and exploit-
ed in traditional journaling schemes. Traditional journaling
schemes need to write an entire block to the journaling area
even though only a few bytes of the block are modified,
which causes a write amplification problem and further
degrades the overall system performance [14].

In order to quantify the overhead of traditional jour-



IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, XXXX 2018 2

naling schemes, we measured the throughput of Ext4 with
and without journaling scheme under different workloads
in Filebench [15]. Details about the experimental environ-
ment are described in Section 4.1. As shown in Fig. 1,
the throughput of Ext4 with data journal mode on HDD is
41.9% and 43.8% slower than its non-journaling mode under
Filesever and Varmail workloads, respectively. Even if we
switch the journaling storage device from slow HDD to fast
NVM (Ramdisk), the throughput of Ext4 with journaling on
ramdisk is only 11.7% and 12.1% faster than that on HDD.
These results indicate that traditional journaling schemes
fail to perform efficiently in NVMs. Therefore, we consider
highly-efficient journaling schemes for NVMs.

Workloads

N
o
rm

a
li

ze
d

T
h

ro
u

g
h

p
u

t

Fileserver Varmail

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
Journal on HDD

Journal on Ramdisk

No Journal

Fig. 1: Overhead of Traditional Journaling Schemes.

To this end, we present an NVM-based journaling
scheme, called NJS, which can be used in traditional file
systems to guarantee strict consistency and reduce the jour-
naling overhead. The main contributions of our NJS can be
summarized as follows:

• In order to alleviate the slow write and endurance
limitation of NVM, NJS decreases the amount of jour-
nal writes. In the process of transaction committing,
only the metadata of file systems and over-write data
are written to NVM as write-ahead logging, and the
append-write data blocks are directly issued to the
file system.

• To avoid localized writes to the NVM-based journal-
ing area, NJS adopts a wear aware strategy for NVM
journal block allocation. NJS keeps a list of free NVM
journal blocks in DRAM. The block with the least
number of write counts in the free list is assigned
during the process of transaction committing. The
proposed block allocation strategy allows each NVM
journal block to be evenly worn out and further
extends the lifetime of NVM.

• In our NJS, a byte-level journaling update scheme
is proposed to allow a journal block to be updated
at the byte granularity by computing the difference
between the old and new versions of the same
journal block. In order to protect the latest version
of journal block from being modified, we maintain
an extra previous version (the one just before the
latest) for each journal block. When a journal block
is written to NVM, if the previous version exists,
instead of writing another entire block, NJS only
writes the differentiated bytes (i.e. delta) between
the updating and the previous version to the pre-
vious version block. Thus, NJS exploits the unique
byte-accessibility characteristic of NVM and further
reduces the journal writes to NVM.

• When the NVM-based journal space is nearly full, we
propose a garbage collection scheme, which recycles
the redundant versions of the same journal block
and delays the checkpointing to the file system. The
redundant journal updates are absorbed, thus the
writes to the file system can be reduced. In this way,
the file system performance is improved.

The remainder of this paper is organized as follows.
Section 2 provides the background of NVM, existing con-
sistency and journaling techniques. Section 3 presents the
design and detailed implementations. Experiment results
are presented in Section 4. Related work is discussed Section
5 and we conclude the paper in Section 6.

2 BACKGROUND

2.1 Consistency and Journaling for File Systems
File system consistency can be categorized into three levels,
including metadata consistency, data consistency, and version
consistency [16]. Specifically, metadata consistency guarantees
that the metadata structures of file systems are entirely
consistent with each other. It provides minimal consistency.
Data consistency has the stronger requirement than metadata
consistency. In data consistency, all data that are read by a file
should belong to this file. However, the data possibly belong
to an older version of this file. Version consistency requires
the metadata version to match the version of the referred
data compared with data consistency. Version consistency is
the highest level of file system consistency.

Journaling techniques provide the consistency for file
systems. According to the contents written to the journaling
area, there are three journaling modes [1]:

The Writeback Mode: In this mode, only metadata
blocks are written to the journaling area without order
constraints. This mode only provides metadata consistency.

The Ordered Mode: Like the writeback mode, only
metadata blocks are written to the journaling area in this
mode. However, data blocks written to their original areas
are strictly ordered before metadata blocks are written to
the journaling area. Since append-write does not modify
any original data, version consistency can be guaranteed. But
for over-writes, the original data may be partially modified
after system reboots. Thus, the ordered mode only provides
data consistency.

The Data Journal Mode: In this mode, both metadata
and data are written to the journaling area and version
consistency is guaranteed. However, this mode suffers from
significant performance degradation since all the data are
written twice.

In fact, the ordered mode is the default journaling mode
in most journaling file systems (e.g., Ext3, Ext4) for perfor-
mance reasons. Hence, in order to meet the needs of data
integrity in storage systems, it is important to obtain version
consistency in a cost-efficient manner.

2.2 Non-volatile Memory Technologies
In recent years, computer memory technologies have e-
volved rapidly. The emerging non-volatile memory tech-
nologies, e.g., PCM, STT-MRAM, ReRAM and 3D-XPoint,
have attracted more and more attentions in both academia



IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, XXXX 2018 3

and industry [17], [18]. The key attributes and features of
these NVM technologies are listed in Table 11 [9], [10], [17],
[18]. Among current NVM technologies, PCM is mature and
more promising for volume production [19] and attracts lots
of research efforts from devices to architectures and systems
[4], [20], [21].

TABLE 1: Characteristics of Different Memory Techniques

Techniques DRAM PCM RRAM STT-MRAM
Read speed(ns) 10 20∼85 10∼20 5∼15
Write speed(ns) 10 150∼1000 100 10∼30
Scalability(nm) 40 5 11 32

Endurance 1018 108 1010 1012∼1015

From the table, we observe that different NVMs have
similar limitations. First, NVMs have the read/write perfor-
mance asymmetry. Specifically, write speed is much slower
(i.e., 3-8X) than read speed [4], [5]. Second, NVMs generally
have limited write cycles, e.g., 108 times for PCM [4], 1010

times for ReRAM [5]. Actually, our design of reducing
journal writes can alleviate the aforementioned two limita-
tions simultaneously. To extend the lifetime of NVMs, wear-
leveling techniques have been proposed [22]. Although our
NJS does not employ an explicit wear-leveling scheme, we
adopt a wear aware strategy for block allocation, which can
be combined with the design of reducing journal writes to
further lengthen NVM’s lifetime.

2.3 Data Consistency in NVM
When NVM is directly attached to the processor’s memory
bus, the consistency of data updates to NVM must be
ensured during the memory operations [23]. In general,
the atomicity unit of NVM is very small (8 bytes for 64-
bit CPUs) [24]. The updates with larger sizes must adopt
logging or copy-on-write mechanisms which require the
memory writes to be in a correct order [25]. Unfortunately,
in order to improve the memory performance, modern pro-
cessors and their caching hierarchies usually reorder write
operations on memory. And the reordering writes possibly
induce data inconsistency in NVM when a power failure
occurs [8]. In order to address the data consistency problem,
today’s processors provide instructions such as mfence and
clflush to enforce write ordering and explicitly flush a CPU
cacheline. However, these instructions have been proved
to be significantly expensive, and the overhead of these
instructions is proportional to the amount of writes [26].
Thus, NVM systems should be designed to reduce writes.

3 DESIGN AND IMPLEMENTATIONS

In this section, we present the design and implementation
details of our NJS.

3.1 Overview
Fig. 2 illustrates the workflow overview of a journal write
request among the file system, buffer cache, and NVM-
based journaling area in NJS. For each updated data block
in the write request, if the update is an append-write, the

1. The parameters in the table are not strict, but give an overall
concept of the characteristics.

data block is directly written to the file system. Moreover, if
the update is an over-write, the data block is written to the
NVM-based journaling area. The updated metadata blocks
are also written to the NVM-based journaling area. When
the free space size of the journaling area is low, garbage
collection is invoked to free invalid journal blocks. If the
free journal space is still lower than a predefined threshold
after garbage collection or the periodical checkpointing time
interval arrives, the latest version of valid journal blocks in
the NVM-based journaling area are written back to the file
system. When the system is rebooted due to unexpected
crashes, the information in the NVM-based journaling area
is validated and the valid journal blocks are restored.

Fig. 2: The overall architecture of NJS.

3.2 NVM Data Structures and Space Management

Fig. 3 shows the space management and corresponding data
structures used in the NVM-based journaling area. There
are three types of structures: superblock, journal header and
journal block. The superblock is followed by static journal
headers and dynamically allocated journal blocks.

Superblock records the global information of the NVM-
based journaling area. Two kinds of global information
are kept in superblock: (1) the statistical information of the
journaling space, e.g., the total amount of journal blocks;
and (2) the pointers that mark the transactions and define
the boundaries of logical areas described later in this section.

Journal header acts as the metadata of journal block.
Each 16-byte journal header matches a 4KB journal block. As
illustrated in Fig. 3, the leftmost 8 bits contain 3 flag bits,
which are used to label the attributes of journal block. The
f bit is used to label whether the matched journal block is
free (‘0’) or occupied (‘1’). The v bit is used to label whether
the matched journal block is invalid (‘0’) or valid (‘1’). The
l bit is used to label whether the matched journal block is
the old version (‘0’) or latest version (‘1’). The remaining
120 bits are divided into four fields equally, which contain
the journal header number (jh number), the write count of
the matched journal block (write count), the journal block
number (j blocknr) and the corresponding file system block
number (fs blocknr).

To improve the search efficiency, the version information
(old/latest) of the journal block is kept in a hash table in
DRAM (described in Section 3.5). We reserve 256 journal
headers, the total size equals to a journal block. The journal
headers in this region do not match any journal blocks and
are used to store persistent journal header copies during
journal block swap operation (described in Section 3.3).



IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, XXXX 2018 4

Journal block is used to store journal data blocks. All the
accesses to a journal block are handled via the journal block
number (i.e., j blocknr) kept in its corresponding journal
header. NJS maintains a list of free blocks in DRAM for
journal block allocation.

Fig. 3: NJS data structures layout and space management.

Logically, we divide the journal blocks into three areas:
checkpoint area, commit area, and free area, as shown in Fig.
3. The pointers (e.g., p commit, p checkpoint) in the superblock
are used to define the boundaries of these areas. The journal
headers in each area are contiguous.

Checkpoint area: In this area, all the journal blocks
belong to previous transactions which have been committed
successfully. These journal blocks can be checkpointed to
their original locations and they are in the consistent state.
Pointer p first points to the first block of this area. Pointer
p checkpoint points to the last block of this area. Since all the
blocks in this area are needed to be searched and checked
during checkpointing or recovery process, NJS keeps the
blocks in this area contiguous to improve the search ef-
ficiency. Otherwise, extra data structures (e.g., linked list)
are needed to be maintained in NVM while traversing the
journal blocks in this area. However, the journal blocks in
this area may be not contiguous due to the block swap
operations (described in Section 3.3). As all the accesses to
a journal block are handled via its corresponding journal
header, NJS keeps the journal headers contiguous instead of
the journal blocks in this area, as shown in Fig. 3.

Commit area: The journal blocks in this area belong to
the current committing transaction. Pointer p commit always
points to the last block written to the NVM-based journal
area. After the current committing transaction has been
committed, the journal blocks in this area enter into check-
point area. During the system recovery process (described
in Section 3.7), the journal blocks in this area should be
discarded. Like checkpoint area, the journal headers of the
journal blocks in this area are contiguous.

Free area: The blocks in this area are used to store journal
data blocks. NJS maintains a list of free journal blocks in
DRAM for allocation. Pointer p first free points to the first
block of this area, which is the block just after p commit
points to. When committing a journal block to the NVM-
based journaling area, the journal block is written to the
first block of free area.

3.3 Wear Aware Strategy for Journal Block Allocation

Write endurance is a crucial problem in NVM-based storage
systems. Besides reducing the write traffic to NVM, allow-
ing all the blocks in NVM to be worn out evenly is also
important.

In order to avoid localized writes to the NVM-based
journaling area, NJS adopts a wear aware strategy for NVM
journal block allocation. NJS keeps a list of free journal
blocks in DRAM, and uses a red-black tree to keep the
free list sorted by write count. We choose red-black tree
because it has fast search, insert and delete speeds. Before
committing a journal block to the NVM-based journaling
area, NJS assigns a block with the least number of write
counts among the journal blocks in the free list. Actually,
the least write count block is possibly not the first block of
free area, NJS swaps the least write count block with the
first block of free area. To better present the swap operation
during allocation, we give an illustration as shown in Fig.
4. The number in the block represents the write count. The
write count of the current first block of free area is 6, which is
not the least write count. Thus we swap the first block with
the least write count block whose write count is 2. After
the swap operation, pointer p first free points to the least
write count block 2, and the committed journal block can
be written to this block. After committing, the write count
is increased from 2 to 3. The least write count block 2 is
removed from the red-black tree. By using the wear aware
allocation strategy, each block in the NVM-based journaling
area can be evenly worn out, and the contiguities of commit
area and checkpoint area are maintained.

Fig. 4: An illustration of the swap operation during alloca-
tion. The number in the block represents the write count.

As each journal block is matched with a journal header,
the swap operation is implemented by switching the match
information in the corresponding journal headers instead
of copying the contents of the journal blocks. For example,
journal header A matches journal block A and journal head-
er B matches journal block B before the swap operation.
After the swap operation, journal header A matches journal
block B and journal header B matches journal block A.
Besides the journal block number, the write count and the
corresponding file system block number are also switched
during the swap operation. Since free journal blocks have



IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, XXXX 2018 5

the same attributes, it is not necessary to switch the flag
bits. Note that the journal header numbers are not switched.
In order to guarantee the consistency of journal headers,
the modifications of journal headers are performed in the
copy-on-write manner by storing the persistent copies in the
reserved journal header region (described in Section 3.2).

3.4 Transaction Commit Process in NJS
In order to decrease the amount of journal writes to NVM,
we redesign the process of transaction committing, in which
only the metadata and over-write data blocks are written to
NVM as write-ahead logging, while the append-write data
blocks are directly issued to the file system. This technique
of differentiating over-writes from append-writes first ap-
pears in [27], but it is used in the traditional journaling
scheme. We synergize this technique in an NVM-based
journaling scheme. In our NJS, eliminating append-writes
to NVM can alleviate the slow write and the endurance
limitation of NVM.

Fig. 5: Transaction commit process in NJS.

As illustrated in Fig. 5, each transaction in NJS contains
two linked lists: one for append-write data blocks, and the
other for over-write and metadata blocks. The transaction
commit process is executed according to the following steps:
(1) When the transaction commit process starts, Running
Transaction is converted to Committing Transaction. Mean-
while, Running Transaction is initialized to accept newly
updated blocks. (2) The data blocks in the append-write
list of Committing Transaction are directly written to the
file system through block interface. (3) The over-write data
blocks and the modified file system metadata blocks are
written to NVM-based journaling area through memcpy.
Pointer p commit always points to the last block written to
the journal space. In order to guarantee the persistence of
the journal writes to NVM, when a memcpy finishes, the
corresponding cachelines should be flushed (clflush) along
with memory fence (mfence) instruction. (4) After all the
append-write data blocks and over-write data/metadata
blocks have been persisted to the file system and NVM-
based journaling area, p checkpoint is updated to the block
p commit pointed to by an 8-byte atomic write followed
by clflush and mfence instructions to indicate Committing
Transaction commits successfully.

3.5 Byte-level Journal Update Scheme
As mentioned before, we need to fully consider the byte-
accessibility characteristic of NVM while reducing the jour-
naling overhead. Thus, NJS includes a byte-level journal
update scheme that a journal block can be in-place updated
based on the delta, which is computed based on the differ-
ence of the old and new versions of the journal block.

Since over-write data and metadata blocks store in the
NVM-based journaling area, these blocks may be updated
again in a very short time due to the workload locality. Par-
ticularly, metadata blocks are accessed and updated more
frequently than data blocks [12]. Thus different versions of
the same block possibly exist in NVM, and the difference
(i.e. delta) between the different versions can be as small as
several bytes according to the content locality [28], e.g., an
update to an inode or a bitmap. Based on this observation,
when a journal block has to be updated, for the frequently
updated journal blocks in NJS, we only write the modified
bytes (i.e. delta) to the existing journal block instead of
writing another entire block. This update scheme not only
leverages the byte-accessibility characteristic of NVM, but
also further reduces the journal writes to NVM.

However, we can not directly write the delta to the latest
version of journal block. If a system crash occurs during
the update process, the latest version of journal block may
be partially updated. In this case, the data consistency is
compromised. Therefore, an old version is maintained for
each journal block in addition to the latest version. We
hence write the delta to the old version of journal block to
complete the update. In order to improve search efficiency,
the version information of journal block is kept in a hash
table, as shown in Fig. 6. As the hash table is only used to
improve the search efficiency, and the version information is
also maintained in the corresponding journal headers (e.g.,
valid/invalid, old/latest), we keep the hash table in DRAM,
instead of persistent NVM. The hash table consists of a table
head array and some entry lists. The unit of the table head
array is called hash slot. In each hash slot, the content is
an address that points to an entry list. Each entry has the
following items:

blocknr: the logical block number of the file system.
old: the address of the journal header of the old version

journal block.
latest: the address of the journal header of the latest

version journal block.
next: the pointer to the next item in the entry list.

Fig. 6: Hash table for improving search efficiency.

When committing a journal block to the NVM-based
journaling area, we first search the corresponding hash slot
by hashing the logical block number of that journal block,
then search the entry list in the slot. There are three cases:



IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, XXXX 2018 6

(1) Neither the old version nor the latest version exists.
It means that this journal block is a new block. In this case,
the committing journal block is directly written to the first
block of free area. We allocate a new entry in the entry list,
and add the journal header of this block to latest item. Then
the journal block is tagged as the latest version.

(2) We find this block in the entry list and only latest item
contains the journal header of this block. It implies that the
latest version exists but the old version does not exist. In
this case, the committing journal block is still written to the
first block of free area directly. The existing latest version of
the block is tagged as the old version and the journal header
is added to old item. The committing journal block is tagged
as the latest version and the journal header of this block is
added to latest item.

Fig. 7: An example of byte level update scheme.

(3) We find this block in the entry list and both latest
item and old item contain journal headers. This implies that
we can write the delta to the existing old version of journal
block instead of writing another entire block. In this case,
the old version of journal block is possibly in checkpoint
area due to being committed to NVM earlier in previous
transactions. In our design, the transaction commit process
is performed in commit area, and all the journal blocks in
checkpoint area should be kept in the consistent state. To
avoid directly modifying journal block in checkpoint area,
we swap out the old version of journal block with the cur-
rently least write count free block (p first free) before writing
the target journal block to the NVM-based journaling area.
For example, as shown in Fig. 7, block A is contained in the
committing transaction. The committing version is A3. The
latest version A2 and the old version A1 exist. The update
process of A is executed according to the following steps: 1)
Before writing A3 to NVM, the old version A1 is swapped
out with the currently least write count free block, and the
free block exchanged to checkpoint area is tagged invalid. 2)
The difference (block D) between A3 and A1 is calculated.
D(i) represents the i-th byte of block D. If D(i) is not all zero
bytes, the i-th byte of A3 and A1 is different. 3) A1 is in-place
updated to A3 with D. Only the different bytes between A3

and A1 are written. 4) A3 is tagged to the latest version,
A2 is tagged to old version, and the corresponding version
information in the hash table is updated.

Even though there are extra overheads in the proposed
journal update technique, such as search on the hash table,

a read operation on journal block before writing and XOR
calculation overhead. The experimental results in Section 4.3
prove that these overheads are negligible compared with the
reduction of journal writes.

3.6 Garbage Collection and Checkpointing in NJS
In traditional journaling schemes, checkpointing is per-
formed when the free journal space is lower than a prede-
fined threshold. Due to writing journal blocks to slow HDDs
during checkpointing, frequently checkpointing operations
cause significantly high latency.

In our NJS, as invalid blocks exist in the NVM-based
journaling area, we propose a garbage collection mechanism
to recycle the invalid blocks. When the free journal space
is lower than a predefined threshold, garbage collection is
performed before checkpointing.

As shown in Fig. 8, the garbage collection process is
executed as follows: (1) Before garbage collection begins,
pointer first points to the first block of checkpoint area and
last points to the last block of checkpoint area. (2) When
garbage collection starts, the state of each journal block
is examined, 1) if the block first pointed to is valid, first
advances to the next journal block; 2) if the block last pointed
to is invalid, last retreats to the previous journal block; 3)
if the block first pointed to is invalid and meanwhile the
block last pointed to is valid, the two blocks are swapped.
Then pointer first advances to the next journal block and
last retreats to the previous journal block. (3) When first and
last point to the same block, all the invalid journal blocks
have been swapped out successfully. Pointer p checkpoint is
updated to the last valid block by an 8-byte atomic write
followed by clflush and mfence instructions, which indicate
the garbage collection process finishes. (4) After the garbage
collection process finishes, the recycled invalid blocks are
inserted into the free list.

Fig. 8: Garbage collection process in NJS.

If the free journal space is still lower than a predefined
threshold after garbage collection or the periodical check-
pointing time interval arrives, the latest version of valid
journal blocks in checkpoint area are written back to the file
system. In traditional journaling file systems, journal data
blocks are stored in slow HDDs. It is necessary to maintain
checkpointing transactions in DRAM. Checkpointing must
be performed periodically to keep the data in the file system
up-to-date and prevent the journal from growing too large.
In our NJS work, journal blocks are stored in fast NVM
which co-exists with DRAM at memory level. The up-to-
date journal data blocks can be checkpointed directly from



IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, XXXX 2018 7

NVM to their original locations. Thus, it is not necessary to
maintain checkpointing transaction in DRAM. As append-
write data blocks have been synchronized to the file system,
only the over-write data blocks and metadata blocks are
needed to be written to their original locations.

As illustrated in Fig. 9, the checkpointing process is exe-
cuted as follows: (1) From the first block (pointer p first) to
the last block (pointer p checkpoint), all of the journal blocks
in checkpoint area are checked, only the latest valid journal
blocks are synchronized to the file system. (2) After that,
all of the journal blocks in the NVM-based journal area are
marked invalid and another round of the garbage collection
process is performed. Then all of the corresponding block
entries in the hash table are deleted, and the recycled blocks
are inserted into the free list.

Fig. 9: Checkpointing process in NJS.

By using the proposed journal update and garbage
collection schemes, the redundant journal updates can be
absorbed, the NVM-based journaling area can store more
journal blocks, the process of checkpointing is delayed.
Therefore, checkpointing is triggered less frequent and the
writes to the file system are reduced. Moreover, some ran-
dom writes can be merged into sequential ones during
garbage collection and checkpointing process. In this way,
the file system performance can be further improved.

3.7 System Recovery
As file systems are possible to be in an inconsistent state
only when system crashes occur during data updating, we
classify the possible cases into two scenarios.

First, a system crash occurs during a commit operation.
In this case, the current committing transaction is possible
not to completely committed, including the append-write
data to the file system and journal blocks to NVM. As
append-writes do not modify any original data, they will
not compromise the file system consistency. In order to
restore to the last consistent state, NJS scans the whole
NVM-based journaling area. While scanning the journaling
area, NJS reconstructs the hash table and the free block
list by using the version information and write count kept
in journal headers. The journal blocks in commit area are
discarded due to partially committed. The latest version of

valid journal blocks in checkpoint area are written to their
home locations in the file system. After all the latest version
of valid journal blocks have been synchronized to their
home locations, the file system recovers to the last consistent
state that the last transaction is committed successfully.

Note that system crashes possibly occur during the swap
operation (e.g., byte-level update, garbage collection). As
the modifications of journal headers are performed in the
copy-on-write manner by storing the persistent copies in the
reserved journal header region, the journal headers in the
reserved region also need to be scanned while scanning the
whole journaling area. If the reserved region is not empty,
the persistent journal header copies should be recovered to
their home location by using their journal header numbers.
After that, NJS continues to synchronize the latest version
of valid journal blocks in checkpoint area to their home
locations to finish the recovery process.

In the second scenario, a system crash occurs during a
checkpoint operation. In this case, the journal blocks in the
NVM-based journal space are partially reflected to the file
system. However, the journal blocks still remain in NVM
and are in consistent state. NJS restores the file system to
the consistent state by simply replaying the journal blocks
to their original locations in the file system again.

4 PERFORMANCE EVALUATION

In this section, we evaluate the performance of our NJS and
answer the following questions:

(1) How does NJS perform against traditional journaling
schemes and other journaling schemes on NVM?

(2) What are the benefits of the byte-level journal up-
date scheme, the garbage collection mechanism and eliminating
append-write to NVM?

(3) How is NJS sensitive to the variation of the NVM write
latency size and the NVM-based journaling space size?

(4) How does NJS address the endurance problem of NVM?
We first describe the experimental setup and then evalu-

ate NJS with different benchmarks.

4.1 Experimental Setup

We implement a prototype of NJS on Linux 3.12 and inte-
grate it into Ext4 file system. The configurations of the server
are listed in Table 2. Since NVM is not yet commercially
available, we develop a simple NVM simulator based on the
simulator used in the open source project Mnemosyne [29]
to evaluate our NJS’s performance. Like previous research
works on NVM [7], [24], [29], we introduce extra latency
in our NVM simulator to account for NVM’s slower writes
than DRAM. We prototype NJS with the characteristics of
PCM because it is mature and more promising for commer-
cial deployment [19], and our simulator can be also used in
other NVMs. In our experiments, we set NVM latency to
300ns by default [7], [24]. Besides the write latency, we set
the write bandwidth of NVM to 1GB/s, about 1/8 of the
DRAM’s bandwidth [7], [24]. The default capacity of NVM
we use in NJS is 128MB as it is the default journal size value
in Ext4 file system.

We evaluate the performance of our NJS against three
existing journaling schemes listed in Table 3. For fairness,



IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, XXXX 2018 8

the ramdisk used in JBD2 has the same parameters with
the above NVM performance model. The journaling mode
of Ext4 is set to data journal, which logs both data and
metadata, to provide version consistency like NJS. For the
recently proposed work FGM [14], although it focus on
metadata journaling and only provide data consistency, it
is closely related with our work and we add it into the
evaluation comparison. The commit interval is set to 5
seconds according to the conventional configurations. In
NJS, garbage collection is performed when three fourths of
journal space is filled, and checkpoint is either triggered by a
5-minute timer or the utilization of the journaling area being
over 75% after garbage collection.

TABLE 2: Server Configurations

CPU Intel Xeon E5-2620, 2.0 GHz
CPU cores 12
Processor cache 384KB/1.5MB/15MB L1/L2/L3 cache
DRAM 8GB
NVM Emulated with slowdown, the write latency

is 300 ns, the write bandwidth is 1 GB/s
HDD WD 1TB, 7200-RPM
Operating system CentOS 6.5, kernel version 3.12.0

TABLE 3: Existing Journaling Schemes for Comparison

JBD2 on NVM Traditional journaling scheme in Ext4 file sys-
tem built on ramdisk

FGM [14] Fine-grained metadata journaling on NVM, a
recently proposed journaling scheme on NVM

No Journal Ext4 file system without journaling

Three well-known and popular storage benchmarks are
used to measure the performance of our NJS work: IOzone
[30], Postmark [31], and Filebench [15]. The main parameters
of the workloads used in our experiments are shown in
Table 4.

TABLE 4: Parameters of Different Workloads

Workloads R/W Ratio # of Files File Size Write Type

Sequential write Write 1 8GB Append-write
Re-write Write 1 8GB Over-write

Random write Write 1 8GB Over-write
Postmark 1:1 10K 1KB∼1MB Append-write
Fileserver 1:2 50K 128KB Append-write
Varmail 1:1 400K 16KB Append-write

The purpose of NJS is to reduce the journaling overhead
of traditional file systems, we only choose Fileserver and
Varmail in Filebench, because these two workloads contain
a large proportion of write operations.

4.2 Overall Performance

In synthetic workloads, we use Sequential write, Re-write
and Random write scenarios in IOzone benchmark to eval-
uate the throughput performance. As shown in Fig. 10 (a),
NJS outperforms JBD2 on NVM by 23.2%, 52.1% and 131.4%
in Sequential write, Re-write and Random write scenarios
respectively. In Sequential write, all writes are append-write,
and only metadata blocks are written to NVM. The propor-
tion of metadata is very small because IOzone benchmark
only has a single large file in the evaluation. Thus the
function of journaling reduction and delayed checkpointing

in NJS can not be fully leveraged. In Sequential write, the
throughput of NJS is nearly equal to FGM. Similarly, the
proposed journaling scheme in FGM can not be well lever-
aged in this case. In Re-write and Random write scenarios,
all writes are over-write, both metadata and data blocks
are written to NVM, and NJS even performs better than
No Journal. Although NJS has one more copy compared
with No Journal, the extra copy is on fast NVM. Moreover,
under the proposed journal update and garbage collection
schemes in our NJS, checkpointing is delayed and can be
triggered less frequent. The disk writes to the file system
are reduced, and some random writes can be merged into
sequential ones, which are preferred in disk I/O. Therefore,
NJS performs better than No Journal, especially in Random
write due to the long seek latencies of HDDs. In Re-write
and Random write scenarios, our NJS performs better than
FGM consistently. In these two scenarios, FGM still only
writes metadata blocks to NVM as write-ahead logging. In
our NJS, although both metadata and data blocks are written
to NVM, the proposed garbage collection scheme can reduce
the frequency of checkpointing and merge some random
writes into sequential ones.

Fig. 10: Overall Throughput of Different Workloads.

In macro workloads, we use Postmark, Fileserver and
Varmail to evaluate the throughput performance. Fig. 10 (b)
shows the throughput performance comparison of JBD2 on
NVM, FGM, NJS and No Journal. As shown in the figure,
NJS exhibits better than JBD2 on NVM by 50.3%, 40.2% and
45.3% in Postmark, Fileserver and Varmail respectively. In
these benchmarks, all the writes are append-write, and for
NJS, only metadata blocks need to be logged to NVM. Large
amounts of journal writes can be eliminated. For JBD2 on
NVM, although all the updates are written to the ramdisk-
based journal device, the software overheads caused by the
generic block layer are still non-trivial. We notice that NJS
still outperforms FGM consistently. This is because our NJS
leverages a garbage collection mechanism which can reduce
the frequency of checkpointing and the writes to the file
system.

4.3 Effect Analysis in NJS
In this section, we evaluate the effect of the byte-level
journal update scheme, the garbage collection mechanism
and eliminating append-write to NVM on our NJS.

Effect of the Byte-level Journal Update Scheme
The proportion of the difference between the old and

new versions of journal blocks can affect the performance.
We add another run of Re-write test while changing the
proportions of differences from 0% to 100%. And we add
NJS without the byte-level journal update scheme (referred



IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, XXXX 2018 9

as NJS-no-BJ) into the comparison. Fig. 11 (a) shows the
results normalized to the throughput of JBD2 on NVM.
NJS achieves the performance improvement of up to 19.4%,
and 10.2% on average compared with NJS-no-BJ. It is clear
that the more similar the contents of the two blocks are,
the more performance improvement can be achieved. In
100% case, which is the worst case, the throughput of NJS
is a bit (under 1%) less than that of NJS-no-BJ. The reason
is that, in this case, NJS has to update the entire block
like NJS-no-BJ with some extra overheads mentioned in
Section 3.5, thus these overheads are negligible. Actually,
the differences between new and old versions are usually
very small due to workload locality. The worst case hardly
appears. Furthermore, we observe that even in 100% case,
NJS still performs better than JBD2 on NVM by 27.8%. This
is because garbage collection plays an important role in
improving the performance.

Fig. 11: Effect of the Byte-level Update Scheme.

In order to evaluate the journal write reductions from the
byte-level journal update scheme, we measure the journal
write amounts of Postmark, Fileserver and Varmail. Fig. 11
(b) shows the results normalized to JBD2 on NVM. It is clear
that both NJS-no-BJ and NJS gain significantly journal write
reductions compared with JBD2 on NVM. This is because all
the writes in Postmark, Fileserver and Varmail are append-
write and the data journal writes can be eliminated. Specifi-
cally, NJS reduces the journal write amount by 41.7%, 30.3%
and 45.4% in Postmark, Fileserver and Varmail respectively
compared with NJS-no-BJ. The byte-level journal update
scheme further reduces the journal writes. We observe that
the amount of journal write reduction in Fileserver is less
than that in Postmark and Varmail. The reason is that
Postmark and Varmail are metadata intensive workloads,
the proportion of metadata in Postmark and Varmail are
higher than that in Fileserver, thus the byte-level journal
update scheme reduces more journal writes.

Effect of the Garbage Collection Scheme
To evaluate performance gains from the garbage collec-

tion mechanism, we test the throughput of NJS, NJS with-
out the function of garbage collection (referred as NJS-no-
GC) and JBD2 on NVM under the aforementioned macro-
benchmarks. Fig. 12 (a) shows the results normalized to
the throughput of JBD2 on NVM. NJS performs better
than NJS-no-GC by 30.7%, 19.8% and 28.6% in Postmark,
Fileserver and Varmail respectively. The results indicate that
the function of garbage collection plays an important role in
improving the performance. Note that the improvement in
Fileserver is less than that in Postmark and Varmail. The
reason is that Postmark and Varmail are metadata intensive
workloads, the proportion of metadata in Fileserver is lower

than that in Postmark and Varmail, garbage collection can be
better leveraged in Postmark and Varmail than in Fileserver.

Fig. 12: Effect of Garbage Collection and Eliminating
Append-write to NVM.

Effect of Eliminating Append-write to NVM
To examine the effect of eliminating append-write to

NVM, we evaluate the throughput of NJS, NJS with all of
the data blocks logged to NVM (referred as NJS-all-journal)
and JBD2 on NVM under the aforesaid macro-benchmarks.
Fig. 12(b) shows the results normalized to the throughput of
JBD2 on NVM. In three workloads, NJS-all-journal outper-
forms NJS. But the improvements in Postmark, Filebench
and Varmail are only 7.1%, 6.3% and 7.4%, respectively. The
reason is that, for NJS-all-journal, even though all of the data
are logged to NVM and written back to the file system with
delay, the file system is frozen during garbage collection and
checkpointing step, larger journal results in longer garbage
collection and checkpointing latency. But as shown in Fig. 11
(b), the amount of journal writes in NJS-all-journal is much
more than that in NJS. Therefore, it is not necessary to log
append-write data to NVM.

4.4 Sensitivity Analysis
As the NVM latency and the NVM-based journaling area
size can affect the system performance, we evaluate their
effects on our NJS in this section.

Sensitivity to the NVM Write Latency
As described in Section 2.2, different NVMs have dif-

ferent write latencies. The NVM write latency can affect
the system performance. Fig. 13 (a) shows the throughput
performance of NJS and JBD2 on NVM under the aforesaid
macro-benchmarks as the NVM latency varies from 50ns to
1000ns. As shown in the figure, the throughputs of NJS and
JBD2 on NVM decrease as the NVM latency increases in
all of the three macro-benchmarks. And the throughput of
JBD2 on NVM decreases more severely than NJS in all of the
three macro-benchmarks. Moreover, compared with JBD2
on NVM, the performance improvements of NJS increase
as NVM has longer write latency. For instance, NJS exhibits
better than JBD2 on NVM by 43.9%, 45.3%, 48.1% and 52.7%
when the NVM write latency is 50ns, 300ns, 500ns and
1000ns in Varmail. This is because the byte-level journal
update scheme in NJS can reduce journal writes to NVM.
When the NVM write latency increases, the throughput of
NJS deceases slower than JBD2 on NVM. Therefore, NJS
gains more performance benefits as the NVM write latency
increases.

Sensitivity to the NVM Size
The NVM-based journaling area size also has a strong

impact on the system performance. Fig. 13 (b) shows the



IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, XXXX 2018 10

throughput performance of NJS and JBD2 on NVM under
the aforesaid macro-benchmarks as we vary the NVM size
from 128MB to 1GB. From the figure we observe that the
throughputs of NJS and JBD2 on NVM increase as the
NVM size grows in all of the three macro-benchmarks.
This is because when the journal space size becomes larger,
the frequency of checkpointing decreases. Moreover, the
throughput of NJS increases faster than JBD2 on NVM in
all of the three macro-benchmarks. Compared with JBD2 on
NVM, the performance improvements of NJS increase as the
NVM-based journaling area size grows. For instance, NJS
performs better than JBD2 on NVM by 40.2%, 44.7%, 47.7%
and 50.6% when the NVM size is 128MB, 256MB, 512MB and
1GB in Fileserver. The reason is that, as the NVM size grows,
more journal blocks can be stored in NVM, the garbage
collection scheme can be leveraged better. Hence NJS gains
more performance improvements as the NVM size grows.

Fig. 13: Throughput of Different NVM Write Latencies and
NVM sizes.

4.5 Endurance Analysis

Limited write endurance is an important weakness for N-
VMs. A straightforward way to expand the lifetime of NVM
is reducing the write amount. In order to reduce the write
traffic to NVM, deploying a DRAM buffer in front of NVM is
a solution [32]. However, most writes incurred by journaling
are synchronous writes which must be flushed to persistent
storage device immediately. If journal writes are buffered
at volatile DRAM for too long, the file system consistency
will be compromised. In our NJS, eliminating append-write
journal data writes to NVM can reduce the write traffic to
NVM and effectively alleviate the endurance limitation.

To further extend the lifetime of NVM, wear-leveling
techniques [22] are also important. In journaling file sys-
tems, checkpointing is performed periodically to keep the
data in the file system up-to-date. In general, the updates
are committed to the journaling area sequentially from the
first block, checkpointing is triggered when the free journal
space is lower than a predefined threshold or the periodical
checkpoint time interval arrives. In this way, the remaining
free journaling space behind the predefined threshold will
be never accessed. Therefore, a wear-leveling technique is
necessary when NVM is used as journaling storage device.

In order to avoid localized writes to the NVM-based
journaling area, NJS includes a wear aware strategy for
journal block allocation which assigns the least write count
block in the free area while committing a block to NVM. To
understand the effectiveness of NJS’s wear aware allocation
strategy, we collect the write count information of Fileserver
and Varmail at block granularity, like the previous work

[33]. We divide the NVM journal blocks into 128 intervals,
and calculate the total write count in each interval.

Fig. 14: Write Count Distribution of NJS and NJS without
Wear Leveling Scheme.

Fig. 14 shows the write count distribution of NJS and
NJS without wear leveling scheme (referred as NJS-no-WL)
under Fileserver and Varmail. As checkpointing in NJS is
triggered when the free journal space is lower than 25%, the
write counts of the blocks in the last 25% space are 0. More-
over, the blocks in the front 75% are not worn evenly. This
is because NJS adopts a byte-level journal update scheme in
which NJS only needs to write modified bytes to the existing
journal block. The write counts of the frequently updated
journal blocks are more than that of infrequently updated
journal blocks. As shown in the figures, the write counts of
NJS in Fileserver and Varmail are almost evenly distributed
over all intervals. Specifically, the maximum write count of
NJS-no-WL is higher than that of NJS by 47.2% and 55.6% in
Fileserver and Varmail, respectively. These results can prove
the effectiveness of NJS’s wear aware allocation strategy.

Fig. 15: Effect of the Wear Aware Allocation Strategy.

At last we examine the performance impact of the wear
aware allocation strategy. We evaluate the throughput of
NJS, NJS-no-WL and JBD2 on NVM under the aforesaid
macro-benchmarks. Fig. 15 shows the results normalized to
the throughput of JBD2 on NVM. In three workloads, NJS-
no-WL performs better than NJS. Specifically, the improve-
ments in Postmark, Fileserver and Varmail are only 2.4%,
2.1% and 3.6%, respectively. These results indicate that the
overhead of the wear aware allocation strategy is acceptable.
The reason is that, the block swap operation during the
wear aware allocation strategy is implemented by updating
the information in the journal headers of the target journal
blocks instead of simply copying the contents of the journal
blocks. Considering the effectiveness of providing wear-
leveling (the results in Fig. 14), it is necessary for NJS to
adopt the wear aware allocation strategy.



IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, XXXX 2018 11

5 RELATED WORK

5.1 NVM-based File Systems
BPFS [34] uses short-circuit shadow paging technique and
8-byte atomic write to provide consistency. SCMFS [13]
utilizes the existing OS VMM module and maps files to a
large contiguous virtual address, thus reducing the com-
plexity of the file system. Shortcut-JFS [21] is a journaling file
system that assumes PCM as its standalone storage device,
it proposes differential logging and in-place checkpointing
techniques to reduce the journaling overhead. PMFS [24]
is a lightweight POSIX file system designed for persistent
memory, it bypasses the page cache and eliminates the copy
overheads to improve performance. NOVA [7] is a NVM file
system that adopts conventional log-structured file system
techniques to guarantee strong consistency. HiNFS [32] uses
a DRAM buffer to buffer the lazy-persistent file writes
persists them to NVM lazily to hide the long write latency of
NVM in order to improve file system performance. SoupFS
[8] is a recently work that introduces the idea of soft updates
into NVM-based file system, it significantly shortens the
critical path latency by delaying most synchronous metada-
ta updates. NOVA-Fortis [35] is another recently proposed
work that adds fault tolerance to an NVM file system, and it
is resilient in the face of corruption due to media errors and
software bugs.

Different from the above mentioned NVM-based file
systems, our NJS deploys NVM as journaling storage device
to reduce the journaling overhead of traditional file systems.
In the meanwhile, HDDs/SSDs can be used as major storage
devices, thus NVM can be used to improve the performance
of storage systems in a cost-effective way.

5.2 NVM-based journaling schemes
Lee et al. [2] proposed a buffer cache architecture UBJ that
subsumes the functionality of caching and journaling with
NVM. However, copy-on-write is used in journal block up-
dating which does not exploit the byte-accessibility charac-
teristic of NVM. Moreover, UBJ does not consider reducing
journal writes to NVM. Zeng et al. [36] proposed an NVM-
based journaling mechanism SJM with write reduction. Kim
et al. [37] proposed a journaling technique that uses a small
NVM to store a journal block as a compressed delta for
mobile devices. However, these two works only use NVM
as journal storage device and focus on reducing journal
write traffic to NVM, but does not consider NVM delaying
the checkpointing process of journaling file systems. Wei
et al. [11] proposed a transactional NVM disk cache called
Tinca that guarantees consistency of both disk cache and
file system while reducing file system journaling overhead.
However, Tinca deploys NVM as external disk cache to HD-
D or SSD with a lightweight transaction scheme. Different
from Tinca, our NJS is an NVM-based journaling scheme.
Chen et al. [14] proposed a fine-grained metadata journaling
technique on NVM, and it is the work most related to
ours. However, the proposed journaling technique only uses
NVM to store the file system metadata, and provides data
consistency. In contrast, our NJS logs the file system metada-
ta and over-write data to NVM as write-ahead logging, and
provides version consistency, which is a higher consistency
level compared with data consistency. Moreover, our NJS

leverages a garbage collection mechanism that absorbs the
redundant journal updates and delays the checkpointing to
the file system.

6 CONCLUSION

In this paper, we present an NVM-based journaling scheme,
called NJS, to reduce the journaling overhead for traditional
file systems. In order to decrease the amount of write to
NVM due to its relatively long write latency and limited
write cycles, NJS only logs the file system metadata and
over-write data to NVM as write-ahead logging, and direct-
ly issues the append-write data to the file system. To avoid
localized writes to NVM and further extend the lifetime
of NVM, NJS adopts a wear aware allocation strategy in
which all the NVM journal blocks can be evenly worn
out. Furthermore, we design a byte-level journal update
scheme in which a journal block can be updated in the
byte-granularity based on the difference of the old and new
versions of the journal block so as to exploit the unique
byte-accessibility characteristic of NVM. NJS also proposes
a garbage collection mechanism that absorbs the redundant
journal updates, and actively delays the checkpointing to
the file system. Thus, the journaling overhead can be re-
duced significantly. Evaluation results show that Ext4 with
our NJS outperforms Ext4 with a ramdisk-based journaling
device by 57.1% on average in different workloads.

REFERENCES

[1] V. Prabhakaran, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau,
“Analysis and evolution of journaling file systems.” in Proceedings
of the 2005 USENIX Annual Technical Conference (ATC), 2005, pp.
196–215.

[2] E. Lee, H. Bahn, and S. H. Noh, “Unioning of the buffer cache
and journaling layers with non-volatile memory.” in Proceedings of
the 11th USENIX Conference on File and Storage Technologies (FAST),
2013.

[3] A. Ahari, M. Ebrahimi, F. Oboril, and M. Tahoori, “Improving
reliability, performance, and energy efficiency of STT-MRAM with
dynamic write latency,” in Proceedings of the IEEE 33rd International
Conference on Computer Design (ICCD), 2015, pp. 109–116.

[4] Z. Li, F. Wang, D. Feng, Y. Hua, J. Liu, W. Tong, Y. Chen, and
S. S. Harb, “Time and space-efficient write parallelism in PCM by
exploiting data patterns,” IEEE Transactions on Computers, vol. 66,
no. 9, pp. 1629–1644, 2017.

[5] M. Mao, Y. Cao, S. Yu, and C. Chakrabarti, “Optimizing latency,
energy, and reliability of 1T1R ReRAM through appropriate volt-
age settings,” in Proceedings of the IEEE 33rd International Conference
on Computer Design (ICCD), 2015, pp. 359–366.

[6] Intel and Micron, “Intel and micron produce breakthrough mem-
ory technology,” https://newsroom.intel.com/news-releases/,
2015.

[7] J. Xu and S. Swanson, “NOVA: a log-structured file system for
hybrid volatile/non-volatile main memories,” in Proceedings of the
14th USENIX Conference on File and Storage Technologies (FAST),
2016, pp. 323–338.

[8] M. Dong and H. Chen, “Soft updates made simple and fast on
non-volatile memory,” in 2017 USENIX Annual Technical Conference
(ATC), 2017, pp. 719–731.

[9] S. Yu and P.-Y. Chen, “Emerging memory technologies: Recent
trends and prospects,” IEEE Solid-State Circuits Magazine, vol. 8,
no. 2, pp. 43–56, 2016.

[10] J. Boukhobza, S. Rubini, R. Chen, and Z. Shao, “Emerging NVM: A
survey on architectural integration and research challenges,” ACM
Transactions on Design Automation of Electronic Systems (TODAES),
vol. 23, no. 2, p. 14, 2017.

[11] Q. Wei, C. Wang, C. Chen, Y. Yang, J. Yang, and M. Xue, “Transac-
tional NVM cache with high performance and crash consistency,”
in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis(SC). ACM, 2017.



IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, XXXX 2018 12

[12] J. Chen, Q. Wei, C. Chen, and L. Wu, “FSMAC: A file system
metadata accelerator with non-volatile memory,” in Proceedings of
the IEEE 29th Symposium on Mass Storage Systems and Technologies
(MSST), 2013.

[13] X. Wu and A. Reddy, “SCMFS: a file system for storage class
memory,” in Proceedings of 2011 International Conference for High
Performance Computing, Networking, Storage and Analysis (SC), 2011.

[14] C. Chen, J. Yang, Q. Wei, C. Wang, and M. Xue, “Fine-grained
metadata journaling on NVM,” in Proceedings of the IEEE 32nd
Symposium on Mass Storage Systems and Technologies (MSST), 2016.

[15] R. McDougall, “Filebench: Application level file system bench-
mark,” 2014.

[16] V. Chidambaram, T. Sharma, A. C. Arpaci-Dusseau, and R. H.
Arpaci-Dusseau, “Consistency without ordering.” in Proceedings of
the 10th USENIX Conference on File and Storage Technologies (FAST),
2012.

[17] S. Mittal, J. S. Vetter, and D. Li, “A survey of architectural ap-
proaches for managing embedded DRAM and non-volatile on-
chip caches,” IEEE Transactions on Parallel and Distributed Systems,
vol. 26, no. 6, pp. 1524–1537, 2015.

[18] S. Mittal and J. S. Vetter, “A survey of software techniques for
using non-volatile memories for storage and main memory sys-
tems,” IEEE Transactions on Parallel and Distributed Systems, vol. 27,
no. 5, pp. 1537–1550, 2016.

[19] H. Kim, S. Seshadri, C. L. Dickey, and L. Chiu, “Evaluating
phase change memory for enterprise storage systems: A study
of caching and tiering approaches,” ACM Transactions on Storage
(TOS), vol. 10, no. 4, p. 15, 2014.

[20] F. Xia, D.-J. Jiang, J. Xiong, and N.-H. Sun, “A survey of phase
change memory systems,” Journal of Computer Science and Technol-
ogy, vol. 30, no. 1, pp. 121–144, 2015.

[21] E. Lee, S. Hoon Yoo, and H. Bahn, “Design and implementation of
a journaling file system for phase-change memory,” IEEE Transac-
tions on Computers, vol. 64, no. 5, pp. 1349–1360, 2015.

[22] F. Huang, D. Feng, Y. Hua, and W. Zhou, “A wear-leveling-aware
counter mode for data encryption in non-volatile memories,” in
Proceedings of the IEEE 2017 Design, Automation & Test in Europe
Conference & Exhibition (DATE), 2017, pp. 910–913.

[23] S. Pelley, P. M. Chen, and T. F. Wenisch, “Memory persistency,” in
Proceeding of the 41st International Symposium on Computer Archite-
cuture (ISCA), 2014, pp. 265–276.

[24] S. R. Dulloor, S. Kumar, A. Keshavamurthy, P. Lantz, D. Red-
dy, R. Sankaran, and J. Jackson, “System software for persistent
memory,” in Proceedings of the 9th European Conference on Computer
Systems (EuroSys), 2014.

[25] H. Volos, A. J. Tack, and M. M. Swift, “Mnemosyne: Lightweight
persistent memory,” in ACM SIGARCH Computer Architecture
News, vol. 39, no. 1. ACM, 2011, pp. 91–104.

[26] Y. Zhang and S. Swanson, “A study of application performance
with non-volatile main memory,” in Proceedings of the IEEE 31st
Symposium on Mass Storage Systems and Technologies (MSST), 2015.

[27] V. Chidambaram, T. S. Pillai, A. C. Arpaci-Dusseau, and R. H.
Arpaci-Dusseau, “Optimistic crash consistency,” in Proceedings of
the 24th ACM Symposium on Operating Systems Principles (SOSP),
2013, pp. 228–243.

[28] G. Wu and X. He, “Delta-FTL: improving SSD lifetime via ex-
ploiting content locality,” in Proceedings of the 7th ACM european
conference on Computer Systems (EuroSys), 2012, pp. 253–266.

[29] H. Volos and M. M. Swift, “Mnemosyne: Lightweight per-
sistent memory,” http://research.cs.wisc.edu/sonar/projects/
mnemosyne/index.html.

[30] W. D. Norcott and D. Capps, “Iozone filesystem benchmark,” URL:
www. iozone. org, vol. 55, 2003.

[31] N. Appliance, “Postmark: A new file system benchmark,” 2004.
[32] J. Ou, J. Shu, and Y. Lu, “A high performance file system for

non-volatile main memory,” in Proceedings of the 11th European
Conference on Computer Systems (EuroSys), 2016.

[33] K. Zeng, Y. Lu, H. Wan, and J. Shu, “Efficient storage management
for aged file systems on persistent memory,” in Proceedings of
the IEEE 2017 Design, Automation & Test in Europe Conference &
Exhibition (DATE), 2017, pp. 1773–1778.

[34] J. Condit, E. B. Nightingale, C. Frost, E. Ipek, B. Lee, D. Burger,
and D. Coetzee, “Better I/O through byte-addressable, persistent
memory,” in Proceedings of the ACM SIGOPS 22nd Symposium on
Operating Systems Principles (SOSP), 2009, pp. 133–146.

[35] J. Xu, L. Zhang, A. Memaripour, A. Gangadharaiah, A. Borase,
T. B. Da Silva, S. Swanson, and A. Rudoff, “NOVA-Fortis: a fault-

tolerant non-volatile main memory file system,” in Proceedings of
the 26th Symposium on Operating Systems Principles (SOSP), 2017,
pp. 478–496.

[36] L. Zeng, B. Hou, D. Feng, and K. B. Kent, “SJM: an SCM-based
journaling mechanism with write reduction for file systems,” in
Proceedings of the 2015 International Workshop on Data-Intensive
Scalable Computing Systems (DISCS), 2015.

[37] J. Kim, C. Min, and Y. Eom, “Reducing excessive journaling
overhead with small-sized NVRAM for mobile devices,” IEEE
Transactions on Consumer Electronics, vol. 60, no. 2, pp. 217–224,
2014.

Xiaoyi Zhang received the B.E degree in com-
puter science and technology from Huazhong
University of Science and Technology (HUST),
China, in 2011. He is currently working toward
the PhD degree majoring in computer science
and technology at HUST. His current research
interests include NVM-based storage system-
s, NVM-based file systems, NVM-based data
structures, and file system consistency.

Dan Feng received her B.E, M.E. and Ph.D. de-
grees in Computer Science and Technology from
Huazhong University of Science and Technology
(HUST), China, in 1991, 1994 and 1997 respec-
tively. She is a Professor and the Dean of the
School of Computer Science and Technology,
HUST. Her research interests include computer
architecture, massive storage systems and par-
allel file systems. She has over 100 publications
in journals and international conferences. She
is the distinguished member of CCF, member of

IEEE and ACM.

Yu Hua received the BE and PhD degrees in
computer science from Wuhan University, China,
in 2001 and 2005, respectively. He is currently
a professor at Huazhong University of Science
and Technology (HUST), China. His research
interests include computer architecture, cloud
computing, and network storage. He has more
than 80 papers in major journals and internation-
al conferences. He has been on the organizing
and program committees of multiple major in-
ternational conferences. He is the distinguished

member of CCF, senior member of ACM and IEEE, and the member of
USENIX.

Jianxi Chen received his B.E degrees in Nanjing
University, China, in 1999, M.S. in Computer Ar-
chitecture from Huazhong University of Science
and Technology(HUST), Wuhan, China in 2002
and Ph.D. in Computer Architecture, from HUST
in 2006. He is currently with Wuhan National Lab
for Optoelectronics, and School of Computer,
HUST, as an Associate Professor. He publish-
es more than 20 papers in major journals and
conferences. He is a member of CCF and IEEE.


