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Abstract—Persistent memory (PM) is promising to be the next-generation storage device with better I/O performance. Since traditional
I/O path is too lengthy to drive PM featuring low latency and high bandwidth, prior works proposed memory-mapped I/O (MMIO) to
shorten the I/O path to PM. However, native MMIO directly maps files into the user address space, which puts files at risk of being
corrupted by scribbles and non-atomic I/O interfaces, causing serious reliability issues. To address these issues, we propose RMMIO,
an efficient user-space library that provides reliable MMIO for PM systems. RMMIO provides atomic I/O interfaces and lightweight
snapshots to ensure the reliability of MMIO. Compared with existing schemes, RMMIO mitigates additional writes and extra software
overheads caused by reliability guarantees, thus achieving MMIO-like performance. In addition, we also propose an automatic
snapshot with efficient memory management for RMMIO to minimize data loss incurred by reliability issues. The experimental results
of microbenchmarks show that RMMIO achieves 8.49x and 2.31x higher throughput than ext4-DAX and the state-of-the-art
MMIO-based scheme, respectively, while ensuring data reliability. The real-world application accelerated by RMMIO achieves at most
7.06x higher throughput than that of ext4-DAX.

Index Terms—Persistent Memory, Memory-Mapped I/O, PM-aware File System, Data Reliability
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1 INTRODUCTION

Non-volatile memory (NVM) technologies, such as Re-
sistive RAM (ReRAM) [35], 3D XPoint memory [21], and
Phase Change Memory (PCM) [31], achieve the advantages
of both DRAM (e.g., low latency and high bandwidth) and
disk (e.g., persistency), enabling the durability of data in
memory space. Persistent memory (PM) powered by NVMs
reduces hardware I/O overhead while suffering from the
long I/O path of traditional file systems.

To simplify the software I/O stack, recent PM-aware file
systems, e.g., PMFS [15], NOVA [40], and ext4-DAX [37],
leverage the DAX (Direct Access) [1] technology to remove
the additional data copy between PM and the page cache
in DRAM. Thus PM-aware file systems can directly access
the data in PM and enable in-place updates to PM files.
However, DAX-enabled file systems still suffer from the
complex indexing structure and lengthy kernel I/O path.
To further simplify the I/O path to PM, SplitFS [23] and
Libnvmmio [12] propose user-space I/O operations that
map PM files into user address space and access data
via load/store instructions, termed DAX-style memory-
mapped I/O (MMIO). MMIO speeds up I/O operations
but keeps the mapped data out of kernel’s protections.
Specifically, existing MMIO-based schemes face two main
reliability problems: data integrity and consistency.

Data Integrity. While employing MMIO, the file mapped
into user address space could be easily overwritten with
arbitrary data, called scribbles, due to bug-prone user-space
software and unexpected hardware errors [41], [25]. In PM
systems, scribbles could be more dangerous than those
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in DRAM systems because of recently discovered bugs in
PM programming [28], [27]. In addition, scribbles in PM
will permanently corrupt data and exist even after the
system reboots. Although previous works, e.g., Btrfs [32]
and ZFS [10], provide complete mechanisms to protect file
data from scribbles, they have not considered protecting
the mapped data. Moreover, the NVDIMM driver that
manages PM devices also cannot provide any RAS (recov-
ery, availability, and serviceability) guarantee for the PM
data [4]. Snapshots and replicas are widely employed by
existing highly-reliable file systems [41], [32], [10] to protect
data from scribbles. However, snapshots and replicas cause
huge write amplification, compromising the performance of
MMIO.

Data Consistency. PM does not provide block-level
atomicity but only guarantees the atomicity for 8-byte write:
any write larger than 8 bytes may be partially lost in
the event of a system crash, posing significant challenges
to the crash consistency (we refer to consistency) of data
in PM [40]. Existing PM file systems provide atomic I/O
interfaces to guarantee data consistency for PM. However,
MMIO bypasses all I/O stacks of PM file systems and es-
capes from data consistency protections. To guarantee data
consistency for MMIO, SplitFS [23] implements atomic I/O
operations by combining WAL (i.e. Write-Ahead-Log) and
copy-on-write. Due to the over 50% performance decline,
such a strict consistency guarantee is only available in
the strict mode of SplitFS. Libnvmmio [12] proposes fine-
grained logging to accelerate the concurrent I/O but there
is still a performance penalty due to the double writes of
WAL. NOVA [40], a PM-specific file system, relaxes the
consistency guarantees for the mapped data by creating
a replica only for mapping, resulting in significant write
amplification. All existing works suffer from performance
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overhead for data consistency.
In summary, although MMIO shows better performance

than traditional kernel-involved I/O, it still faces the chal-
lenge of ensuring the reliability (i.e., integrity and consis-
tency) of memory-mapped data at a low cost. To address
these issues, we propose Reliable Memory-Mapped IO
(RMMIO), a user-space I/O library that provides MMIO-
like I/O performance while ensuring both data consistency
and integrity for PM systems.

To minimize the extra overheads caused by reliability
guarantees, RMMIO inherits the matured protection mecha-
nisms of kernel-space file systems [41], [10], [32] by keeping
all files in kernel space, without mapping them into user ad-
dress space. However, existing protection mechanisms limit
the performance of user I/O since users have to access PM
files via low-speed system calls. Thus, we further employ a
large contiguous persistent memory region as a cache layer,
called Persistent Page Cache (PPcache), to accelerate user I/O.
The cache directly resides in user space, so accessing PPcache
is as fast as MMIO to the mapped file. Since PPcache is
persistent, I/O requests arriving at PPcache will be persisted
immediately, shortening the I/O path of RMMIO.

Owing to the reliable underlying file system, RMMIO
only needs to take charge of the reliability of the data
buffered in PPcache. To guarantee the consistency of PPcache,
RMMIO provides atomic I/O interfaces by employing WAL
(Write-Ahead Log). Considering that existing WAL has to
copy old data as undo log to a specific log region before
writing new data, to avoid being overwritten by new data.
RMMIO builds a two-level structure to in-place preserve
the old data. The new data can be written to another level to
avoid overwriting old data, which mitigates the extra write
for copying old data to the log region. Moreover, to prevent
unrecoverable corruptions caused by scribbles, RMMIO also
supports taking a snapshot for the data buffered in PPcache.
The snapshot provides a consistent backup of PPcache. Once
the scribble happens, RMMIO can recover the file with unaf-
fected snapshots. To reduce the software overhead induced
by snapshots, RMMIO implements incremental snapshots
that only record updates to a file, which is much more effi-
cient than full-copy snapshots due to mitigating significant
data movements.

Although snapshots can increase data reliability, intem-
perately taking snapshots will result in a performance de-
cline of I/O service and resource exhaustion of PM. On
the other hand, if users do not take a snapshot in time,
unexpected scribbles can lead to huge data loss. To trade
off the reliability and availability of snapshots, RMMIO
provides an enhanced snapshot mode called autosnapshot.
While enabling autosnapshot, RMMIO will automatically
take snapshots for PPcache. The automatic snapshots always
follow the most recent updates to PPcache by creating new
snapshots and recycling old snapshots in the background,
without user intervention. Since auto-snapshot exacerbates
the strain on PM resources, we also propose a set of strate-
gies to manage the limited persistent memory resources
for RMMIO, including snapshot merging, persistent page
pool extension, and garbage collection. Specifically, these
strategies are optimized for PM access characteristics (e.g.,
limited write bandwidth, poor read-write performance, and
so on), which only incur negligible performance penalties
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Fig. 1: Comparison between MMIO and Kernel I/O.

for foreground I/O services. Our analysis shows that en-
abling autosnapshot only causes a 4.5% performance hit.

We evaluate RMMIO with both microbenchmarks and
real-world applications. The experimental results show that
RMMIO gains up to 8.49x higher throughput than ext4-
DAX [37] and achieves 2.31x higher throughput that the
state-of-the-art MMIO-based scheme [12] in write-intensive
workloads, while guaranteeing data reliability. In the eval-
uation of real-world applications, RocksDB accelerated by
RMMIO achieves at most 706% higher throughput than that
of ext4-DAX.

The contributions of RMMIO are as follows:

• We propose a new architecture for MMIO to ensure
the data reliability of PM by introducing PPcache.

• Based on PPcache, we implement a user-space I/O
library called RMMIO, which provides MMIO-like
I/O performance while ensuring both data consis-
tency and integrity for PM systems.

• We enhance RMMIO with auto-snapshot and effi-
cient memory management strategies that provide
better data integrity guarantees while keeping the
outstanding performance of RMMIO.

• We provide a comprehensive evaluation to demon-
strate the advantages of RMMIO in common I/O
operations and real-world applications.

2 BACKGROUND AND MOTIVATION

2.1 Accesses to Persistent Memory
Non-volatile Memories (NVMs) mitigate the performance
gap between DRAM and block devices due to the DRAM-
like performance and disk-like persistency. By using non-
volatile memory (NVM) as persistent memory (PM), devel-
opers can durably store data in the memory space. Intel pre-
viously introduced a commercial persistent memory prod-
uct known as the Optane DC Persistent Memory Module.
According to the evaluations of Optane [42], the maximum
bandwidth of PM is up to 13.9GB/s for writes and 39.4GB/s
for reads, which is much better than that of block devices
(i.e., disk, SSD).

In traditional file systems, the bottleneck of data access is
the poor I/O performance of block devices. Hence, the page
cache residing in DRAM is used as the fast read cache and
write buffer to reduce the number of block I/O. However,
existing PM-aware file systems, e.g., PMFS [15] and ext4-
DAX [37], hold the view that page cache is unnecessary for
persistent memory systems, as it brings extra data copy due
to the intermediate cache layer. Since software dominates
the overheads of I/O operations in PM, PM-aware file
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1 typedef struct user_defined_struct {
2 char* parray[8]; // pointer array
3 long number;
4 } USER;
5
6 int main() {
7 USER* user = malloc(sizeof(USER));
8 int fd = open("./PM_File", ... );

...
12 void* mapping = mmap(NULL, FILE_SIZE, ..., fd, 0);
13 // mapping is equal to 0x7fb848f3d000.
14 user >number = 0x7fb848f3d000;
15 memcpy(*(user >parray + 8), "E", 1);
16 // Scribble happens in PM_File.
17 return 0;}

Mapping Region0 1 2 3 4 5 6 7

parray number

8 "E"

mapping

Point to mapping
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Fig. 2: An Example of Scribble Caused by a User-Space Bug.

systems remove page cache from the I/O path, and directly
access the data residing in persistent memory, called direct
access (i.e., DAX).

DAX significantly reduces the software overhead, but
still gets kernel involved. To further reduce the software
overhead of accessing PM, PM-aware file systems propose
DAX-style mmap(), a new memory-map approach that di-
rectly maps the file instead of the page cache. With DAX-
style mmap(), users can access the target file via load/store,
called DAX-style MMIO. Since DAX-style mmap() bypasses
kernel I/O path (e.g., kernel-user switch, VFS, complex page
index), the only overhead involved in DAX-style MMIO is
the address translation through MMU. Fig. 1 compares the
differences among DAX-style MMIO, DAX and traditional
file access.

2.2 Data Reliability of MMIO in PM

2.2.1 Consistency

Persistent Memory extends the persistent domain to mem-
ory space. Thus we have to consider the data consistency
of memory space in PM systems. To guarantee the data
consistency of PM, all I/O operations should be atomic,
i.e., to execute in an “all or nothing” fashion. Different from
block devices, PM only provides 8-byte atomicity [40], [12]
instead of block atomicity (512 bytes). Thus, it is a great chal-
lenge for PM programmers to guarantee data consistency
for variable-length data in PM.

In systems equipped with persistent memory (PM), PM-
specific bugs [28], [27] can also cause data inconsistency. For
example, the commit flag of a data page is persisted before
we copy the new data to the persistent memory due to the
out-of-order execution [45]. In this case, the old data will
be mistakenly treated as the new data, which is inconsistent
with the commit flag. Thus programmers have to figure out
when and in which order to flush the data in PM, which is
nontrivial for developers.

2.2.2 Scribbles and Data Integrity

Scribbles are operations that randomly overwrite correct
data with arbitrary values. Scribbles are well-known file
system errors caused by both unreliable hardware [34],
[33] and bug-prone software [9], [28], [27], such as buffer

overflows, memory bitflips. Integrity is interpreted as data
that has never been modified by unexpected scribbles.

We describe how scribbles compromise data integrity
with the description of a bug instance shown in Fig. 2.
USER is a user-defined structure composed of an eight-
element pointer array (parray) and a long integer (number).
In a common case, programmers can store a pointer to
any memory region in parray and set number as any value
within the range of a long integer. However, such a common
instance could cause unexpected data corruptions in PM
systems. We can map a PM file into user address space in
PM systems. The address range of the memory-mapped file
is between stack and heap, which can be easily overwrit-
ten by faulty memory accesses. We demonstrate the faulty
memory access with the following assumptions: A PM file
is mapped into an address space starting at 0x7fb848f3d000
and the programmer also sets number to 0x7fb848f3d000. If a
programmer mistakenly accesses the element over the range
of parray, e.g., *(user->parray + 8), he actually accesses the
memory region of number. Note that the value of number is
0x7fb848f3d000, which is equal to the starting address of the
memory-mapped file. As a result, a scribble will write ”E”
to the PM file, as shown in line 15 of the above instance. The
data integrity of the PM file will be permanently broken by
the scribble.

Such a consequence is unpredictable for new program-
mers working on persistent memory systems. Although ex-
isting works have proposed Machine Check Exception (e.g.,
ECC [19]) and software debugging tools [7], [6] to improve
the system reliability, bugs and errors that cannot be de-
tected by existing techniques still remain in the system. For
example, ECC cannot detect 2-bit flipped errors or correct 1-
bit flipped errors and GCC can not report faulty memory
accesses induced by programmers. So computer systems
still suffer from scribbles, especially for the data residing
in the user address space due to the lack of protections from
the kernel file system.

2.3 Motivations

Although PM-aware file systems have simplified the I/O
path for PM, invoking a system call still introduces much
higher overhead than performing MMIO. We measure the
software overhead of ext4-DAX with perf [5]. The measure-
ment shows that less than 44% execution time of a kernel-
involved I/O is spent on copying data, far less than the
100% of DAX-style MMIO.

DAX-style MMIO brings significant performance gains
but also exposes the file to the risk of user-space scribbles
and non-atomic I/O operations. Addressing these problems
faces a great challenge in balancing performance and relia-
bility. To the best of our knowledge, no previous work has
fully addressed these problems. ext4-DAX [29], PMFS [15],
Btrfs [32], and ZFS [10] focus on kernel-involved I/O with-
out considerations on MMIO. SplitFS [23], Libnvmmio [12],
and NOVA [40] guarantee the data consistency for MMIO
but induce significant software overhead due to write am-
plification. In addition, all of the mentioned works overlook
the protections for MMIO from scribbles. Although Nova-
fortis [41] protects the mapped data with snapshots, it does
not provide atomic I/O interfaces for MMIO. Therefore,
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there is a pressing need for providing an efficient and re-
liable MMIO for Persistent Memory Systems, which ensures
both consistency and integrity for mapped data in PM.

3 RMMIO
This section provides a comprehensive view of RMMIO
design. We first outline the design goals of RMMIO. Then,
we go into depth about how RMMIO achieves these goals.

3.1 Desing Goals
Native MMIO outperforms existing kernel file systems [15],
[40], [41], [37] on PM in terms of I/O performance. However,
the native MMIO disregards the reliability guarantees for
PM files. Despite the fact that previous works provided
numerous ways to maintain data reliability, such as Write-
Ahead-Log [23], [12], log-structuring [40], backup and snap-
shot [10], [32], [41], all of them impose considerable software
overheads, compromising the performance of native MMIO.
Thus the main goal of RMMIO is to achieve MMIO-like
performance while guaranteeing data reliability. Specifically,
RMMIO has three design goals in detail:

• MMIO-like performance. RMMIO should provide
better I/O performance than kernel file systems,
otherwise, users should directly employ kernel file
systems.

• Guarantee data consistency. RMMIO should make
sure that write operations never incompletely update
a file or provide a method to undo the incomplete
writes, guaranteeing data consistency.

• Ensure data integrity. RMMIO should provide re-
dundant data and procedures for recovering a file
from data corruption caused by scribbles.

3.2 Overview
Native MMIO is dangerous since it directly exposes PM files
to user-space applications. Scribbles and inconsistent writes,
acting like common user I/O, can also in-place update PM
files, which cause permanent data corruptions in PM. Thus
RMMIO never maps a file into user space and offloads
the protections for PM files to the underlying file systems,
e.g., NOVA-Fortis [41], which has already provided mature
protections for data reliability.

Basic Architecture. The kernel-protected files cannot be
mapped into user space, which results in compromised

I/O performance. Therefore, RMMIO employs a memory-
mapped cache layer upon PM-aware file systems to ac-
celerate user I/O requests, as shown in Fig. 3. The cache
is organized at file granularity by using a unique data
structure, called FILE, for every opened file. FILE maintains
a persistent page cache (PPcache) and a snapshot list: PPcache
buffers the most recent updates to the related file; snapshot
list records the incremental snapshots of the file, which
provide necessary data redundancy to recover RMMIO from
possible data corruptions. For MMIO-like performance, PP-
cache and snapshot list are indexed by mapping tables located
in DRAM, which is optimized for continuous indexing
in PM. We present more details about mapping tables in
Section 3.3.

I/O Path. Introducing a cache layer lengthens the I/O
path of existing systems since we may need to frequently
synchronize data between the cache and underlying file
systems to ensure the persistency of data. However, ow-
ing to the persistency of PM, PPcache built in PM avoids
frequent synchronization. RMMIO removes synchronization
from the critical I/O path by lazily buffering the data in
PPcache. RMMIO never writes the data buffered in PPcache
back to the underlying file system until the idle time or
when users actively write data back with fsync(). Although
the PPcache extends the overall I/O path of RMMIO, it also
provides fast persistency perfectly matching modern RPC-
based systems [26]. Likewise, reads to a PM file will first
be routed to the PPcache since the latest data may only be
buffered in the PPcache. Then, if reads do not achieve any
data from PPcache, RMMIO will invoke a system read to
fetch the data from the underlying file system and buffer it
in the PPcache.

Memory Management. The cache layer shares the same
memory region with the Reliable file system. RMMIO em-
ploys a persistent page allocator to manage the persistent
memory resources for PPcache and snapshot list. The persis-
tent page allocator acquires memory resources by creating
a page pool and mapping it into user space so that it can
be directly accessed via load/store. The persistent memory
resources are allocated and recycled at page granularity.
Section 3.8 and Section 3.7 will go into further depth on
memory management.

POSIX-like Interfaces. By introducing the persistent
page cache, RMMIO currently provides six main interfaces
to accelerate the I/O request in PM systems, i.e., read(),
write(), snapshot(), open(), close(), fsync()., whose usages
are aligned with POSIX APIs except for snapshot(). More
details about snapshot() will be shown in Section 3.6.

The basic architecture of RMMIO ensures the reliability
of kernel-protected files. However, massive data will be
buffered in PPcache under contiguous I/O requests. We
cannot diminish the reliability guarantees of data buffered
in PPcache since corrupted data in PPcache will eventually be
written back to the underlying file system. Thus, we have
to take action to prevent inconsistent writes and scribbles
to PPcache. In the worst case, PPcache may be broken by
inconsistent writes and scribbles. RMMIO has to detect the
corrupted data and recover the PPcache to a consistent and
integrated state. In summary, we cannot contaminate the
file with corrupted data in PPcache. In Section 3.4 to 3.6.2,
we describe how RMMIO implements atomic I/O interfaces
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to ensure data consistency of PPcache and how RMMIO
recovers corrupted PPcache from scribbles.

3.3 Mapping Table
RMMIO uses a flat range-optimized mapping table to index
persistent pages for PPcache and snapshot. The design goal
of mapping table is to simulate the addressing mode of
native MMIO, i.e., short path walk and efficient range query.
To achieve this goal, mapping table inherits the block-level
addressing strategy from ext2/ext3, which places addresses
of blocks in contiguous entries of a table. Fig. 4 shows the
layout of a mapping table. A mapping table consists of Direct
Index and Indirect Index. The Direct Index entry stores the
pointer to a persistent page. Yet a Indirect Index entry stores
the pointer to the beginning of a next-level Direct Index to
extend the mapping table. Both Direct Index and Indirect Index
are constructed from contiguous memory regions allocated
from DRAM.

Short Path Walk. The tree-like index structures em-
ployed by previous works, e.g., radix tree [12] and extent
tree [37], have to walk through numerous intermediate
nodes to reach leaf nodes, which is a big drag on PM fea-
turing low-latency. Thus mapping table in RMMIO removes
intermediate nodes by indexing leaf nodes with offset. If
the offset is within the range of Direct Index, RMMIO can
directly calculate the address of the queried leaf node with
the following method:

address = start+
offset

PAGE SIZE
∗ 8Bytes (1)

If the offset is out of the range of Direct Index, RMMIO has to
first get the start address of the next-level index by accessing
Indirect Index with a specific index number. The method of
calculating the index number of Indirect Index is:

index =
offset

Range of Direct Index
− 1 (2)

After getting the start address, RMMIO can simply achieve
the queried leaf node by following the above method1. At
last, RMMIO can directly access the target page with the
address stored in the leaf node. The time complexity of
query in mapping table is practically constant. When only the
direct index is activated, the time complexity is only O(1),
similar to MMIO, which significantly reduces the software
overheads of indexing a page. Even if the indirect index
is activated while writing, according to our evaluation,
indirect indexing will only result in a 5% additional software
overhead at most.

Efficient Range Query. Although flat index structures,
such as hashing tables, can also achieve short walk paths,
they are unable to deliver satisfactory range query perfor-
mance. A mapping table’s virtual address space is continuous
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Fig. 5: Write 8KB Data to the Two-level Persistent Page
Cache.

since it is constructed using continuous memory regions. By
using the above methods, RMMIO can calculate the start
and end addresses of the nodes indexing the queried persis-
tent pages. Though the addresses of persistent pages are not
contiguous, the addresses of nodes that index these pages
grow linearly. Even if the pages’ range is out of the current
Direct Index, RMMIO only needs one more calculation for
the address range.

3.4 Ensure Data Consistency with Two-Level Page
Cache

As described in Section 2.2.1, we have to consider the data
consistency of PPcache residing in PM. Since a system crash
can happen at any time, we need to keep the data consistent
in PM all the time. We assume that the data in PPcache is
consistent at the beginning. RMMIO has to provide atomic
I/O interfaces to avoid breaking the consistency of PPcache.

The biggest challenge of atomic I/O comes from the
limitation of PM systems. Modern processors support only
8-byte atomic writes for persistent memory [45]. However,
RMMIO has to provide atomicity for writes with arbitrary
lengths. To overcome this problem, previous works, e.g.,
Libnvmmio [12]and SplitFS [23], employ WAL (i.e., write-
ahead-log), which induces extra PM writes for logging.
Though NOVA addresses consistency problems by using log
structuring, removing the extra writes from the critical I/O
path, it still needs laborious garbage collection.

Since the persistent memory system is sensitive to the ef-
ficiency of software, RMMIO needs to get rid of extra writes
and additional software overheads. To achieve this goal,
RMMIO implements an optimized WAL mechanism that re-
moves additional writes from the critical path by reusing old
data as undo log. As shown in Fig. 5, RMMIO builds a two-
level PPcache to maintain two versions of data for each page,
i.e., the older data and the newer data. When a writer thread
writes data to PPcache, the coming data overwrites the older
data (smaller TID) but preserves the newer data (larger
TID) as undo log. Once the ongoing write is interrupted by
a system crash, RMMIO abandons the incompleted write
and recovers from the undo log. To identify the incom-
pleted write, RMMIO introduces a timestamp-based commit
mechanism, inspired by Libnvmmio [12]. The timestamp-
based commit mechanism includes two main components,
i.e., a logical timestamp called TID (Transaction ID) and a
global timestamp that indicates the latest transaction called
CID (Committed ID). As RMMIO divides every write into
several page writes. Pages within a write transaction will
be marked with the same TID to indicate when they are
written. Furthermore, RMMIO records the timestamp of the
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TABLE 1: The Effect of 4K Alignment on the Write
Performance of PM/DRAM.

Memory I/O Pattern Bandwidth
PM 16KB + 4K-aligned 4270MB/s
PM 16KB + 4K-non-aligned 3220MB/s
PM 8KB + 4K-aligned 4310MB/s
PM 8KB + 4K-non-aligned 2690MB/s
PM 4KB + 4K-aligned 4280MB/s
PM 4KB + 4K-non-aligned 1950MB/s

DRAM 4KB + 4K-aligned 5830MB/s
DRAM 4KB + 4K-non-aligned 6550MB/s

latest transaction using CID to figure out which page has
been committed. All pages with a TID smaller than or equal
to the CID will be identified as committed. Therefore, we can
simultaneously mark any number of pages as committed
by increasing the CID. Since CID is an 8-byte file-specific
variable, every writer thread can update it atomically. With
the timestamp-based commit mechanism, RMMIO tolerates
data inconsistency after a system crash happens. Because
CID is designed for orderly growth, a page with a TID larger
than CID must be uncommitted. By comparing their TIDs
with the CID, the inconsistent pages can be easily identified
and removed. Therefore, RMMIO can always keep PPcache
consistent even across a system crash.

Fig. 5 demonstrates an example of how RMMIO guaran-
tees data consistency in a single-thread instance. The blank
square represents a page in the PPcache, and the number
inside the blank indicates the TID of the page. If a writer
thread is trying to write 8KB data to Page1 and Page2,
RMMIO first allocates a new TID for the working thread by
increasing the TID from 3 to 4. And then the writer thread
marks two pages of data with TID-4. Second, RMMIO writes
these two pages of data to level0 of Page1 and level1 of Page2,
respectively. Because the data in level0 of Page1 and level1 of
Page2 is older than that in the other level. During the write,
the data in level1 of Page1 and level0 of Page2 becomes the
undo log for this write transaction. After all the data has
been written to the related pages, the writer thread updates
CID to 4 with an atomic write. Meanwhile, all pages with
TID-4 are simultaneously identified as committed. Through-
out the write transaction, PPcache is always consistent.

3.5 Enable High Scalability for RMMIO

Since PM is byte-addressable, it is easy for DAX-style MMIO
to achieve high scalability. However, challenges come with
opportunities. Because of the lack of thread isolation, the na-
tive MMIO cannot safely handle multi-thread I/O requests.

Fine-grained Lock. To guarantee thread safety, RMMIO
employs a reader or writer lock for thread isolation. In
addition, we note that the file-grained lock used in VFS
blocks concurrent operations on a shared file [39], which
is a waste of the byte-addressable PM. Thus RMMIO needs
a fine-grained lock to achieve high scalability. To determine
the most appropriate granularity of a lock, we evaluate the
native MMIO with different I/O patterns in PM, as shown
in Table 1. The experimental results show that the maximum
bandwidth appears when the I/O is 4KB-aligned. Accord-
ing to the evaluation, the granularity of a lock should be 4KB
or a multiple of 4KB to take full advantage of PM. However,
automatically determining the specific granularity of the
lock for different workloads is out of the scope of this paper.

Therefore, we configure the default granularity of a lock as
4KB to fully expose the raw performance of PM.

Atomic Primitives. RMMIO also ensures thread safety
with atomic primitives. As locking may fall into the ker-
nel, locking for every thread-safety operation will cause
a significant performance decline. Thus, RMMIO employs
atomic primitives provided by glibc to deliver TID and
update CID for working threads. Since these atomic prim-
itives guarantee the thread safety of the operand, every
writer thread will get the unique TID by using FAA
(i.e., atomic fetch add explicit). Moreover, we use CAS (i.e.,

sync bool compare and swap) to ensure the linearizability
consistency of RMMIO write. In other words, while sev-
eral threads holding different TIDs are working together,
RMMIO needs to make sure that every thread commits its
writes in the order of the TID. Since CAS only updates
the old value when the old value matches the given value,
RMMIO sets the given value as ”TID minus 1” (TID is the
current logical timestamp of a thread). Thus, a thread will
not update CID until the last thread (thread holding TID-1)
has committed its write. The atomic CAS makes sure that
write transactions from different threads will be committed
one by one.

3.6 Recover Corrupted Files with Incremental Snap-
shots

Scribble is a serious issue for RMMIO because scribbles
break the data integrity of PPcache. According to Ganesan et.
al. [17], in modern distributed storage systems, a single file-
system fault can cause catastrophic consequences. However,
scribbles are inevitable and unpredictable as we described
in Section 2.2.2. To combat data corruptions caused by
scribbles, RMMIO maintains a CRC32C checksum for every
page (shown in Fig. 6) and examines the checksum to check
the integrity of a page. The mismatch of checksum indicates
data corruptions. To recover from data corruptions, existing
works [10], [32], [41] has proposed two strategies, i.e., full-
copy backup and snapshots, to recover the corrupted file
from data corruptions. However, all of them incur a huge
account of data movements, causing performance loss for
MMIO. Yet, a system without backups and snapshots will
compromise data reliability. To overcome this challenge,
RMMIO proposes an incremental snapshot mechanism that
dramatically decreases the software overhead of snapshots.

3.6.1 Incremental Snapshots.
As shown in Fig. 6, the incremental snapshot is built based
on PPcache. When the user takes a snapshot, RMMIO di-
rectly packs the data buffered in PPcache as a snapshot.
So each snapshot only retains the updates to a file instead
of the full copy of a file, which significantly decreases the
software overhead on snapshot capture. Furthermore, we
note that the mapping table (Section 3) records pointers to
persistent pages buffering the updates of a file. So if we
want to build a snapshot with these persistent pages, we
only need to copy the pointers to these pages without
copying the data. However, simply copying pointers will
lose the layout of data. Rebuilding a new mapping table and
migrating data from PPcache to the new mapping table can
address this problem but induces non-negligible software
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overheads caused by reindexing all pages in the PPcache. To
further reduce the software overhead of taking a snapshot,
RMMIO directly converts the PPcache of into a snapshot.
Specifically, once a user invokes snapshot(), RMMIO first
links the PPcache (snapshot-2 in Fig. 6) to the snapshot list
and then builds a new persistent page cache with the empty
mapping table. As a result, snapshot() in RMMIO only needs
to initialize a new mapping table without any data copying.

Once a scribble happens in a file, RMMIO can recover
the file from snapshots that have not been corrupted. The
recovery cannot restore the corrupted data but can return
the file back to a historical version to minimize the impact on
the whole system. Upon detecting data corruption and ini-
tiating a version rollback, RMMIO sends a SIGUSR1 (user-
defined signal) to the current process using the kill(). Users
can register a signal handler using signal() to address the
data corruption with the information provided by RMMIO,
including the corrupted file name, TID and the corrupted
data address. More details about the recovery of RMMIO
will be presented in Section 3.6.2.

Latest Table. We also note that taking snapshots in RM-
MIO may cause the performance decline of reads. Because
snapshots may still buffer the latest data of a file, which
increases the difficulty of read to query the latest data.
As shown in Fig. 6, reads must traverse all snapshots to
find the latest data. Such an inefficient traversal operation
extends the critical path of RMMIO read, which goes against
RMMIO’s design goals. To avoid traversing these snapshots,
RMMIO builds a latest table to store the pointer to the latest
data for each page. The latest table will be updated along
with the updates to persistent pages. Since taking a snapshot
in RMMIO does not move any persistent page, the pointer
to the latest page will always be constant during snapshot
capturing. So RMMIO can always get the latest data by
accessing the latest table. The time complexity of querying
a page using latest table in RMMIO is O(1) which is much
more efficient than traversing all snapshots.

3.6.2 Recovery
The recovery of RMMIO follows two steps: First, we remove
the corrupted data whose checksum mismatches the stored
one. Then, RMMIO rolls the corrupted file back to a his-
torical version that does not contain any corrupted page.
Note that all the data with TID larger than the corrupted

one should be discarded and the roll-back should be aligned
with the snapshots.

We further demonstrate how roll-back works with a case
based on the PPcache and snapshots shown in Fig. 6. If
a scribble happens in data-10, RMMIO should discard all
pages with a TID larger than 10 and relinks the latest table
to snapshot-1. We do not retain data-11 and data-12 because
storing the data with TID larger than that of the most recent
available data violates the consistency guarantees, as we
described in Section 2.2.1. In addition, we also do not roll
back to the version with TID as 9 because the data with
TID-9 could have been partially overwritten by data-10.
Thus, rolling back to the TID-9 also goes against the data
consistency. That is why the roll-back should be aligned with
the snapshots.

Recovery across a System Crash. In the event of a power
failure, the mapping table residing DRAM will be lost. We
cannot find the persistent pages buffering the data of a
file without the mapping table. Thus, RMMIO appends the
location (i.e., offset, index, fd in Fig. 6)of a page after the data
area of each persistent page. By traversing the locations of
the pages in the page pool after a system crash, RMMIO
can rebuild the mapping table snapshots of a file and recover
the file. However, the file descriptor (fd) will be reset after
a system reboot. We cannot find the target file correctly by
using the appended fd because the fd may be allocated to
a different file after the system reboots. Although we can
directly append the absolute path of a file after every page,
the lengthy path name causes non-negligible additional
writes. To address this problem, RMMIO creates a persistent
file descriptor table to permanently record file descriptors’
relationship with the absolute path of an opened file. Thus,
RMMIO can exactly know where to write these pages back
by looking up the file descriptor table. In addition, the latest
data will also be identified by comparing the TID of pages
so we can even recover the latest table by accessing the
metadata area of persistent pages. Maintaining metadata
for a page only takes 33 Bytes but helps us recover from
a system crash.

3.7 Automatic Snapshot

RMMIO sacrifices the persistence of some data to maintain
data integrity because data corruptions are more dangerous
than data loss. For example, if a user is modifying ”grub.cfg”
with RMMIO, a corrupted modification will cause the sys-
tem to fail to start. While if data is lost, the user only needs
to rewrite it once.

However, huge data loss is also unacceptable for users.
The existing snapshot in RMMIO has to be manually built
by users with snapshot(). However, users may be confused
about when to build a snapshot since users are not aware
of the layout of the data in PPcache and the recovery
mechanisms of RMMIO. If users lazily take snapshots, there
will be a huge data loss when scribbles happen. Because
the most available snapshot could be far away from the
latest data. Furthermore, if users frequently build snapshots
without recycling them, the memory space will soon run
out. Despite RMMIO can provide an interface for users
to recycle useless snapshots, the complex management of
snapshots may still trouble users and lead to non-negligible
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performance decline. To address these issues, RMMIO de-
vises an enhanced snapshot mode (we refer to auto-snapshot)
that automatically captures a fixed number of snapshots
for a file and keeps updates snapshots to follow the users’
updates. The auto-snapshot consists of an automatic capture
strategy and snapshots management strategy.

3.7.1 Automatic Capture
While enabling auto-snapshot, RMMIO captures snapshots
at fixed time intervals. The time interval is a predefined gap
between two logic timestamps (i.e., TID). In other words,
RMMIO will capture a snapshot after a fixed number of
writes. The automatic capture should guarantee the data
consistency of captured snapshots. So RMMIO does not cap-
ture a snapshot until the foreground ongoing write has been
committed. Furthermore, RMMIO has to lock the PPcache
to guarantee there are no more writes to the PPcache. Thus,
RMMIO captures snapshots in foreground threads to avoid
the software overheads caused by synchronization between
foreground I/O threads and the background thread. Since
taking a snapshot has to initialize a new mapping table,
frequent auto-snapshot will greatly increase the tail latency
of I/O requests. RMMIO mitigates the software overheads
of initializing a mapping table by batch preallocation and
initialization. Therefore, the foreground auto-snapshot only
needs to acquire a preallocated mapping table without a long
time stall.

3.7.2 Snapshots Merging
The memory footprint of snapshots is constrained under the
set threshold by RMMIO’s automatic recycle of snapshots
frequently captured by both auto-snapshot and snapshot().
Therefore, RMMIO tightly enforces a threshold on how
many snapshots are allowed to be captured for a file. When
the number of snapshots is over the predefined threshold,
RMMIO takes charge of shrinking snapshots. However,
writing the oldest snapshots back to the underlying file sys-
tem will cause a non-negligible time stall for the foreground
I/O service. Although we can apply a background thread to
recycle snapshots to mitigate the foreground time stall, the
limited bandwidth and poor read-write-mixed performance
of PM [42] still bothers the foreground I/O services. To
overcome this challenge, RMMIO proposes a lightweight
recycling strategy called snapshots merging, which avoids
access to PM, i.e., both read and write.

Snapshots merging merges the oldest two snapshots of a
file into a new snapshot by retaining the newer data and
discarding the older data for every page. The new snapshot
still maintains the latest data of two merged snapshots
but recycles some redundant data to restrict the memory
footprint of snapshots. The snapshot merging works in a
background thread but is triggered by the foreground I/O

services. In addition, we further propose two strategies to
mitigate the reads and writes to PM, i.e., fast scanning and
shadow migration, respectively.

Fast Scanning. As the instance shown in Fig. 7, if the
foreground thread has created more snapshots than the
set threshold (e.g., 2 snapshots), the background merg-
ing thread starts to merge the oldest two snapshots, i.e.,
snapshot-0 and snapshot-1. We may need to scan every page
in both snapshots-0 and snapshot-1 and compare their TIDs
to decide whether a page should be discarded or migrated
to snapshot-1. However, scanning all pages consumes too
much execution time and results in numerous PM reads
when accessing TID. In fact, we do not have to traverse
all pages’TID in these two snapshots since the data in
snapshot-1 is always newer than that in snapshot-0. Based
on this observation, we propose a fast scanning strategy
to accelerate the snapshot merging. The fast scanning only
traverses the newer snapshot, i.e., snapshot-1, to get the
pointer to the latest data of snapshot-1. If the pointer is not
NULL, RMMIO directly skips this page in snapshot-1 and
discards this page in snapshot-0, as page1-4 shown in Fig. 6.
On the contrary, if the pointer is NULL, it means snapshot-1
has never updated this page but the data may be updated
by snapshot-0. Thus RMMIO has to further get the latest
data of snapshot-0 and merge it into snapshot-1, as page0
shown in Fig. 6. Throughout the whole scanning, RMMIO
does not induce any PM read as the mapping table is built
in DRAM (Section 3.3).

Shadow Migration. While merging two snapshots, RM-
MIO has to migrate pages from snapshot-0 to snapshot-
1. However, directly copying data from snapshot-0 to
snapshot-1 will cost high write bandwidth of PM. To ad-
dress this problem, RMMIO employs shadow migration to mi-
grate data between two snapshots without any PM writes.
Shadow migration is based on RMMIO’s hybrid memory
architecture shown in Section 3.3. We only store recovery-
related data and metadata in PM (as shown in Fig. 6) but
build the run-time data structures in DRAM. Specifically,
we build a mapping table in DRAM to index a snapshot
and store pointers to PM pages in the entries of the mapping
table. Thus migrating data between two snapshots only takes
a pointer exchange in DRAM, without the need to induce
any write to PM. Moreover, the software overhead of snap-
shots merging is greatly reduced by shadow migration since it
mitigates numerous store instructions from the critical path
of merging.

3.8 Memory Management

RMMIO builds global persistent page allocators for all
working threads to dynamically allocate and recycle persis-
tent pages. The default size of the page pool for each thread
is 4GB, which is inadequate for data-intensive applications,
e.g., RocksDB. Thus, to satisfy the excessive demand for per-
sistent pages, RMMIO proposes two strategies, i.e., Garbage
Collection and Pool Extension, to provide enough pages for
every busy thread.

Garbage Collection. The data buffering in PPcache and
snapshots can be divided into two kinds of data, i.e., useful
data and useless data. The useful data refers to (1) the
data that is linked to the latest table, e.g., level0 of Page0
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in snapshot0 of Fig. 6, which may be read by future user
requests. (2) The useful data also includes the newest pages
in each snapshot even if they are not linked to the latest
table, e.g., level0 of Page1 in snapshot1 of Fig. 6, since they
are necessary for the recovery of RMMIO. Pages that do not
belong to useful data are called useless data, e.g., level1 of
Page0 in snapshot0 and level1 of Page1 in snapshot1 of Fig. 6.
They all used to be the undo log for a page write. The undo
log is not necessary anymore after a write commits. RMMIO
permanently maintains useful pages but recycles useless
pages with garbage collection. We create a background
thread to look for useless pages in PPcache and snapshots.
To recycle useless pages, RMMIO simply resets the valid bit
of a page and then pushes it back to the persistent page
allocator. The reset valid bit indicates that the data in this
page is not valid anymore. Thus, RMMIO does not need to
reset every bit of the page, reducing huge store instructions.
Moreover, we also do not need to copy data from those
useless pages to the underlying file systems since the data in
these pages has already been overwritten by the new data.
In addition, the recycling of these useless pages is similar to
the shadow migration, which only needs to move the pointer
of the useless page to the allocator queue, without any
PM write. The garbage collection can release at most 50%
persistent pages of PPcache and snapshots.

Pool Extension. Although RMMIO recycles useless
pages, a persistent page pool can easily run out in data-
intensive workloads. In this case, RMMIO extends the per-
sistent page allocator by allocating new page pools, instead
of writing useful data back to the underlying file system.
Because allocating 4GB persistent memory (1.14s) is almost
32x as fast as 4GB data migration (36.52s) from PPcache to
the underlying file system. In addition, RMMIO extends
the persistent page pool before it becomes full (at 70%
utilization), which avoids a long tail latency of RMMIO.
Since RMMIO is designed as an extension of the underlying
PM file system and guarantees data reliability, maintaining
data in user-space PPcache is also a practical strategy for
permanent storage.

4 EVALUATION

This section presents a comprehensive evaluation of RM-
MIO through both microbenchmarks and real-world appli-
cations. We also compare RMMIO with state-of-the-art PM-
aware file systems and two MMIO-based works, including
NOVA [40], PMFS [15], ext4-DAX [37], SplitFS [23] and
Libnvmmio [12]. In the following sections, we demonstrate
RMMIO’s performance in common I/O workloads (Sec-
tion 4.2), software overhead caused by reliability guarantees
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(Section 4.2), scalability (Section 4.3), performance decline
caused by auto-snapshot (Section 4.4), and performance in
the real-world applications (Section 4.5).
4.1 Experimental Setup
We implement the experimental evaluation on a system
equipped with 2-socket Intel Xeon 6230R, 12 * 16GB DDR4
and 12 * 128GB Optane DC Persistent Memory. To enable
persistency and high bandwidth of PM, all Optane DC
Persistent Memory Modules are configured as App Direct
Mode with interleaving [22]. We use numactl to bind all
working threads and memory regions to the same NUMA
node to avoid cross-node memory access. Finally, our eval-
uation is performed on Linux kernel 4.13 with FIO [8] as
microbenchmark and RocksDB as the real-world evaluation
platform.

4.2 Single-thread Evaluation
As shown in Fig. 9(a), we evaluate RMMIO in read/write
with both sequential 4KB I/O and random 4KB I/O. Since
the I/O path of RMMIO is much shorter than any com-
petitor, the sequential write throughput of RMMIO is 2.54x,
1.18x, 1.46x, 1.98x, and 1.37x higher than that of NOVA,
SplitFS, PMFS, Libnvmmio, and ext4-DAX, respectively. The
random write performance shows similar results. In read
evaluations, the throughput of RMMIO is slightly lower
than that of MMIO-based works (i.e., Libnvmmio, SplitFS).
Because RMMIO must calculate the checksum of every
page to examine data integrity while the other MMIO-
based works dismiss the data integrity guarantees. The read
performance of RMMIO is expected to be close to other
MMIO-related works by using a better CRC32C accelerator.

We further evaluate RMMIO’s write performance with
variable I/O sizes, as shown in Fig. 9(b). Whatever the I/O
size is, RMMIO always shows higher write throughput than
any related work. Specifically, for 512KB sequential writes,
RMMIO achieves a maximum bandwidth of 3818MB/s,
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Fig. 10: Concurrent Performance of RMMIO.

TABLE 2: The memory footprint of a 128MB file in PPcache.

PM Structures Size DRAM Structures Size
data 128MB mapping table 2.28MB

metadata 1.03MB thread metadata 3MB
fd table 5.23MB hash table 781.31KB

FILE 80.625KB
Total 140.38MB

which is over 44% higher than that of ext-DAX. Even
compared with SplitFS (strict mode), RMMIO obtains per-
formance gains up to 2.19x owing to the lightweight log
strategy (Section 3.4). With the increase of I/O size, the
performance improvement ratio of RMMIO also exceeds the
state-of-the-art works. Because the mapping table in RMMIO
is more efficient than tree-like index structures, e.g., extent
tree in ext4-DAX, radix tree in Libnvmmio, for range query-
ing multiple pages.

As the Cumulative Distribution Function (CDF) of 4KB
write latency shown in Fig. 9(c), the write latency of RMMIO
is lower than all related works. Especially, the P99 latency
of RMMIO writes is only 1704ns, which is even lower
than the minimum latency of NOVA (3728ns) and PMFS
(2544ns). Because RMMIO permanently buffers the data in
the PPcache to avoid falling into the kernel. In addition,
the logging strategy of RMMIO does not have to write
log before writing data, removing the extra write from the
critical IO path. Thus, RMMIO also outperforms Libnvmmio
(2864ns) in write latency, which is also based on MMIO.

In Fig. 9(d), we measure and quantify five major software
overheads of RMMIO. The two main components, i.e., data
copy and checksum calculation, take up almost 90% of the
execution time in RMMIO write. Although RMMIO spends
over 20% of the execution time on checksum calculation,
the data copy still accounts for up to 64%. The experimental
results show that RMMIO is still more efficient than ext4-
DAX (less than 44% [12]).

As shown in Table 2, we evaluate the memory footprint
of RMMIO after writing a 128MB file. The data of the file
only takes up 128MB, which does not induce any space
amplification because RMMIO has recycled the old data
in time. Moreover, the other basic components of RMMIO
(i.e., fd table, thread metadata, hash table) and file-related
data (metadata, mapping table, FILE) only spend 12.38MB
of memory space. Note that thread metadata, hash table and
fd table will not grow as the number of files and the size of
a file. Because they are all preallocated at the initialization
of RMMIO. Thus, the space amplification ratio of RMMIO
will be less than 9.6%.

4.3 Scalability

Scalability is another essential advantage of MMIO as it
is byte-addressable. In modern multi-core systems, write-
intensive applications benefit from highly scalable I/O in-
terfaces. To compare the scalability of RMMIO with other
MMIO-based schemes and kernel file systems, we evaluate
RMMIO and its competitors with concurrent 4KB-sequential
write/read-write I/O to multiple files or a shared file. The
experimental results of concurrent I/O are shown in Fig. 10,
except for SplitFS. The reason is that SplitFS does not
support concurrent writes to a shared file and concurrent
read-write mixed workloads in strict mode.

According to Fig. 10(a), the maximum bandwidth of
RMMIO concurrent write exceeds that of NOVA, PMFS,
Libnvmmio, ext4-DAX by 14.07x, 7.50x, 1.96x, 8.49x, respec-
tively. Since page-grained locks do not block the nonover-
lapping I/O operations, the concurrent writes of RMMIO to
a shared file could be fully paralleled. Thus, the throughput
of RMMIO increases almost linearly with the number of
threads. Although libnvmmio also employs page-grained
locks for concurrent execution, it does not follow the 4KB-
aligned access to PM (Section 3.5), resulting in both single-
thread and concurrent throughput penalty.

RMMIO follows the reader/writer locking mechanism
adopted by VFS thus achieving high scalability in read-write
workloads. Furthermore, RMMIO employs a fine-grained
reader/writer lock for every page. Thus, multiple reader
threads can work on the same page, and multiple writer
threads can write different pages of a shared file at the
same time, which is blocked by kernel file systems (e.g.,
ext4-DAX, NOVA). Moreover, RMMIO also employs atomic
primitives to mitigate frequent locking for thread safety.
As a result, RMMIO gains up to 15.94x higher throughput
than NOVA and 5.97x higher throughput than ext4-DAX as
shown in Fig. 10(b). Although the single-thread read perfor-
mance of RMMIO is slightly lower than other competitors,
the scalability of RMMIO can complement the performance
penalty caused by RMMIO read.

In Fig. 10(c) and Fig. 10(d), we evaluate the impacts of
other limitations for concurrent execution without sharing
a file between threads. For concurrent writes to multiple
files, RMMIO still exceeds NOVA, SplitFS, PMFS, Libn-
vmmio, and ext4-DAX by 4.51x, 6.42x, 2.70x, 2.31x, and
2.75x, respectively. By analyzing their software stacks with
perf [5], the advantage of RMMIO comes from the thread-
local log region (i.e., PPcache), which has no log contention,
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compared with the shared log region in other works, e.g.,
JBD2 in ext4, WAL in SplitFS. Though NOVA employs a per-
inode logging strategy, it still spends much time on garbage
collection. The slight performance degradation of RMMIO
over 8 threads, shown in Fig. 10(c), is due to the limitation
of Effective Write Ratio (EWR) [22] in PM. Since different
threads access data with different addresses, the concurrent
access to PM is similar to random access to PM. Random ac-
cess to PM will result in frequent built-in cache replacement.
Thus, as the number of threads increases, concurrent access
to PM triggers more and more unnecessary internal write
amplification, resulting in the external performance decline.

4.4 Performance Decline Caused by Auto-snapshot
To measure the performance decline caused by auto-
snapshot, we reevaluate RMMIO in two write-intensive
workloads, i.e. concurrent write to multiple files (write in
Fig. 11(a)) and concurrent write to a shared file (shared
write in Fig. 11(a)). The experimental result shows that the
single-thread performance decline is only 4.5%. Because the
snapshot capture only takes negligible overheads and the
background snapshot merging does not block foreground
I/O operations. The performance decline grows up with the
number of working threads. The maximum performance
decline of write and shared write is 39.9% and 33.1%,
respectively. Although the snapshot merging does not block
foreground I/O operations, the single-thread merging is too
slow to merge snapshots for 16 threads at the same time.
Since too many snapshots cannot be recycled in time, the
persistent page pool will soon run out under the continuous
writes. Thus, the background pool extension will be fre-
quently triggered. The foreground I/O services have to wait
for the extension thread to provide enough persistent pages.
But a single extension thread cannot concurrently extend 16
page pools, slightly blocking the foreground I/O operations.
Though it is easy to build more background merging threads
and extension threads, RMMIO only employs one for each
to minimize the usage of system resources. Even in this
case, the write throughput of RMMIO still outperforms
all competitors while enabling auto-snapshot, as shown in
Fig. 10 and Fig. 11(a).

We also evaluate RMMIO with a limited number of
CPU cores, which is equal to the number of foreground
working threads. As shown in Figure A, the shared-write
performance of RMMIO does not drop down while working
in limited cores. Instead, RMMIO achieves higher band-
width than that of the unlimited workload. It is because
the background thread occupies some CPU time of working
threads, which also reduces the contention of lock among
working threads that share a file. Thus, the background
thread actually takes full use of the CPU resources that used
to be wasted by lock contention, which also increases the
possibility of acquiring a lock for working threads. In other
words, the computation resources needed by RMMIO for
background snapshot merge are negligible. In concurrent
write evaluations, limited RMMIO shows a 27.9% perfor-
mance decline compared to unlimited RMMIO, while work-
ing with 8 threads. That is because the extending thread
is fully loaded under continuous write operations. The
extending thread and merging thread both compete with
foreground working threads for CPU time, which makes

the computation bottleneck appear earlier than unlimited
RMMIO. However, the bottleneck will not tighten further,
because the two background threads at most take up two
physical cores. The 16-thread concurrent write performance
proves that the two background threads do not further
decrease the bandwidth of RMMIO.

4.5 Real-world Applications

To demonstrate how RMMIO performs in real-world appli-
cations, we adapt RMMIO to RocksDB [16] and evaluate
it with five built-in benchmarks in db bench, i.e., fillrandom,
readwhilewriting, fillseq, overwrite, and appendrandom. Every
benchmark includes 10,000,000 key-value (KV) operations
and each key-value pair contains 16B key and 1024B value.
Since SplitFS and Libnvmmio have not been adapted to
RocksDB, we only compare RMMIO with state-of-the-art
PM-aware file systems in this evaluation.

RMMIO provides atomic I/O interfaces so that we avoid
inefficient WAL in RocksDB, which resides in the critical
path of RocksDB writes and even blocks KV operations
in some specific cases. So RocksDB accelerated by RMMIO
exceeds all competitors in every benchmark as RocksDB is
a write-intensive application. Especially, in fillseq, RMMIO
accelerates RocksDB by 7.06x compared with ext4-DAX, and
10.54x compared with NOVA. Because RMMIO is optimized
for sequential I/O via mapping talbe, which is more efficient
than the tree-like indexing structures. Randomly inserting
KV pairs with RocksDB will cause the reorder of KV pairs,
called compaction, which reads KV pairs from the underly-
ing file system and write them back again after reordering
KV pairs. Thus, benchmarks that randomly insert KV pairs,
i.e., fillrandom, overwrite, appendrandom, will suffer from fre-
quent I/O operations, including both read and write. Al-
though RMMIO is not good at read, the outstanding write
performance complements the read penalty. Specifically, in
overwrite, RMMIO still outperforms NOVA, PMFS, and ext4-
DAX by 3.93x, 1.95x, and 2.67x, respectively. Even in the
read-write-mixed benchmark, i.e., readwhilewriting, RMMIO
gains up to 2.46x throughput of NOVA, 1.2x higher through-
put than PMFS, and 1.49x higher throughput than ext4-
DAX. The RocksDB accelerated by RMMIO outperforms
all competitors in all evaluated benchmarks, indicating that
RMMIO can efficiently accelerate write-intensive applica-
tions.

Although RMMIO is designed as a write-optimized IO
system, we still demonstrate the performance of RMMIO in
read-intensive workloads to make sure that the read perfor-
mance is not a burden on RMMIO. We adopted RMMIO on
MyRocks [3], a variant of MySQL, which replaces the default
storage engine with RocksDB. We evaluate the performance
of MyRocks with Linkbench [2], a database benchmark
developed to evaluate database performance for workloads
similar to Facebook’s production MySQL deployment. Our
evaluation includes pure-read, read-intensive (80% read)
and write-intensive (80% write) workloads.

As shown in Fig. 11(c), the pure read performance of
RMMIO is slightly lower than that of ext4-DAX and other
MMIO-based works. Because RMMIO strictly examines the
data integrity while reading a page, which caused a signif-
icant performance decline. Furthermore, the page-grained
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Fig. 11: Auto-snapshot and Real-world Applications.

lock mechanism also increases the complexity of reading a
file. Thus both RMMIO and libnvmmio perform poorer than
SplitFS, which only employs a file-grained lock and directly
maps files into user address space. As shown in Fig. 11(d),
the poor read performance truly decreases the through-
put of RMMIO in the pure-read evaluation of Linkbench.
However, the ratio of performance decline compared with
Ext4-DAX is only 6.1%, which is far less than our expecta-
tion due to the performance gap shown in Fig. 11(c). The
reason is that the RocksDB in MyRocks can employ block
cache to accelerate read operations, which works like the
system page cache. The block cache fills the performance
gap between RMMIO and Ext4-DAX. The write-intensive
evaluation indicates that RMMIO exceeds both Ext4 and
Ext4-DAX as expected. The only unexpected thing is that
Ext4 far outperforms Ext4-DAX. We think this is because
MyRocks does not immediately write all data back to
storage with fsync(). While RMMIO and Ext4-DAX directly
write data back to PM, without any intermediate DRAM
buffer (e.g., page cache in Ext4). RMMIO performs better
than Ext4 because RMMIO does not need to enable the
WAL in RocksDB. The evaluation results of read-intensive
workloads prove that even though the read performance
of RMMIO is not as good as other MMIO-based works, the
overall performance of RMMIO is still better than Ext4-DAX
and Ext4 by 9.1% and 11.7%, respectively.

4.6 Reliability
Per-page checksum and auto-snapshot make RMMIO be
able to detect any scribbles and recover from data corruption
caused by scribbles. To examine the reliability of RMMIO,
we implement a malicious process to inject scribbles into
PM while running RMMIO. The malicious process includes
several different modes that can inject scribbles with sizes
ranging from 1KB to 40KB in up to 16 threads. The number
of random injections in each evaluation is 2, 000, 000, 000.
The experimental results show that RMMIO can detect all
scribbles and recover from them without data inconsistency.

5 RELATED WORKS

Although we have discussed some works that are highly
related to RMMIO in Section 2, there are still some more
interesting works that are not mentioned, which inspired us
while designing RMMIO. In this section, we will introduce
these works and compare them with RMMIO.

BPFS [14] proposes a basic architecture for the PM file
system and first considers data consistency of PM. The

most brilliant contribution of BPFS is short-circuit shadow
paging (SCSP), which allows BPFS to use copy-on-write at
fine granularity, atomically committing small changes at any
level of the file system tree. SCSP significantly reduces the
write amplification compared with log-based atomic up-
dates but it relies on a tree-like indexing structure. RMMIO
can achieve the same data consistency guarantees as BPFS
but with a more efficient indexing structure (mapping table).

SCMFS [38] proposes a user-space file system that im-
plements all IO operations in user address space, which is
similar to RMMIO. SCMFS maps each file into a contiguous
address space and directly indexes files with the virtual
address. Although the indexing method of SCMFS is more
efficient than the mapping tables of RMMIO, it does not
take data consistency into consideration. With the help of
mapping tables, RMMIO can provide atomic I/O interfaces
while not inducing any extra writes. In addition, SCMFS
also does not provide any data integrity guarantees, which
is also a key contribution of RMMIO.

Nova-Fortis [41] and NOVA [40] are log-structured file
systems, which can atomically write/update data to files
by simply attaching a new log. Although it also does not
require extra writes on the IO path, the stale logs must
be periodically garbage collected. While the old data logs
are automatically overwritten by new data in RMMIO,
without any additional overheads. Nova-Fortis notices the
data integrity problem of NOVA. Thus the backup and
deadzone are employed to ensure the data integrity for
PM files while incurring dramatic static space overheads.
Furthermore, Nova-Fortis also supports taking a full-copy
snapshot for a mapped file to prevent user-space scribbles.
However, taking a full-copy snapshot is not as efficient as
the incremental snapshot of RMMIO. Because incremental
snapshots do not need to copy the unmodified data.

In addition to accelerating file IO operations, NV-
Heaps [13], Mnemosyne [36], HEAPO [20] and Pangolin [44]
are trying to extend the heap of a program from the volatile
region to the persistent region, with the help of DAX-style
MMIO. These works provide interfaces for programmers to
build persistent heaps on PM and manage persistent objects
in the persistent heap. All of them ensure the consistency
of persistent object operation with the help of logging [36],
[20], [13], log-structure [36] and atomic primitives [36],
[44]. Despite these works focusing on the management of
persistent objects while RMMIO aims to accelerate file IO
operations, RMMIO also learned a lot from these works.
Since atomic primitives only support 8B data operations,
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RMMIO employs atomic primitives to guarantee data con-
sistency of 8B metadata. Moreover, RMMIO employs an
undo log to ensure the data consistency of file IO operations
but without inducing any extra writes. In some perspectives,
the PPcache of RMMIO is organized in the form of log-
structure style, but it can automatically overwrite the old
logs. We note that Pangolin [44] and Pavise [30] also provide
protections for data integrity. Although we both employ
the 32-bit checksum to detect data corruption, due to the
limitation of parity, Pangolin and Pavise cannot recover
from the corruption where two pages in two columns are
lost at the same time, while the snapshot-based recovery
of RMMIO does not have such a limitation. In addition,
the parity has to be updated along with the updates of
all related data while the snapshot of RMMIO does not
need to be frequently updated, which reduces the software
overhead of data integrity guarantees.

We also note that there have been hardware integrity
guarantees for PM, e.g., Tvarak [24], which can transpar-
ently detect corruption and maintain data redundancy for
mapped PM regions at the hardware level. Although Tvarak
also employs parity as data redundancy for recovery, it
has a fine-grained hardware-managed checksum calcula-
tion, which is more efficient than the software page-grained
checksum of RMMIO. We expect that Tvarak can soon be
publicly available to further reduce the performance over-
head of data integrity guarantees for RMMIO.

Previous works also proposed PM transactions to pro-
vide atomic durability for PM, with the help of hardware
logging. LAD [18] proposed a hardware transaction that
maintains a persistent buffer in the memory controller and
atomically commits the data in the buffer. However, the size
of a transaction is limited within the size of the persistent
buffer, which cannot help to guarantee the consistency of
large IO operations for file systems. HOOP [11] provides
atomic durability by using hardware-assisted out-of-place
updates. It first writes updates to a persistent out-of-place
region (OOP region) and then changes the data mapping
from the home region (the original address) to the OOP
region to avoid write amplification for logging. Although
HOOP can periodically collect the garbage in the OOP
region, the maximum size of OOP region (2MB) still restricts
the size of a transaction for executing a large IO operation
and decreases the performance of write-intensive work-
loads. SLPMT [43] proposed a selective logging mechanism
to remove redundant data from hardware logging, which
can increase the performance of transaction execution. The
key insight of SLPMT has already been included by RM-
MIO, since RMMIO only persists the data useful to recov-
ery. In addition, users are forced to specify the execution
region with Txbegin and Txend, to achieve atomic durability
while using hardware transaction. Thus, existing software
has to be extensively modified to benefit from hardware
transactions. In contrast, RMMIO provides POSIX-like IO
interfaces, which can be compatible with existing software.

6 CONCLUSION

We have applied RMMIO to persistent memory systems to
address the problems induced by DAX-style MMIO, i.e.,
lack of guarantees to data consistency and integrity. The key
contribution of RMMIO is that we achieve a good balance

between the efficiency and reliability of MMIO by introduc-
ing PPcache in existing persistent memory systems. Based on
PPcache, RMMIO proposes atomic I/O interfaces for data
consistency and incremental snapshots for data integrity.
The experimental results show the atomic IO interfaces of
RMMIO can provide 2.31x higher bandwidth than existing
log-based schemes and the incremental snapshot with auto-
snapshot can strictly guarantee data integrity with only 4.5%
additional overhead. Moreover, the overall performance of
RMMIO exceeds the most popular PM-ware file system,
i.e., ext4-DAX, by at most 849%. The evaluation proves
that RMMIO can provide MMIO-like performance while
ensuring data reliability.
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