
2290 IEEE TRANSACTIONS ON COMPUTERS, VOL. 73, NO. 9, SEPTEMBER 2024

Enabling Reliable Memory-Mapped I/O With
Auto-Snapshot for Persistent Memory Systems

Bo Ding , Wei Tong , Yu Hua , Senior Member, IEEE, Zhangyu Chen ,
Xueliang Wei , and Dan Feng , Fellow, IEEE

Abstract—Persistent memory (PM) is promising to be the
next-generation storage device with better I/O performance. Since
the traditional I/O path is too lengthy to drive PM featuring
low latency and high bandwidth, prior works proposed memory-
mapped I/O (MMIO) to shorten the I/O path to PM. However,
native MMIO directly maps files into the user address space,
which puts files at risk of being corrupted by scribbles and
non-atomic I/O interfaces, causing serious reliability issues. To
address these issues, we propose RMMIO, an efficient user-space
library that provides reliable MMIO for PM systems. RMMIO
provides atomic I/O interfaces and lightweight snapshots to
ensure the reliability of MMIO. Compared with existing schemes,
RMMIO mitigates additional writes and extra software over-
heads caused by reliability guarantees, thus achieving MMIO-
like performance. In addition, we also propose an automatic
snapshot with efficient memory management for RMMIO to min-
imize data loss incurred by reliability issues. The experimental
results of microbenchmarks show that RMMIO achieves 8.49x
and 2.31x higher throughput than ext4-DAX and the state-of-
the-art MMIO-based scheme, respectively, while ensuring data
reliability. The real-world application accelerated by RMMIO
achieves at most 7.06x higher throughput than that of ext4-DAX.

Index Terms—Persistent memory, memory-mapped I/O, PM-
aware file system, data reliability.

I. INTRODUCTION

NON-VOLATILE memory (NVM) technologies, such as
Resistive RAM (ReRAM) [35], 3D XPoint memory [21],

and Phase Change Memory (PCM) [31], achieve the advantages
of both DRAM (e.g., low latency and high bandwidth) and disk
(e.g., persistency), enabling the durability of data in memory
space. Persistent memory (PM) powered by NVMs reduces
hardware I/O overhead while suffering from the long I/O path
of traditional file systems. To simplify the software I/O stack,
recent PM-aware file systems, e.g., PMFS [15], NOVA [40],
and ext4-DAX [37], leverage the DAX (Direct Access) [1]

Manuscript received 21 December 2022; revised 3 March 2024; accepted
18 May 2024. Date of publication 19 June 2024; date of current version
9 August 2024. This work was supported by the National Natural Science
Foundation of China under Grant 61832007, Grant 61821003, and Grant
62172178. Recommended for acceptance by M. Kandemir. (Corresponding
author: Wei Tong.)

The authors are with Wuhan National Laboratory for Optoelectronics,
Huazhong University of Science and Technology, Wuhan 430074, China
(e-mail: boding@hust.edu.cn; tongwei@hust.edu.cn; csyhua@hust.edu.cn;
chenzy@hust.edu.cn; xueliang_wei@hust.edu.cn; dfeng@hust.edu.cn).

Digital Object Identifier 10.1109/TC.2024.3416683

technology to remove the additional data copy between PM
and the page cache in DRAM. Thus PM-aware file systems
can directly access the data in PM and enable in-place updates
to PM files. However, DAX-enabled file systems still suffer
from the complex indexing structure and lengthy kernel I/O
path. To further simplify the I/O path to PM, SplitFS [23] and
Libnvmmio [12] propose user-space I/O operations that map
PM files into user address space and access data via load/store
instructions, termed DAX-style memory-mapped I/O (MMIO).
MMIO speeds up I/O operations but keeps the mapped data out
of the kernel’s protections. Specifically, existing MMIO-based
schemes face two main reliability problems: data integrity and
consistency.

Data Integrity. While employing MMIO, the file mapped
into user address space could be easily overwritten with ar-
bitrary data, called scribbles, due to bug-prone user-space
software and unexpected hardware errors [25], [41]. In PM
systems, scribbles could be more dangerous than those in
DRAM systems because of recently discovered bugs in PM
programming [27], [28]. In addition, scribbles in PM will per-
manently corrupt data and exist even after the system reboots.
Although previous works, e.g., Btrfs [32] and ZFS [10], provide
complete mechanisms to protect file data from scribbles, they
have not considered protecting the mapped data. Moreover, the
NVDIMM driver that manages PM devices also cannot provide
any RAS (recovery, availability, and serviceability) guarantee
for the PM data [4]. Snapshots and replicas are widely em-
ployed by existing highly reliable file systems [10], [32], [41],
to protect data from scribbles. However, snapshots and replicas
cause huge write amplification, compromising the performance
of MMIO.

Data Consistency. PM does not provide block-level atom-
icity but only guarantees the atomicity for 8-byte write: any
write larger than 8 bytes may be partially lost in the event
of a system crash, posing significant challenges to the crash
consistency (we refer to consistency) of data in PM [40]. Exist-
ing PM file systems provide atomic I/O interfaces to guarantee
data consistency for PM. However, MMIO bypasses all I/O
stacks of PM file systems and escapes from data consistency
protections. To guarantee data consistency for MMIO, SplitFS
[23] implements atomic I/O operations by combining WAL (i.e.
Write-Ahead-Log) and copy-on-write. Due to the over 50%
performance decline, such a strict consistency guarantee is
only available in the strict mode of SplitFS. Libnvmmio [12]

0018-9340 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on August 23,2024 at 13:57:16 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-7588-0140
https://orcid.org/0000-0002-8834-4953
https://orcid.org/0000-0001-7730-3796
https://orcid.org/0000-0001-9020-3693
https://orcid.org/0000-0003-3571-1702
https://orcid.org/0000-0002-4674-6006
mailto:boding@hust.edu.cn
mailto:tongwei@hust.edu.cn
mailto:csyhua@hust.edu.cn
mailto:chenzy@hust.edu.cn
mailto:xueliang_wei@hust.edu.cn
mailto:dfeng@hust.edu.cn

DING et al.: ENABLING RELIABLE MEMORY-MAPPED I/O WITH AUTO-SNAPSHOT FOR PERSISTENT MEMORY SYSTEMS 2291

proposes fine-grained logging to accelerate the concurrent I/O
but there is still a performance penalty due to the double writes
of WAL. NOVA [40], a PM-specific file system, relaxes the
consistency guarantees for the mapped data by creating a replica
only for mapping, resulting in significant write amplification.
All existing works suffer from performance overhead caused
by data consistency guarantees.

In summary, although MMIO shows better performance than
traditional kernel-involved I/O, it still faces the challenge of en-
suring the reliability (i.e., integrity and consistency) of memory-
mapped data at a low cost. To address these issues, we propose
Reliable Memory-Mapped IO (RMMIO), a user-space I/O li-
brary that provides MMIO-like I/O performance while ensuring
both data consistency and integrity for PM systems.

To minimize the extra overheads caused by reliability guar-
antees, RMMIO inherits the matured protection mechanisms
of kernel-space file systems [10], [32], [41] by keeping all
files in kernel space, without mapping them into user address
space. However, existing protection mechanisms limit the per-
formance of user I/O since users have to access PM files
via low-speed system calls. Thus, we further employ a large
contiguous persistent memory region as a cache layer, called
Persistent Page Cache (PPcache), to accelerate user I/O. The
cache directly resides in user space, so accessing PPcache is as
fast as MMIO to the mapped file. Since PPcache is persistent,
I/O requests arriving at PPcache will be persisted immediately,
shortening the I/O path of RMMIO.

Owing to the reliable underlying file system, RMMIO only
needs to take charge of the reliability of the data buffered in
PPcache. To guarantee the consistency of PPcache, RMMIO
provides atomic I/O interfaces by employing WAL (Write-
Ahead Log). Considering that existing WAL has to copy old
data as undo log to a specific log region before writing new
data, to avoid being overwritten by new data. RMMIO builds a
two-level structure to in-place preserve the old data. The new
data can be written to another level to avoid overwriting old
data, which mitigates the extra write for copying old data to
the log region. Moreover, to prevent unrecoverable corruptions
caused by scribbles, RMMIO also supports taking a snapshot
for the data buffered in PPcache. The snapshot provides a con-
sistent backup of PPcache. Once the scribble happens, RMMIO
can recover the file with unaffected snapshots. To reduce the
software overhead induced by snapshots, RMMIO implements
incremental snapshots that only record updates to a file, which is
much more efficient than full-copy snapshots due to mitigating
significant data movements.

Although snapshots can increase data reliability, intemper-
ately taking snapshots will result in a performance decline of
I/O service and resource exhaustion of PM. On the other hand,
if users do not take a snapshot in time, unexpected scribbles can
lead to huge data loss. To trade off the reliability and availability
of snapshots, RMMIO provides an enhanced snapshot mode
called autosnapshot. While enabling autosnapshot, RMMIO
will automatically take snapshots for PPcache. The automatic
snapshots always follow the most recent updates to PPcache
by creating new snapshots and recycling old snapshots in the
background, without user intervention. Since auto-snapshot

exacerbates the strain on PM resources, we also propose a set
of strategies to manage the limited persistent memory resources
for RMMIO, including snapshot merging, persistent page pool
extension, and garbage collection. Specifically, these strategies
are optimized for PM access characteristics (e.g., limited write
bandwidth, poor read-write performance, and so on), which
only incur negligible performance penalties for foreground I/O
services. Our analysis shows that enabling autosnapshot only
causes a 4.5% performance hit.

We evaluate RMMIO with both microbenchmarks and real-
world applications. The experimental results show that RM-
MIO gains up to 8.49x higher throughput than ext4-DAX [37]
and achieves 2.31x higher throughput than the state-of-the-art
MMIO-based scheme [12] in write-intensive workloads while
guaranteeing data reliability. In the evaluation of real-world ap-
plications, RocksDB accelerated by RMMIO achieves at most
706% higher throughput than that of ext4-DAX.

The contributions of RMMIO are as follows:
• We propose a new architecture for MMIO to ensure the

data reliability of PM by introducing PPcache.
• Based on PPcache, we implement a user-space I/O library

called RMMIO, which provides MMIO-like I/O perfor-
mance while ensuring both data consistency and integrity
for PM systems.

• We enhance RMMIO with auto-snapshot and efficient
memory management strategies that provide better data
integrity guarantees while keeping the outstanding perfor-
mance of RMMIO.

• We provide a comprehensive evaluation to demonstrate
the advantages of RMMIO in common I/O operations and
real-world applications.

II. BACKGROUND AND MOTIVATION

A. Accesses to Persistent Memory

Non-volatile Memories (NVMs) mitigate the performance
gap between DRAM and block devices due to the DRAM-like
performance and disk-like persistency. By using non-volatile
memory (NVM) as persistent memory (PM), developers can
durably store data in the memory space. Intel previously in-
troduced a commercial persistent memory product known as
the Optane DC Persistent Memory Module. According to the
evaluations of Optane [42], the maximum bandwidth of PM
is up to 13.9GB/s for writes and 39.4GB/s for reads, which is
much better than that of disks and SSDs.

In traditional file systems, the bottleneck of data access is
the poor I/O performance of block devices. Hence, the page
cache residing in DRAM is used as the fast read cache and
write buffer to reduce the number of block I/O. However,
existing PM-aware file systems, e.g., PMFS [15] and ext4-
DAX [37], hold the view that page cache is unnecessary for
persistent memory systems, as it brings extra data copy due
to the intermediate cache layer. Since software dominates the
overheads of I/O operations in PM, PM-aware file systems
remove page cache from the I/O path, and directly access the
data residing in persistent memory, called direct access (i.e.,
DAX). DAX significantly reduces the software overhead but

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on August 23,2024 at 13:57:16 UTC from IEEE Xplore. Restrictions apply.

2292 IEEE TRANSACTIONS ON COMPUTERS, VOL. 73, NO. 9, SEPTEMBER 2024

Fig. 1. Comparison between MMIO and Kernel I/O.

still gets the kernel involved. To further reduce the software
overhead of accessing PM, PM-aware file systems propose
DAX-style mmap(), a new memory-map approach that di-
rectly maps the file instead of the page cache. With DAX-
style mmap(), users can access the target file via load/store,
called DAX-style MMIO. Since DAX-style mmap() bypasses
kernel I/O path (e.g., kernel-user switch, VFS, complex page
index), the only overhead involved in DAX-style MMIO is
the address translation through MMU. Fig. 1 compares the
differences among DAX-style MMIO, DAX and traditional file
access.

B. Data Reliability of MMIO in PM

1) Consistency: Persistent Memory extends the persistent
domain to memory space. Thus we have to consider the data
consistency of memory space in PM systems. To guarantee the
data consistency of PM, all I/O operations should be atomic, i.e.,
to execute in an “all or nothing” fashion. Different from block
devices, PM only provides 8-byte atomicity [12], [40] instead of
block atomicity (512 bytes). Thus, it is a great challenge for PM
programmers to guarantee data consistency for variable-length
data in PM.

In systems equipped with persistent memory (PM),
PM-specific bugs [27], [28] can also cause data inconsistency.
For example, the commit flag of a data page persists before
we copy the new data to the persistent memory due to the
out-of-order execution [45]. In this case, the old data will be
mistakenly treated as the new data, which is inconsistent with
the commit flag. Thus programmers have to figure out when
and in which order to flush the data in PM, which is nontrivial
for developers.

2) Scribbles and Data Integrity: Scribbles are operations
that randomly overwrite correct data with arbitrary values.
Scribbles are well-known file system errors caused by both
unreliable hardware [33], [34] and bug-prone software [9],
[27], [28], such as buffer overflows, memory bitflips. Integrity
is interpreted as data that has never been modified by unex-
pected scribbles.

We describe how scribbles compromise data integrity with
the description of a bug instance shown in Fig. 2. USER is
a user-defined structure composed of an eight-element pointer
array (parray) and a long integer (number). In a common case,
programmers can store a pointer to any memory region in

Fig. 2. An example of scribble caused by a user-space bug.

parray and set number as any value within the range of a
long integer. However, such a common instance could cause
unexpected data corruptions in PM systems. We can map a
PM file into user address space in PM systems. The address
range of the memory-mapped file is between stack and heap,
which can be easily overwritten by faulty memory accesses.
We demonstrate the faulty memory access with the following
assumptions: A PM file is mapped into an address space start-
ing at 0x7fb848f3d000 and the programmer also sets number
to 0x7fb848f3d000. If a programmer mistakenly accesses the
element over the range of parray, e.g., *(user->parray + 8),
he actually accesses the memory region of number. Note that
the value of number is 0x7fb848f3d000, which is equal to
the starting address of the memory-mapped file. As a result,
a scribble will write “E” to the PM file, as shown in line 15
of the above instance. The data integrity of the PM file will be
permanently broken by the scribble.

Such a consequence is unpredictable for new programmers
working on persistent memory systems. Although existing
works have proposed Machine Check Exception (e.g., ECC
[19]) and software debugging tools [6], [7] to improve the
system reliability, bugs and errors that cannot be detected by ex-
isting techniques still remain in the system. For example, ECC
cannot detect 2-bit flipped errors or correct 1-bit flipped errors
and GCC can not report faulty memory accesses induced by
programmers. So computer systems still suffer from scribbles,
especially for the data residing in the user address space due to
the lack of protections from the kernel file system.

C. Motivations

Although PM-aware file systems have simplified the I/O
path for PM, invoking a system call still introduces much
higher overhead than performing MMIO. We measure the
software overhead of ext4-DAX with perf [5]. The measure-
ment shows that less than 44% execution time of a kernel-
involved I/O is spent on copying data, far less than the 100% of
DAX-style MMIO.

DAX-style MMIO brings significant performance gains but
also exposes the file to the risk of user-space scribbles and

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on August 23,2024 at 13:57:16 UTC from IEEE Xplore. Restrictions apply.

DING et al.: ENABLING RELIABLE MEMORY-MAPPED I/O WITH AUTO-SNAPSHOT FOR PERSISTENT MEMORY SYSTEMS 2293

non-atomic I/O operations. Addressing these problems faces a
great challenge in balancing performance and reliability. To the
best of our knowledge, no previous work has fully addressed
these problems. ext4-DAX [29], PMFS [15], Btrfs [32], and
ZFS [10] focus on kernel-involved I/O without considerations
on MMIO. SplitFS [23], Libnvmmio [12], and NOVA [40]
guarantee the data consistency for MMIO but induce significant
software overhead due to write amplification. In addition, all
the mentioned works neglect to protect MMIO from scribbles.
Although Nova-fortis [41] protects the mapped data with snap-
shots, it does not provide atomic I/O interfaces for MMIO.
Therefore, there is a pressing need for providing an efficient and
reliable MMIO for Persistent Memory Systems, which ensures
both consistency and integrity for mapped data in PM.

III. RMMIO

This section provides a comprehensive view of RMMIO
design. We first outline the design goals of RMMIO. Then, we
go into depth about how RMMIO achieves these goals.

A. Desing Goals

Native MMIO outperforms existing kernel file systems [15],
[37], [40], [41] on PM in terms of I/O performance. However,
the native MMIO disregards the reliability guarantees for PM
files. Despite the fact that previous works provided numerous
ways to maintain data reliability, such as Write-Ahead-Log
[12], [23], log-structuring [40], backup and snapshot [10], [32],
[41], all of them impose considerable software overheads, com-
promising the performance of native MMIO. Thus the main
goal of RMMIO is to achieve MMIO-like performance while
guaranteeing data reliability. Specifically, RMMIO has three
design goals in detail:

• MMIO-like performance. RMMIO should provide better
I/O performance than kernel file systems, otherwise, users
should directly employ kernel file systems.

• Guarantee data consistency. RMMIO should make sure
that write operations never incompletely update a file or
provide a method to undo the incomplete writes, guaran-
teeing data consistency.

• Ensure data integrity. RMMIO should provide redun-
dant data and procedures for recovering a file from data
corruption caused by scribbles.

B. Overview

Native MMIO is dangerous since it directly exposes PM files
to user-space applications. Scribbles and inconsistent writes,
acting like common user I/O, can also in-place update PM
files, which cause permanent data corruptions in PM. Thus
RMMIO never maps a file into user space and offloads the pro-
tections for PM files to the underlying file systems, e.g., NOVA-
Fortis [41], which has already provided mature protections for
data reliability.

Basic Architecture. The kernel-protected files cannot be
mapped into user space, which results in compromised I/O

Fig. 3. Overview of RMMIO.

performance. Therefore, RMMIO employs a memory-mapped
cache layer upon PM-aware file systems to accelerate user
I/O requests, as shown in Fig. 3. The cache is organized at
file granularity by using a unique data structure, called FILE,
for every opened file. FILE maintains a persistent page cache
(PPcache) and a snapshot list: PPcache buffers the most recent
updates to the related file; snapshot list records the incremental
snapshots of the file, which provide necessary data redundancy
to recover RMMIO from possible data corruptions. To achieve
MMIO-like performance, PPcache and snapshot list are in-
dexed by mapping tables located in DRAM, which is optimized
for continuous indexing in PM. We present more details about
mapping tables in Section III-C.

I/O Path. Introducing a cache layer lengthens the I/O path of
existing systems since we may need to frequently synchronize
data between the cache and underlying file systems to ensure the
persistency of data. However, owing to the persistency of PM,
PPcache built in PM avoids frequent synchronization. RMMIO
removes synchronization from the critical I/O path by deferring
the writeback of data in PPcache. RMMIO never writes the
data buffered in PPcache back to the underlying file system
until the idle time or when users actively write data back with
fsync(). Although the PPcache extends the overall I/O path of
RMMIO, it also provides fast persistency perfectly matching
modern RPC-based systems [26]. Likewise, reads to a PM file
will first be routed to the PPcache since the latest data may
only be buffered in the PPcache. Then, if reads do not achieve
any data from PPcache, RMMIO will invoke a system read to
fetch the data from the underlying file system and buffer it in
the PPcache.

Memory Management. The cache layer shares the same
memory region with the Reliable file system. RMMIO employs
a persistent page allocator to manage the persistent memory
resources for PPcache and snapshot list. The persistent page
allocator acquires memory resources by creating a page pool
and mapping it into user space so that it can be directly accessed
via load/store. The persistent memory resources are allocated
and recycled at page granularity. Section III-H and Section III-G
will go into further depth on memory management.

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on August 23,2024 at 13:57:16 UTC from IEEE Xplore. Restrictions apply.

2294 IEEE TRANSACTIONS ON COMPUTERS, VOL. 73, NO. 9, SEPTEMBER 2024

Fig. 4. Mapping table.

POSIX-like Interfaces. By introducing the persistent page
cache, RMMIO currently provides six main interfaces to ac-
celerate the I/O request in PM systems, i.e., read(), write(),
snapshot(), open(), close(), fsync()., whose usages are aligned
with POSIX APIs except for snapshot(). More details about
snapshot() will be shown in Section III-F.

The basic architecture of RMMIO ensures the reliability of
kernel-protected files. However, massive data will be buffered
in PPcache under contiguous I/O requests. We cannot diminish
the reliability guarantees of data buffered in PPcache since
corrupted data in PPcache will eventually be written back to
the underlying file system. Thus, we have to take action to
prevent inconsistent writes and scribbles to PPcache. In the
worst case, PPcache may be broken by inconsistent writes and
scribbles. RMMIO has to detect the corrupted data and recover
the PPcache to a consistent and integrated state. In summary, we
cannot contaminate the file with corrupted data in PPcache. In
Section III-D to III-F2, we describe how RMMIO implements
atomic I/O interfaces to ensure data consistency of PPcache and
how RMMIO recovers corrupted PPcache from scribbles.

C. Mapping Table

RMMIO uses a flat range-optimized mapping table to in-
dex persistent pages for PPcache and snapshot. The design
goal of mapping table is to simulate the addressing mode of
native MMIO, i.e., short path walk and efficient range query.
To achieve this goal, mapping table inherits the block-level
addressing strategy from ext2/ext3, which places addresses of
blocks in contiguous entries of a table. Fig. 4 shows the layout
of a mapping table. A mapping table consists of Direct Index
and Indirect Index. The Direct Index entry stores the pointer to
a persistent page. Yet a Indirect Index entry stores the pointer to
the beginning of a next-level Direct Index to extend the mapping
table. Both Direct Index and Indirect Index are constructed from
contiguous memory regions allocated from DRAM.

Short Path Walk. The tree-like index structures employed
by previous works, e.g., radix tree [12] and extent tree [37],
have to walk through numerous intermediate nodes to reach
leaf nodes, which is a big drag on PM featuring low-latency.
Thus mapping table in RMMIO removes intermediate nodes by
indexing leaf nodes with offset. If the offset is within the range
of Direct Index, RMMIO can directly calculate the address of
the queried leaf node with the following method:

address= start+
offset

PAGE SIZE
∗ 8Bytes (1)

If the offset is out of the range of Direct Index, RMMIO has to
first get the start address of the next-level index by accessing
Indirect Index with a specific index number. The method of
calculating the index number of Indirect Index is:

index=
offset

Range of Direct Index
− 1 (2)

After getting the start address, RMMIO can simply achieve the
queried leaf node by following the above method1. At last,
RMMIO can directly access the target page with the address
stored in the leaf node. The time complexity of query in map-
ping table is practically constant. When only the direct index is
activated, the time complexity is only O(1), similar to MMIO,
which significantly reduces the software overheads of indexing
a page. Even if the indirect index is activated while writing,
according to our evaluation, indirect indexing will only result
in a 5% additional software overhead at most.

Efficient Range Query. Although flat index structures, such
as hashing tables, can also achieve short walk paths, they are
unable to deliver satisfactory range query performance. A map-
ping table’s virtual address space is continuous since it is con-
structed using continuous memory regions. By using the above
methods, RMMIO can calculate the start and end addresses of
the nodes indexing the queried persistent pages. Though the
addresses of persistent pages are not contiguous, the addresses
of nodes that index these pages grow linearly. Even if the pages’
range is out of the current Direct Index, RMMIO only needs one
more calculation for the address range.

D. Ensure Data Consistency With Two-Level Page Cache

As described in Section II-B1, we have to consider the data
consistency of PPcache residing in PM. Since a system crash
can happen at any time, we need to keep the data consistent
in PM all the time. We assume that the data in PPcache is
consistent at the beginning. RMMIO has to provide atomic I/O
interfaces to avoid breaking the consistency of PPcache.

The biggest challenge of atomic I/O comes from the
limitation of PM systems. Modern processors support only
8-byte atomic writes for persistent memory [45]. However,
RMMIO has to provide atomicity for writes with arbitrary
lengths. To overcome this problem, previous works, e.g.,
Libnvmmio [12] and SplitFS [23], employ WAL (i.e., write-
ahead-log), which induces extra PM writes for logging. Though
NOVA addresses consistency problems by using log structuring,
removing the extra writes from the critical I/O path, it still needs
laborious garbage collection.

Since the persistent memory system is sensitive to the
efficiency of software, RMMIO needs to get rid of extra
writes and additional software overheads. To achieve this goal,
RMMIO implements an optimized WAL mechanism that re-
moves additional writes from the critical path by reusing old
data as undo log. As shown in Fig. 5, RMMIO builds a two-
level PPcache to maintain two versions of data for each page,
i.e., the older data and the newer data. When a writer thread
writes data to PPcache, the coming data overwrites the older
data (smaller TID) but preserves the newer data (larger TID)
as undo log. Once the ongoing write is interrupted by a system

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on August 23,2024 at 13:57:16 UTC from IEEE Xplore. Restrictions apply.

DING et al.: ENABLING RELIABLE MEMORY-MAPPED I/O WITH AUTO-SNAPSHOT FOR PERSISTENT MEMORY SYSTEMS 2295

Fig. 5. Write 8KB data to the two-level persistent page cache.

crash, RMMIO abandons the incompleted write and recovers
from the undo log. To identify the incompleted write, RMMIO
introduces a timestamp-based commit mechanism, inspired by
Libnvmmio [12]. The timestamp-based commit mechanism in-
cludes two main components, i.e., a logical timestamp called
TID (Transaction ID) and a global timestamp that indicates the
latest transaction called CID (Committed ID). As RMMIO di-
vides every write into several page writes. Pages within a write
transaction will be marked with the same TID to indicate when
they are written. Furthermore, RMMIO records the timestamp
of the latest transaction using CID to figure out which page
has been committed. All pages with a TID smaller than or
equal to the CID will be identified as committed. Therefore, we
can simultaneously mark any number of pages as committed
by increasing the CID. Since CID is an 8-byte file-specific
variable, every writer thread can update it atomically. With the
timestamp-based commit mechanism, RMMIO tolerates data
inconsistency after a system crash happens. Because CID is
designed for orderly growth, a page with a TID larger than CID
must be uncommitted. By comparing their TIDs with the CID,
the inconsistent pages can be easily identified and removed.
Therefore, RMMIO can always keep PPcache consistent even
across a system crash.

Fig. 5 demonstrates an example of how RMMIO guarantees
data consistency in a single-thread instance. The blank square
represents a page in the PPcache, and the number inside the
blank indicates the TID of the page. If a writer thread is trying
to write 8KB data to Page1 and Page2, RMMIO first allocates
a new TID for the working thread by increasing the TID from
3 to 4. And then the writer thread marks two pages of data with
TID-4. Second, RMMIO writes these two pages of data to level0
of Page1 and level1 of Page2, respectively. Because the data in
level0 of Page1 and level1 of Page2 is older than that in the
other level. During the write, the data in level1 of Page1 and
level0 of Page2 becomes the undo log for this write transaction.
After all the data has been written to the related pages, the writer
thread updates CID to 4 with an atomic write. Meanwhile, all
pages with TID-4 are simultaneously identified as committed.
Throughout the write transaction, PPcache is always consistent.

E. Enable High Scalability for RMMIO

Since PM is byte-addressable, it is easy for DAX-style
MMIO to achieve high scalability. However, challenges come
with opportunities. Because of the lack of thread isolation, the
native MMIO cannot safely handle multi-thread I/O requests.

TABLE I
THE EFFECT OF 4K ALIGNMENT ON THE WRITE

PERFORMANCE OF PM/DRAM

Memory I/O Pattern Bandwidth
PM 16KB + 4K-aligned 4270MB/s
PM 16KB + 4K-non-aligned 3220MB/s
PM 8KB + 4K-aligned 4310MB/s
PM 8KB + 4K-non-aligned 2690MB/s
PM 4KB + 4K-aligned 4280MB/s
PM 4KB + 4K-non-aligned 1950MB/s

DRAM 4KB + 4K-aligned 5830MB/s
DRAM 4KB + 4K-non-aligned 6550MB/s

Fine-grained Lock. To guarantee thread safety, RMMIO
employs a reader or writer lock for thread isolation. In addition,
we note that the file-grained lock used in VFS blocks concurrent
operations on a shared file [39], which is a waste of the byte-
addressable PM. Thus RMMIO needs a fine-grained lock to
achieve high scalability. To determine the most appropriate
granularity of a lock, we evaluate the native MMIO with differ-
ent I/O patterns in PM, as shown in Table I. The experimental
results show that the maximum bandwidth appears when the I/O
is 4KB-aligned. According to the evaluation, the granularity of a
lock should be 4KB or a multiple of 4KB to take full advantage
of PM. However, automatically determining the specific gran-
ularity of the lock for different workloads is out of the scope of
this paper. Therefore, we configure the default granularity of a
lock as 4KB to fully expose the raw performance of PM.

Atomic Primitives. RMMIO also ensures thread safety with
atomic primitives. As locking may fall into the kernel, locking
for every thread-safety operation will cause a significant per-
formance decline. Thus, RMMIO employs atomic primitives
provided by glibc to deliver TID and update CID for working
threads. Since these atomic primitives guarantee the thread
safety of the operand, every writer thread will get the unique
TID by using FAA (i.e., atomic_fetch_add_explicit). Moreover,
we use CAS (i.e., _sync_bool_compare_and_swap) to ensure
the linearizability consistency of RMMIO write. In other words,
while several threads holding different TIDs are working to-
gether, RMMIO needs to make sure that every thread commits
its writes in the order of the TID. Since CAS only updates the
old value when the old value matches the given value, RMMIO
sets the given value as “TID minus 1” (TID is the current logical
timestamp of a thread). Thus, a thread will not update CID
until the last thread (thread holding TID-1) has committed its
write. The atomic CAS makes sure that write transactions from
different threads will be committed one by one.

F. Recover Corrupted Files With Incremental Snapshots

Scribble is a serious issue for RMMIO because scribbles
break the data integrity of PPcache. According to Ganesan
et al., [17], in modern distributed storage systems, a single file-
system fault can cause catastrophic consequences. However,
scribbles are inevitable and unpredictable as we described in
Section II-B2. To combat data corruptions caused by scribbles,
RMMIO maintains a CRC32C checksum for every page (shown
in Fig. 6) and examines the checksum to check the integrity of

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on August 23,2024 at 13:57:16 UTC from IEEE Xplore. Restrictions apply.

2296 IEEE TRANSACTIONS ON COMPUTERS, VOL. 73, NO. 9, SEPTEMBER 2024

Fig. 6. The layout of snapshots and pages in RMMIO.

a page. The mismatch of checksum indicates data corruptions.
To recover from data corruptions, existing works [10], [32],
[41] has proposed two strategies, i.e., full-copy backup and
snapshots, to recover the corrupted file from data corruptions.
However, all of them incur a huge account of data movements,
causing performance loss for MMIO. Yet, a system without
backups and snapshots will compromise data reliability. To
overcome this challenge, RMMIO proposes an incremental
snapshot mechanism that dramatically decreases the software
overhead of snapshots.

1) Incremental Snapshots: As shown in Fig. 6, the incre-
mental snapshot is built based on PPcache. When the user takes
a snapshot, RMMIO directly packs the data buffered in PPcache
as a snapshot. So each snapshot only retains the updates to a file
instead of the full copy of a file, which significantly decreases
the software overhead on snapshot capture. Furthermore, we
note that the mapping table (Section III) records pointers to
persistent pages buffering the updates of a file. So if we want
to build a snapshot with these persistent pages, we only need
to copy the pointers to these pages without copying the data.
However, simply copying pointers will lose the layout of data.
Rebuilding a new mapping table and migrating data from
PPcache to the new mapping table can address this problem
but induces non-negligible software overheads caused by rein-
dexing all pages in the PPcache. To further reduce the software
overhead of taking a snapshot, RMMIO directly converts the
PPcache of into a snapshot. Specifically, once a user invokes
snapshot(), RMMIO first links the PPcache (snapshot-2 in
Fig. 6) to the snapshot list and then builds a new persistent page
cache with the empty mapping table. As a result, snapshot() in
RMMIO only needs to initialize a new mapping table without
any data copying.

Once a scribble happens in a file, RMMIO can recover the
file from snapshots that have not been corrupted. The recovery
cannot restore the corrupted data but can return the file back
to a historical version to minimize the impact on the whole
system. Upon detecting data corruption and initiating a version
rollback, RMMIO sends a SIGUSR1 (user-defined signal) to

the current process using the kill(). Users can register a signal
handler using signal() to address the data corruption with the
information provided by RMMIO, including the corrupted file
name, TID and the corrupted data address. More details about
the recovery of RMMIO will be presented in Section III-F2.

Latest Table. We also note that taking snapshots in RMMIO
may cause the performance decline of reads. Because snapshots
may still buffer the latest data of a file, which increases the
difficulty of read to query the latest data. As shown in Fig. 6,
reads must traverse all snapshots to find the latest data. Such
an inefficient traversal operation extends the critical path of
RMMIO read, which goes against RMMIO’s design goals. To
avoid traversing these snapshots, RMMIO builds a latest table
to store the pointer to the latest data for each page. The lat-
est table will be updated along with the updates to persistent
pages. Since taking a snapshot in RMMIO does not move any
persistent page, the pointer to the latest page will always be
constant during snapshot capturing. So RMMIO can always get
the latest data by accessing the latest table. The time complexity
of querying a page using latest table in RMMIO is O(1) which
is much more efficient than traversing all snapshots.

2) Recovery: The recovery of RMMIO follows two steps:
First, we remove the corrupted data whose checksum mis-
matches the stored one. Then, RMMIO rolls the corrupted file
back to a historical version that does not contain any corrupted
page. Note that all the data with TID larger than the corrupted
one should be discarded and the roll-back should be aligned
with the snapshots.

We further demonstrate how roll-back works with a case
based on the PPcache and snapshots shown in Fig. 6. If
a scribble happens in data-10, RMMIO should discard all
pages with a TID larger than 10 and relink the latest table to
snapshot-1. We do not retain data-11 and data-12 because
storing the data with TID larger than that of the most recent
available data violates the consistency guarantees, as we de-
scribed in Section II-B1. In addition, we also do not roll back
to the version with TID as 9 because the data with TID-9 could
have been partially overwritten by data-10. Thus, rolling back
to the TID-9 also goes against the data consistency. That is why
the roll-back should be aligned with the snapshots.

Recovery across a System Crash. In the event of a power
failure, the mapping table residing DRAM will be lost. We
cannot find the persistent pages buffering the data of a file
without the mapping table. Thus, RMMIO appends the location
(i.e., offset, index, fd in Fig. 6) of a page after the data area of
each persistent page. By traversing the locations of the pages
in the page pool after a system crash, RMMIO can rebuild the
mapping table snapshots of a file and recover the file. However,
the file descriptor (fd) will be reset after a system reboot. We
cannot find the target file correctly by using the appended fd
because the fd may be allocated to a different file after the
system reboots. Although we can directly append the absolute
path of a file after every page, the lengthy path name causes non-
negligible additional writes. To address this problem, RMMIO
creates a persistent file descriptor table to permanently record
file descriptors’ relationship with the absolute path of an opened
file. Thus, RMMIO can exactly know where to write these pages

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on August 23,2024 at 13:57:16 UTC from IEEE Xplore. Restrictions apply.

DING et al.: ENABLING RELIABLE MEMORY-MAPPED I/O WITH AUTO-SNAPSHOT FOR PERSISTENT MEMORY SYSTEMS 2297

back by looking up the file descriptor table. In addition, the
latest data will also be identified by comparing the TID of
pages so we can even recover the latest table by accessing
the metadata area of persistent pages. Maintaining metadata
for a page only takes 33 Bytes but helps us recover from a
system crash.

G. Automatic Snapshot

RMMIO sacrifices the persistence of some data to maintain
data integrity because data corruptions are more dangerous than
data loss. For example, if a user is modifying “grub.cfg” with
RMMIO, a corrupted modification will cause the system to fail
to start. If data is lost, the user only needs to rewrite it once.

However, huge data loss is also unacceptable for users. The
existing snapshot in RMMIO has to be manually built by users
with snapshot(). However, users may be confused about when
to build a snapshot since users are not aware of the layout of the
data in PPcache and the recovery mechanisms of RMMIO. If
users lazily take snapshots, there will be a huge data loss when
scribbles happen. Because the most available snapshot could be
far away from the latest data. Furthermore, if users frequently
build snapshots without recycling them, the memory space will
soon run out. Despite RMMIO can provide an interface for
users to recycle useless snapshots, the complex management
of snapshots may still trouble users and lead to non-negligible
performance decline. To address these issues, RMMIO devises
an enhanced snapshot mode (we refer to auto-snapshot) that
automatically captures a fixed number of snapshots for a file
and keeps updates snapshots to follow the users’ updates. The
auto-snapshot consists of an automatic capture strategy and
snapshots management strategy.

1) Automatic Capture: While enabling auto-snapshot,
RMMIO captures snapshots at fixed time intervals. The time
interval is a predefined gap between two logic timestamps (i.e.,
TID). In other words, RMMIO will capture a snapshot after a
fixed number of writes. The automatic capture should guarantee
the data consistency of captured snapshots. So RMMIO does
not capture a snapshot until the foreground ongoing write has
been committed. Furthermore, RMMIO has to lock the PPcache
to guarantee there are no more writes to the PPcache. Thus,
RMMIO captures snapshots in foreground threads to avoid the
software overheads caused by synchronization between fore-
ground I/O threads and the background thread. Since taking a
snapshot has to initialize a new mapping table, frequent auto-
snapshot will greatly increase the tail latency of I/O requests.
RMMIO mitigates the software overheads of initializing a map-
ping table by batch preallocation and initialization. Therefore,
the foreground auto-snapshot only needs to acquire a preallo-
cated mapping table without a long time stall.

2) Snapshots Merging: The memory footprint of snapshots
is constrained under the set threshold by RMMIO’s automatic
recycle of snapshots frequently captured by both auto-snapshot
and snapshot(). Therefore, RMMIO tightly enforces a threshold
on how many snapshots are allowed to be captured for a file.
When the number of snapshots is over the predefined thresh-
old, RMMIO takes charge of shrinking snapshots. However,

Fig. 7. Snapshots merging in RMMIO (snippet from Fig. 6).

writing the oldest snapshots back to the underlying file system
will cause a non-negligible time stall for the foreground I/O
service. Although we can apply a background thread to recycle
snapshots to mitigate the foreground time stall, the limited
bandwidth and poor read-write-mixed performance of PM [42]
still bothers the foreground I/O services. To overcome this
challenge, RMMIO proposes a lightweight recycling strategy
called snapshots merging, which avoids access to PM, i.e., both
read and write.

Snapshots merging merges the oldest two snapshots of a file
into a new snapshot by retaining the newer data and discarding
the older data for every page. The new snapshot still maintains
the latest data of two merged snapshots but recycles some
redundant data to restrict the memory footprint of snapshots.
The snapshot merging works in a background thread but is
triggered by the foreground I/O services. In addition, we further
propose two strategies to mitigate the reads and writes to PM,
i.e., fast scanning and shadow migration, respectively.

Fast Scanning. As the instance shown in Fig. 7, if the
foreground thread has created more snapshots than the set
threshold (e.g., 2 snapshots), the background merging thread
starts to merge the oldest two snapshots, i.e., snapshot-0 and
snapshot-1. We may need to scan every page in both
snapshots-0 and snapshot-1 and compare their TIDs to de-
cide whether a page should be discarded or migrated to
snapshot-1. However, scanning all pages consumes too much
execution time and results in numerous PM reads when access-
ing TID. In fact, we do not have to traverse all pages’TID in
these two snapshots since the data in snapshot-1 is always newer
than that in snapshot-0. Based on this observation, we propose
a fast scanning strategy to accelerate the snapshot merging. The
fast scanning only traverses the newer snapshot, i.e., snapshot-1,
to get the pointer to the latest data of snapshot-1. If the pointer
is not NULL, RMMIO directly skips this page in snapshot-1
and discards this page in snapshot-0, as page1-4 shown in
Fig. 6. On the contrary, if the pointer is NULL, it means
snapshot-1 has never updated this page but the data may be
updated by snapshot-0. Thus RMMIO has to further get the
latest data of snapshot-0 and merge it into snapshot-1, as page0
shown in Fig. 6. Throughout the whole scanning, RMMIO does
not induce any PM read as the mapping table is built in DRAM
(Section II-C).

Shadow Migration. While merging two snapshots, RMMIO
has to migrate pages from snapshot-0 to snapshot-1. How-
ever, directly copying data from snapshot-0 to snapshot-1 will
cost a high write bandwidth of PM. To address this problem,
RMMIO employs shadow migration to migrate data between

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on August 23,2024 at 13:57:16 UTC from IEEE Xplore. Restrictions apply.

2298 IEEE TRANSACTIONS ON COMPUTERS, VOL. 73, NO. 9, SEPTEMBER 2024

two snapshots without any PM writes. Shadow migration is
based on RMMIO’s hybrid memory architecture shown in
Section III-C. We only store recovery-related data and metadata
in PM (as shown in Fig. 6) but build the run-time data structures
in DRAM. Specifically, we build a mapping table in DRAM to
index a snapshot and store pointers to PM pages in the entries of
the mapping table. Thus migrating data between two snapshots
only takes a pointer exchange in DRAM, without the need to
induce any write to PM. Moreover, the software overhead of
snapshots merging is greatly reduced by shadow migration
since it mitigates numerous store instructions from the critical
path of merging.

H. Memory Management

RMMIO builds global persistent page allocators for all work-
ing threads to dynamically allocate and recycle persistent pages.
The default size of the page pool for each thread is 4GB, which
is inadequate for data-intensive applications, e.g., RocksDB.
Thus, to satisfy the excessive demand for persistent pages,
RMMIO proposes two strategies, i.e., Garbage Collection and
Pool Extension, to provide enough pages for every busy thread.

Garbage Collection. The data buffering in PPcache and
snapshots can be divided into two kinds of data, i.e., useful data
and useless data. The useful data refers to (1) the data that is
linked to the latest table, e.g., level0 of Page0 in snapshot0
of Fig. 6, which may be read by future user requests. (2) The
useful data also includes the newest pages in each snapshot even
if they are not linked to the latest table, e.g., level0 of Page1 in
snapshot1 of Fig. 6, since they are necessary for the recovery
of RMMIO. Pages that do not belong to useful data are called
useless data, e.g., level1 of Page0 in snapshot0 and level1 of
Page1 in snapshot1 of Fig. 6. They all used to be the undo log
for a page write. The undo log is not necessary anymore after
a write commit. RMMIO permanently maintains useful pages
but recycles useless pages with garbage collection. We create
a background thread to look for useless pages in PPcache and
snapshots. To recycle useless pages, RMMIO simply resets the
valid bit of a page and then pushes it back to the persistent
page allocator. The reset valid bit indicates that the data in this
page is not valid anymore. Thus, RMMIO does not need to
reset every bit of the page, reducing huge store instructions.
Moreover, we also do not need to copy data from those useless
pages to the underlying file systems since the data in these
pages has already been overwritten by the new data. In addition,
the recycling of these useless pages is similar to the shadow
migration, which only needs to move the pointer of the useless
page to the allocator queue, without any PM write. The garbage
collection can release at most 50% persistent pages of PPcache
and snapshots.

Pool Extension. Although RMMIO recycles useless pages,
a persistent page pool can easily run out in data-intensive
workloads. In this case, RMMIO extends the persistent page
allocator by allocating new page pools, instead of writing useful
data back to the underlying file system. Because allocating
4GB persistent memory (1.14s) is almost 32x as fast as 4GB
data migration (36.52s) from PPcache to the underlying file

system. In addition, RMMIO extends the persistent page pool
before it becomes full (at 70% utilization), which avoids a
long tail latency of RMMIO. Since RMMIO is designed as
an extension of the underlying PM file system and guarantees
data reliability, maintaining data in user-space PPcache is also
a practical strategy for permanent storage.

IV. EVALUATION

This section presents a comprehensive evaluation of RMMIO
through both microbenchmarks and real-world applications.
We also compare RMMIO with state-of-the-art PM-aware file
systems and two MMIO-based works, including NOVA [40],
PMFS [15], ext4-DAX [37], SplitFS [23] and Libnvmmio [12].
In the following sections, we demonstrate RMMIO’s perfor-
mance in common I/O workloads (Section IV-B), software over-
head caused by reliability guarantees (Section IV-B), scalability
(Section IV-C), performance decline caused by auto-snapshot
(Section IV-D), and performance in the real-world applications
(Section IV-E).

A. Experimental Setup

We implement the experimental evaluation on a system
equipped with 2-socket Intel Xeon 6230R, 12 * 16GB DDR4
and 12 * 128GB Optane DC Persistent Memory. To enable
persistency and high bandwidth of PM, all Optane DC Per-
sistent Memory Modules are configured as App Direct Mode
with interleaving [22]. We use numactl to bind all working
threads and memory regions to the same NUMA node to avoid
cross-node memory access. Finally, our evaluation is performed
on Linux kernel 4.13 with FIO [8] as microbenchmark and
RocksDB as the real-world evaluation platform.

B. Single-Thread Evaluation

As shown in Fig. 9(a), we evaluate RMMIO in read/write
with both sequential 4KB I/O and random 4KB I/O. Since
the I/O path of RMMIO is much shorter than any competitor,
the sequential write throughput of RMMIO is 2.54x, 1.18x,
1.46x, 1.98x, and 1.37x higher than that of NOVA, SplitFS,
PMFS, Libnvmmio, and ext4-DAX, respectively. The random
write performance shows similar results. In read evaluations,
the throughput of RMMIO is slightly lower than that of MMIO-
based works (i.e., Libnvmmio, SplitFS). Because RMMIO must
calculate the checksum of every page to examine data integrity
while the other MMIO-based works dismiss the data integrity
guarantees. The read performance of RMMIO is expected
to be close to other MMIO-related works by using a better
CRC32C accelerator.

We further evaluate RMMIO’s write performance with vari-
able I/O sizes, as shown in Fig. 9(b). Whatever the I/O size
is, RMMIO always shows higher write throughput than any re-
lated work. Specifically, for 512KB sequential writes, RMMIO
achieves a maximum bandwidth of 3818MB/s, which is over
44% higher than that of ext-DAX. Even compared with SplitFS
(strict mode), RMMIO obtains performance gains up to 2.19x
owing to the lightweight log strategy (Section III-D). With

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on August 23,2024 at 13:57:16 UTC from IEEE Xplore. Restrictions apply.

DING et al.: ENABLING RELIABLE MEMORY-MAPPED I/O WITH AUTO-SNAPSHOT FOR PERSISTENT MEMORY SYSTEMS 2299

Fig. 8. Memory management of RMMIO.

Fig. 9. Performance overview of RMMIO.

the increase in I/O size, the performance improvement ratio
of RMMIO also exceeds the state-of-the-art works. Because
the mapping table in RMMIO is more efficient than tree-like
index structures, e.g., extent tree in ext4-DAX, radix tree in
Libnvmmio, for range querying multiple pages.

As the Cumulative Distribution Function (CDF) of 4KB
write latency shown in Fig. 9(c), the write latency of RMMIO
is lower than all related works. Especially, the P99 latency
of RMMIO writes is only 1704ns, which is even lower than
the minimum latency of NOVA (3728ns) and PMFS (2544ns).
Because RMMIO buffers the data in the PPcache to avoid
falling into the kernel. In addition, the logging strategy of RM-
MIO does not have to write log before writing data, removing
the extra write from the critical IO path. Thus, RMMIO also
outperforms Libnvmmio (2864ns) in write latency, which is also
based on MMIO.

In Fig. 9(d), we measure and quantify five major software
overheads of RMMIO. The two main components, i.e., data
copy and checksum calculation, take up almost 90% of the

TABLE II
THE MEMORY FOOTPRINT OF A 128MB FILE IN PPCACHE

PM Structures Size DRAM Structures Size
data 128MB mapping table 2.28MB

metadata 1.03MB thread metadata 3MB
fd table 5.23MB hash table 781.31KB

FILE 80.625KB
Total 140.38MB

execution time in RMMIO write. Although RMMIO spends
over 20% of the execution time on checksum calculation, the
data copy still accounts for up to 64%. The experimental results
show that RMMIO is still more efficient than ext4-DAX (less
than 44% [12]).

As shown in Table II, we evaluate the memory footprint of
RMMIO after writing a 128MB file. The data of the file only
takes up 128MB, which does not induce any space amplification
because RMMIO has recycled the old data in time. Moreover,
the other basic components of RMMIO (i.e., fd table, thread
metadata, hash table) and file-related data (metadata, mapping
table, FILE) only spend 12.38MB of memory space. Note that
thread metadata, hash table and fd table will not grow as the
number of files and the size of a file. Because they are all
preallocated at the initialization of RMMIO. Thus, the space
amplification ratio of RMMIO will be less than 9.6%.

C. Scalability

Scalability is another essential advantage of MMIO
as it is byte-addressable. In modern multi-core systems,
write-intensive applications benefit from highly scalable I/O
interfaces. To compare the scalability of RMMIO with other
MMIO-based schemes and kernel file systems, we evaluate
RMMIO and its competitors with concurrent 4KB-sequential
write/read-write I/O to multiple files or a shared file. The
experimental results of concurrent I/O are shown in Fig. 10,
except for SplitFS. The reason is that SplitFS does not support
concurrent writes to a shared file and concurrent read-write
mixed workloads in strict mode.

According to Fig. 10(a), the maximum bandwidth of RM-
MIO concurrent write exceeds that of NOVA, PMFS, Libnvm-
mio, ext4-DAX by 14.07x, 7.50x, 1.96x, 8.49x, respectively.
Since page-grained locks do not block the nonoverlapping I/O
operations, the concurrent writes of RMMIO to a shared file
could be fully paralleled. Thus, the throughput of RMMIO
increases almost linearly with the number of threads. Although
libnvmmio also employs page-grained locks for concurrent
execution, it does not follow the 4KB-aligned access to PM
(Section III-E), resulting in both single-thread and concurrent
throughput penalty.

RMMIO follows the reader/writer locking mechanism
adopted by VFS thus achieving high scalability in read-write
workloads. Furthermore, RMMIO employs a fine-grained
reader/writer lock for every page. Thus, multiple reader
threads can work on the same page, and multiple writer threads
can write different pages of a shared file at the same time,

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on August 23,2024 at 13:57:16 UTC from IEEE Xplore. Restrictions apply.

2300 IEEE TRANSACTIONS ON COMPUTERS, VOL. 73, NO. 9, SEPTEMBER 2024

Fig. 10. Concurrent performance of RMMIO.

Fig. 11. Auto-snapshot and real-world applications.

which is blocked by kernel file systems (e.g., ext4-DAX,
NOVA). Moreover, RMMIO also employs atomic primitives
to mitigate frequent locking for thread safety. As a result,
RMMIO gains up to 15.94x higher throughput than NOVA
and 5.97x higher throughput than ext4-DAX as shown in
Fig. 10(b). Although the single-thread read performance of
RMMIO is slightly lower than other competitors, the scalability
of RMMIO can complement the performance penalty caused
by RMMIO read.

In Fig. 10(c) and 10(d), we evaluate the impacts of other
limitations for concurrent execution without sharing a file be-
tween threads. For concurrent writes to multiple files, RMMIO
still exceeds NOVA, SplitFS, PMFS, Libnvmmio, and ext4-
DAX by 4.51x, 6.42x, 2.70x, 2.31x, and 2.75x, respectively.
By analyzing their software stacks with perf [5], the advan-
tage of RMMIO comes from the thread-local log region (i.e.,
PPcache), which has no log contention, compared with the
shared log region in other works, e.g., JBD2 in ext4, WAL in
SplitFS. Though NOVA employs a per-inode logging strategy,
it still spends much time on garbage collection. The slight
performance degradation of RMMIO over 8 threads, shown in
Fig. 10(c), is due to the limitation of Effective Write Ratio
(EWR) [22] in PM. Since different threads access data with
different addresses, the concurrent access to PM is similar to
random access to PM. Random access to PM will result in
frequent built-in cache replacement. Thus, as the number of
threads increases, concurrent access to PM triggers more and
more unnecessary internal write amplification, resulting in the
external performance decline.

D. Performance Decline Caused by Auto-Snapshot

To measure the performance decline caused by auto-
snapshot, we reevaluate RMMIO in two write-intensive work-
loads, i.e. concurrent write to multiple files (write in Fig. 11(a))
and concurrent write to a shared file (shared write in Fig. 11(a)).
The experimental result shows that the single-thread perfor-
mance decline is only 4.5%. Because the snapshot capture only
takes negligible overheads and the background snapshot merg-
ing does not block foreground I/O operations. The performance
decline grows up with the number of working threads. The
maximum performance decline of write and shared write is
39.9% and 33.1%, respectively. Although the snapshot merging
does not block foreground I/O operations, the single-thread
merging is too slow to merge snapshots for 16 threads at the
same time. Since too many snapshots cannot be recycled in
time, the persistent page pool will soon run out under the
continuous writes. Thus, the background pool extension will
be frequently triggered. The foreground I/O services have to
wait for the extension thread to provide enough persistent pages.
But a single extension thread cannot concurrently extend 16
page pools, slightly blocking the foreground I/O operations.
Though it is easy to build more background merging threads and
extension threads, RMMIO only employs one for each process
to minimize the usage of system resources. Even in this case, the
write throughput of RMMIO still outperforms all competitors
while enabling auto-snapshot, as shown in Figs. 10 and 11(a).

We also evaluate RMMIO with a limited number of CPU
cores, which is equal to the number of foreground working
threads. As shown in Figure A, the shared-write performance of

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on August 23,2024 at 13:57:16 UTC from IEEE Xplore. Restrictions apply.

DING et al.: ENABLING RELIABLE MEMORY-MAPPED I/O WITH AUTO-SNAPSHOT FOR PERSISTENT MEMORY SYSTEMS 2301

RMMIO does not drop down while working in limited cores.
Instead, RMMIO achieves higher bandwidth than that of the
unlimited workload. It is because the background thread occu-
pies some CPU time of working threads, which also reduces
the contention of lock among working threads that share a file.
Thus, the background thread actually takes full use of the CPU
resources that used to be wasted by lock contention, which also
increases the possibility of acquiring a lock for working threads.
In other words, the computation resources needed by RMMIO
for background snapshot merge are negligible. In concurrent
write evaluations, limited RMMIO shows a 27.9% performance
decline compared to unlimited RMMIO, while working with 8
threads. That is because the extending thread is fully loaded
under continuous write operations. The extending thread and
merging thread both compete with foreground working threads
for CPU time, which makes the computation bottleneck appear
earlier than unlimited RMMIO. However, the bottleneck will
not tighten further, because the two background threads at most
take up two physical cores. The 16-thread concurrent write
performance proves that the two background threads do not
further decrease the bandwidth of RMMIO.

E. Real-World Applications

To demonstrate how RMMIO performs in real-world ap-
plications, we adapt RMMIO to RocksDB [16] and evaluate
it with five built-in benchmarks in db_bench, i.e., fillrandom,
readwhilewriting, fillseq, overwrite, and appendrandom. Every
benchmark includes 10,000,000 key-value (KV) operations and
each key-value pair contains 16B key and 1024B value. Since
SplitFS and Libnvmmio have not been adapted to RocksDB,
we only compare RMMIO with state-of-the-art PM-aware file
systems in this evaluation.

RMMIO provides atomic I/O interfaces so that we avoid
inefficient WAL in RocksDB, which resides in the critical path
of RocksDB writes and even blocks KV operations in some
specific cases. So RocksDB accelerated by RMMIO exceeds
all competitors in every benchmark as RocksDB is a write-
intensive application. Especially, in fillseq, RMMIO accelerates
RocksDB by 7.06x compared with ext4-DAX, and 10.54x com-
pared with NOVA. Because RMMIO is optimized for sequential
I/O via mapping talbe, which is more efficient than the tree-
like indexing structures. Randomly inserting KV pairs with
RocksDB will cause the reorder of KV pairs, called compaction,
which reads KV pairs from the underlying file system and writes
them back again after reordering KV pairs. Thus, benchmarks
that randomly insert KV pairs, i.e., fillrandom, overwrite, ap-
pendrandom, will suffer from frequent I/O operations, includ-
ing both read and write. Although RMMIO is not good at
read, the outstanding write performance complements the read
penalty. Specifically, in overwrite, RMMIO still outperforms
NOVA, PMFS, and ext4-DAX by 3.93x, 1.95x, and 2.67x,
respectively. Even in the read-write-mixed benchmark, i.e.,
readwhilewriting, RMMIO gains up to 3.39x higher throughput
than PMFS, and 2.04x higher throughput than ext4-DAX. The
RocksDB accelerated by RMMIO outperforms all competitors

in all evaluated benchmarks, indicating that RMMIO can effi-
ciently accelerate write-intensive applications.

Although RMMIO is designed as a write-optimized IO sys-
tem, we still demonstrate the performance of RMMIO in read-
intensive workloads to make sure that the read performance is
not a burden on RMMIO. We adopted RMMIO on MyRocks
[3], a variant of MySQL, which replaces the default storage en-
gine with RocksDB. We evaluate the performance of MyRocks
with Linkbench [2], a database benchmark developed to evalu-
ate database performance for workloads similar to Facebook’s
production MySQL deployment. Our evaluation includes pure-
read, read-intensive (80% read) and write-intensive (80% write)
workloads.

As shown in Fig. 11(c), the pure read performance of
RMMIO is slightly lower than that of ext4-DAX and other
MMIO-based works. Because RMMIO strictly examines the
data integrity while reading a page, which caused a signifi-
cant performance decline. Furthermore, the page-grained lock
mechanism also increases the complexity of reading a file. Thus
both RMMIO and libnvmmio perform poorer than SplitFS,
which only employs a file-grained lock and directly maps files
into user address space. As shown in Fig. 11(d), the poor
read performance truly decreases the throughput of RMMIO
in the pure-read evaluation of Linkbench. However, the ratio of
performance decline compared with Ext4-DAX is only 6.1%,
which is far less than our expectation due to the performance
gap shown in Fig. 11(c). The reason is that the RocksDB in
MyRocks can employ a block cache to accelerate read opera-
tions, which works like the system page cache. The block cache
fills the performance gap between RMMIO and Ext4-DAX.
The write-intensive evaluation indicates that RMMIO exceeds
both Ext4 and Ext4-DAX as expected. The only unexpected
thing is that Ext4 far outperforms Ext4-DAX. We think this is
because MyRocks does not immediately write all data back to
storage with fsync(). While RMMIO and Ext4-DAX directly
write data back to PM, without any intermediate DRAM buffer
(e.g., page cache in Ext4). RMMIO performs better than Ext4
because RMMIO does not need to enable the WAL in RocksDB.
The evaluation results of read-intensive workloads prove that
even though the read performance of RMMIO is not as good as
other MMIO-based works, the overall performance of RMMIO
is still better than Ext4-DAX and Ext4 by 9.1% and 11.7%,
respectively.

F. Reliability

Per-page checksum and auto-snapshot make RMMIO able to
detect any scribbles and recover from data corruption caused by
scribbles. To examine the reliability of RMMIO, we implement
a malicious process to inject scribbles into PM while run-
ning RMMIO. The malicious process includes several different
modes that can inject scribbles with sizes ranging from 1KB to
40KB in up to 16 threads. The number of random injections in
each evaluation is 2, 000, 000, 000. The experimental results
show that RMMIO can detect all scribbles and recover from
them without data inconsistency.

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on August 23,2024 at 13:57:16 UTC from IEEE Xplore. Restrictions apply.

2302 IEEE TRANSACTIONS ON COMPUTERS, VOL. 73, NO. 9, SEPTEMBER 2024

V. RELATED WORKS

Although we have discussed some works that are highly
related to RMMIO in Section II, there are still some more
interesting works that are not mentioned, which inspired us
while designing RMMIO. In this section, we will introduce
these works and compare them with RMMIO.

BPFS [14] proposes a basic architecture for the PM file
system and first considers the data consistency of PM. The
most brilliant contribution of BPFS is the short-circuit shadow
paging (SCSP), which allows BPFS to use copy-on-write at fine
granularity, atomically committing small changes at any level
of the file system tree. SCSP significantly reduces the write
amplification compared with log-based atomic updates but it
relies on a tree-like indexing structure. RMMIO can achieve
the same data consistency guarantees as BPFS but with a more
efficient indexing structure (mapping table).

SCMFS [38] proposes a user-space file system that im-
plements all IO operations in user address space, which is
similar to RMMIO. SCMFS maps each file into a contiguous
address space and directly indexes files with the virtual address.
Although the indexing method of SCMFS is more efficient than
the mapping tables of RMMIO, it does not take data consistency
into consideration. With the help of mapping tables, RMMIO
can provide atomic I/O interfaces while not inducing any extra
writes. In addition, SCMFS also does not provide any data in-
tegrity guarantees, which is also a key contribution of RMMIO.

Nova-Fortis [41] and NOVA [40] are log-structured file sys-
tems, which can atomically write/update data to files by simply
attaching a new log. Although it also does not require ex-
tra writes on the IO path, the stale logs must be periodically
garbage collected. While the old data logs are automatically
overwritten by new data in RMMIO, without any additional
overheads. Nova-Fortis notices the data integrity problem of
NOVA. Thus the backup and deadzone are employed to en-
sure the data integrity for PM files while incurring dramatic
static space overheads. Furthermore, Nova-Fortis also supports
taking a full-copy snapshot of a mapped file to prevent user-
space scribbles. However, taking a full-copy snapshot is not
as efficient as the incremental snapshot of RMMIO. Because
incremental snapshots do not need to copy the unmodified data.

In addition to accelerating file IO operations, NV-Heaps [13],
Mnemosyne [36], HEAPO [20] and Pangolin [44] are trying to
extend the heap of a program from the volatile region to the
persistent region, with the help of DAX-style MMIO. These
works provide interfaces for programmers to build persistent
heaps on PM and manage persistent objects in the persistent
heap. All of them ensure the consistency of persistent object
operation with the help of logging [13], [20], [36], log-structure
[36] and atomic primitives [36], [44]. Despite these works fo-
cusing on the management of persistent objects while RMMIO
aims to accelerate file IO operations, RMMIO also learned a lot
from these works. Since atomic primitives only support 8B data
operations, RMMIO employs atomic primitives to guarantee
data consistency of 8B metadata. Moreover, RMMIO employs
an undo log to ensure the data consistency of file IO operations
but without inducing any extra writes. In some perspectives, the

PPcache of RMMIO is organized in the form of log-structure
style, but it can automatically overwrite the old logs. We note
that Pangolin [44] and Pavise [30] also provide protections for
data integrity. Although we both employ the 32-bit checksum to
detect data corruption, due to the limitation of parity, Pangolin
and Pavise cannot recover from the corruption where two pages
in two columns are lost at the same time, while the snapshot-
based recovery of RMMIO does not have such a limitation. In
addition, the parity has to be updated along with the updates of
all related data while the snapshot of RMMIO does not need to
be frequently updated, which reduces the software overhead of
data integrity guarantees.

We also note that there have been hardware integrity guar-
antees for PM, e.g., Tvarak [24], which can transparently de-
tect corruption and maintain data redundancy for mapped PM
regions at the hardware level. Although Tvarak also employs
parity as data redundancy for recovery, it has a fine-grained
hardware-managed checksum calculation, which is more effi-
cient than the software page-grained checksum of RMMIO. We
expect that Tvarak can soon be publicly available to further
reduce the performance overhead of data integrity guarantees
for RMMIO.

Previous works also proposed PM transactions to provide
atomic durability for PM, with the help of hardware logging.
LAD [18] proposed a hardware transaction that maintains a
persistent buffer in the memory controller and atomically com-
mits the data in the buffer. However, the size of a transaction is
limited within the size of the persistent buffer, which cannot
help to guarantee the consistency of large IO operations for
file systems. HOOP [11] provides atomic durability by using
hardware-assisted out-of-place updates. It first writes updates to
a persistent out-of-place region (OOP region) and then changes
the data mapping from the home region (the original address)
to the OOP region to avoid write amplification for logging.
Although HOOP can periodically collect the garbage in the
OOP region, the maximum size of OOP region (2MB) still
restricts the size of a transaction for executing a large IO op-
eration and decreases the performance of write-intensive work-
loads. SLPMT [43] proposed a selective logging mechanism
to remove redundant data from hardware logging, which can
increase the performance of transaction execution. The key
insight of SLPMT has already been included by RMMIO since
RMMIO only persists the data useful to recovery. In addition,
users are forced to specify the execution region with Txbegin
and Txend, to achieve atomic durability while using hardware
transaction. Thus, existing software has to be extensively modi-
fied to benefit from hardware transactions. In contrast, RMMIO
provides POSIX-like IO interfaces, which can be compatible
with existing software.

VI. CONCLUSION

We have applied RMMIO to persistent memory systems to
address the problems induced by DAX-style MMIO, i.e., lack
of guarantees to data consistency and integrity. The key contri-
bution of RMMIO is that we achieve a good balance between
the efficiency and reliability of MMIO by introducing PPcache

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on August 23,2024 at 13:57:16 UTC from IEEE Xplore. Restrictions apply.

DING et al.: ENABLING RELIABLE MEMORY-MAPPED I/O WITH AUTO-SNAPSHOT FOR PERSISTENT MEMORY SYSTEMS 2303

in existing persistent memory systems. Based on PPcache,
RMMIO proposes atomic I/O interfaces for data consistency
and incremental snapshots for data integrity. The experimental
results show the atomic IO interfaces of RMMIO can pro-
vide 2.31x higher bandwidth than existing log-based schemes
and the incremental snapshot with auto-snapshot can strictly
guarantee data integrity with only 4.5% additional overhead.
Moreover, the overall performance of RMMIO exceeds the
most popular PM-ware file system, i.e., ext4-DAX, by at most
849%. The evaluation proves that RMMIO can provide MMIO-
like performance while ensuring data reliability.

REFERENCES

[1] “Direct access for files,” The Linux Kernel Archives. [Online]. Available:
https://www.kernel.org/doc/Documentation/filesystems/dax.txt

[2] “LinkBench: A database benchmark for the social graph,” GitHub.
[Online]. Available: https://github.com/facebookarchive/linkbench

[3] “MyRocks: A rocksDB storage engine with MySQL,” [Online]. Avail-
able: http://myrocks.io/

[4] “NVDIMM block window driver writer’s guide,” PMem.io. [On-
line]. Available: https://pmem.io/documents/NVDIMM_Driver_Writers_
Guide.pdf

[5] “Linux profiling with performance counters,” perf. [Online]. Available:
https://perf.wiki.kernel.org/index.php/Main_Page

[6] “GCC, the GNU compiler collection,” Wikipedia. [Online]. Available:
https://gcc.gnu.org/

[7] GDB, “The GNU project debugger,” Sourceware. [Online]. Available:
https://www.gnu.org/software/gdb/

[8] J. Axboe, “Flexible i/o tester,” GitHub. [Online]. Available: https://
github.com/axboe/fio

[9] E. D. Berger and B. G. Zorn, “DieHard: Probabilistic memory safety for
unsafe languages,” ACM Sigplan Notices, vol. 41, no. 6, pp. 158–168,
2006.

[10] J. Bonwick and B. Moore, “ZFS: The last word in file systems,”
2007. Available: https://www.snia.org/sites/default/orig/sdc_archives/
2008_presentations/monday/JeffBonwick-BillMoore_ZFS.pdf

[11] M. Cai, C. C. Coats, and J. Huang, “Hoop: Efficient hardware-
assisted out-of-place update for non-volatile memory,” in Proc. Int.
Symp. Comput. Archit., Piscataway, NJ, USA: IEEE Press, 2020,
pp. 584–596.

[12] J. Choi, J. Hong, Y. Kwon, and H. Han, “Libnvmmio: Reconstructing
software io path with failure-atomic memory-mapped interface,” in Proc.
USENIX Annu. Tech. Conf., 2020, pp. 1–16.

[13] J. Coburn et al., “NV-Heaps: Making persistent objects fast and safe
with next-generation, non-volatile memories,” ACM SIGARCH Comput.
Archit. News, vol. 39, no. 1, pp. 105–118, 2011.

[14] J. Condit et al., “Better i/o through byte-addressable, persistent memory,”
in Proc. Symp. Operating Syst. Princ., 2009, pp. 133–146.

[15] S. R. Dulloor et al., “System software for persistent memory,” in Proc.
Eur. Conf. Comput. Syst., 2014, pp. 1–15.

[16] Facebook, “RocksDB: A persistent key-value store for fast storage
environments,” RocksDB. [Online]. Available: https://rocksdb.org/

[17] A. Ganesan, R. Alagappan, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau, “Redundancy does not imply fault tolerance: Analysis of
distributed storage reactions to single errors and corruptions,” in Proc.
USENIX Conf. File Storage Technol., 2017, pp. 149–166.

[18] S. Gupta, A. Daglis, and B. Falsafi, “Distributed logless atomic durability
with persistent memory,” in Proc. IEEE/ACM Int. Symp. Microarchit.,
2019, pp. 466–478.

[19] R. W. Hamming, “Error detecting and error correcting codes,” Bell Syst.
Tech. J., vol. 29, no. 2, pp. 147–160, 1950.

[20] T. Hwang, J. Jung, and Y. Won, “HEAPO: Heap-based persistent
object store,” ACM Trans. Storage (TOS), vol. 11, no. 1, pp. 1–21,
2014.

[21] “Three types of memory,” Intel. [Online]. Available: https://www.intel.
com/content/www/us/en/products/docs/storage/3-types-of-memory-
video.html?language=en_US&wapkw=3DXpoint

[22] J. Izraelevitz et al., “Basic performance measurements of the intel optane
DC persistent memory module,” 2019, arXiv:1903.05714.

[23] R. Kadekodi, S. K. Lee, S. Kashyap, T. Kim, A. Kolli, and V.
Chidambaram, “SplitFS: Reducing software overhead in file systems
for persistent memory,” in Proc. Symp. Operating Syst. Princ., 2019,
pp. 494–508.

[24] R. Kateja, N. Beckmann, and G. R. Ganger, “TVARAK: Software-
managed hardware offload for redundancy in direct-access nvm storage,”
in Proc. Int. Symp. Comput. Archit., Piscataway, NJ, USA: IEEE Press,
2020, pp. 624–637.

[25] H. Kumar, Y. Patel, R. Kesavan, and S. Makam, “High performance
metadata integrity protection in the wafl copy-on-write file system,” in
Proc. USENIX Conf. File Storage Technol., 2017, pp. 197–212.

[26] Y. Kwon, H. Fingler, T. Hunt, S. Peter, E. Witchel, and T. Anderson,
“Strata: A cross media file system,” in Proc. Symp. Operating Syst.
Princ., 2017, pp. 460–477.

[27] S. Liu, K. Seemakhupt, Y. Wei, T. Wenisch, A. Kolli, and S. Khan,
“Cross-failure bug detection in persistent memory programs,” in Proc.
Int. Conf. Archit. Support Program. Lang. Operating Syst., 2020,
pp. 1187–1202.

[28] S. Liu, Y. Wei, J. Zhao, A. Kolli, and S. Khan, “PMTest: A fast
and flexible testing framework for persistent memory programs,” in
Proc. Int. Conf. Archit. Support Program. Lang. Operating Syst., 2019,
pp. 411–425.

[29] A. Mathur, M. Cao, and A. Dilger, “ext4: The next generation of the
ext3 file system,” USENIX Assoc., vol. 32, no. 3, pp. 25–30, 2007.

[30] H. J. Qiu, S. Liu, X. Song, S. Khan, and G. Pekhimenko, “Pavise:
Integrating fault tolerance support for persistent memory applica-
tions,” in Proc. Int. Conf. Parallel Archit. Compilation Techn., 2022,
pp. 109–123.

[31] S. Raoux et al., “Phase-change random access memory: A scalable
technology,” IBM J. Res. Develop., vol. 52, no. 4.5, pp. 465–479,
Jul. 2008.

[32] O. Rodeh, J. Bacik, and C. Mason, “BTRFS: The Linux B-tree filesys-
tem,” ACM Trans. Storage (TOS), vol. 9, no. 3, pp. 1–32, 2013.

[33] V. Sridharan et al., “Memory errors in modern systems: The good, the
bad, and the ugly,” ACM SIGARCH Comput. Archit. News, vol. 43,
no. 1, pp. 297–310, 2015.

[34] V. Sridharan and D. Liberty, “A study of dram failures in the field,”
in Proc. Int. Conf. High Perform. Comput., Netw., Storage Anal.,
Piscataway, NJ, USA: IEEE Press, 2012, pp. 1–11.

[35] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. Williams, “The
missing memristor found,” Nature, vol. 453, no. 7191, pp. 80–83, 2008.

[36] H. Volos, A. J. Tack, and M. M. Swift, “Mnemosyne: Lightweight
persistent memory,” ACM SIGARCH Comput. Archit. News, vol. 39,
no. 1, pp. 91–104, 2011.

[37] M. Wilcox, “Add support for NV-DIMMS to ext4,” LWN.net. [Online].
Available: https://lwn.net/Articles/613384/

[38] X. Wu and A. Reddy, “SCMFS: A file system for storage class memory,”
in Proc. Int. Conf. High Perform. Comput., Netw., Storage Anal., 2011,
pp. 1–11.

[39] J. Xu, J. Kim, A. Memaripour, and S. Swanson, “Finding and fixing
performance pathologies in persistent memory software stacks,” in
Proc. Int. Conf. Archit. Support Program. Lang. Operating Syst., 2019,
pp. 427–439.

[40] J. Xu and S. Swanson, “NOVA: A log-structured file system for
hybrid volatile/non-volatile main memories,” in Proc. USENIX Conf.
File Storage Technol., 2016, pp. 323–338.

[41] J. Xu et al., “NOVA-Fortis: A fault-tolerant non-volatile main memory
file system,” in Proc. Symp. Operating Syst. Princ., 2017, pp. 478–496.

[42] J. Yang, J. Kim, M. Hoseinzadeh, J. Izraelevitz, and S. Swanson, “An
empirical guide to the behavior and use of scalable persistent memory,”
in Proc. USENIX Conf. File Storage Technol., 2020, pp. 169–182.

[43] C. Ye et al., “Reconciling selective logging and hardware persistent
memory transaction,” in Proc. IEEE Int. Symp. High-Perform. Comput.
Archit., Piscataway, NJ, USA: IEEE Press, 2023, pp. 664–676.

[44] L. Zhang and S. Swanson, “Pangolin: A fault-tolerant persistent memory
programming library,” in Proc. USENIX Annu. Tech. Conf., 2019,
pp. 897–912.

[45] P. Zuo, Y. Hua, and J. Wu, “Write-optimized and high-performance
hashing index scheme for persistent memory,” in Proc. USENIX Symp.
Operating Syst. Des. Implementation, 2018, pp. 461–476.

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on August 23,2024 at 13:57:16 UTC from IEEE Xplore. Restrictions apply.

https://www.kernel.org/doc/Documentation/filesystems/dax.txt
https://github.com/facebookarchive/linkbench
http://myrocks.io/
https://pmem.io/documents/NVDIMM_Driver_Writers_Guide.pdf
https://pmem.io/documents/NVDIMM_Driver_Writers_Guide.pdf
https://perf.wiki.kernel.org/index.php/Main_Page
https://gcc.gnu.org/
https://www.gnu.org/software/gdb/
https://github.com/axboe/fio
https://github.com/axboe/fio
https://www.snia.org/sites/default/orig/sdc_archives/2008_presentations/monday/JeffBonwick-BillMoore_ZFS.pdf
https://www.snia.org/sites/default/orig/sdc_archives/2008_presentations/monday/JeffBonwick-BillMoore_ZFS.pdf
https://rocksdb.org/
https://www.intel.com/content/www/us/en/products/docs/storage/3-types-of-memory-video.html?language=en_US{&}wapkw=3DXpoint
https://www.intel.com/content/www/us/en/products/docs/storage/3-types-of-memory-video.html?language=en_US{&}wapkw=3DXpoint
https://www.intel.com/content/www/us/en/products/docs/storage/3-types-of-memory-video.html?language=en_US{&}wapkw=3DXpoint
https://lwn.net/Articles/613384/

2304 IEEE TRANSACTIONS ON COMPUTERS, VOL. 73, NO. 9, SEPTEMBER 2024

Bo Ding received the B.E. degree in automation
from China University of Geosciences, China. He is
currently working toward the Ph.D. degree in com-
puter system architecture with Huazhong University
of Science and Technology, China. His research in-
terests include persistent memories and file systems.
He has published several papers in international
conferences and journals including ATC, ICCD,
and TACO.

Wei Tong received the B.E., M.E., and Ph.D.
degrees in computer science and technology from
Huazhong University of Science and Technology
(HUST), China. She is currently an Associate Pro-
fessor with Wuhan National Laboratory for Opto-
electronics, HUST. Her research interests include
computer architecture, non-volatile memory & stor-
age, and software-defined storage. She has more
than 20 publications in international conferences
and journals including IEEE TRANSACTIONS ON

COMPUTERS, IEEE TRANSACTIONS ON COMPUTER-
AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, ACM TACO, ISCA,
DAC, DATE, ICCAD, ICCD, ICPP, MSST, and LCTES.

Yu Hua (Senior Member, IEEE) received the B.E.
and Ph.D. degrees from Wuhan University, China.
He is currently a Professor with Huazhong Uni-
versity of Science and Technology, China. His re-
search interests include cloud storage systems, file
systems, non-volatile memory architectures, etc. His
papers have been published in major conferences
and journals, including IEEE TRANSACTIONS ON

COMPUTERS, IEEE TRANSACTIONS ON COMPUTER-
AIDED DESIGN OF INTEGRATED CIRCUITS AND

SYSTEMS, OSDI, FAST, MICRO, ASPLOS, VLDB,
USENIX ATC, SC, and HPCA.

Zhangyu Chen received the B.E. degree in com-
puter science and technology from Huazhong Uni-
versity of Science and Technology (HUST), China,
where he is currently working toward the Ph.D.
degree. His research interests include persistent
memories and debugging. He has published several
papers in international conferences and journals
including ASPLOS, ATC, DAC, TACO, etc.

Xueliang Wei received the B.E. and Ph.D. degrees
in computer science and technology from Huazhong
University of Science and Technology (HUST),
China. He is currently a Postdoctoral Researcher
with HUST, China. His research interests include
non-volatile memory, persistent memory, crash con-
sistency, and memory security.

Dan Feng (Fellow, IEEE) received the B.E., M.E.,
and Ph.D. degrees in computer science and tech-
nology from Huazhong University of Science and
Technology (HUST), China. She is currently a
Professor and Dean with the School of Computer
Science and Technology, HUST. Her research in-
terests include computer architecture, massive stor-
age systems, and parallel file systems. She has
more than 80 publications to her credit in jour-
nals and international conferences, including IEEE
TRANSACTIONS ON PARALLEL AND DISTRIBUTED

SYSTEMS, JCST, USENIX ATC, FAST, ISCA, ICDCS, HPDC, SC, ICS,
and ICPP.

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on August 23,2024 at 13:57:16 UTC from IEEE Xplore. Restrictions apply.

<<
	/CompressObjects /Off
	/ParseDSCCommentsForDocInfo false
	/CreateJobTicket false
	/PDFX1aCheck false
	/ColorImageMinResolution 200
	/GrayImageResolution 300
	/DoThumbnails false
	/ColorConversionStrategy /sRGB
	/GrayImageFilter /DCTEncode
	/EmbedAllFonts true
	/CalRGBProfile (Adobe RGB \0501998\051)
	/MonoImageMinResolutionPolicy /OK
	/AllowPSXObjects false
	/LockDistillerParams true
	/ImageMemory 1048576
	/DownsampleMonoImages true
	/ColorSettingsFile (None)
	/PassThroughJPEGImages true
	/AutoRotatePages /None
	/Optimize false
	/ParseDSCComments false
	/MonoImageDepth -1
	/AntiAliasGrayImages false
	/GrayImageMinResolutionPolicy /OK
	/JPEG2000ColorImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/ConvertImagesToIndexed true
	/MaxSubsetPct 100
	/Binding /Left
	/PreserveDICMYKValues false
	/GrayImageMinDownsampleDepth 2
	/MonoImageMinResolution 400
	/sRGBProfile (sRGB IEC61966-2.1)
	/AntiAliasColorImages false
	/GrayImageDepth -1
	/PreserveFlatness false
	/OtherNamespaces [
		<<
			/IncludeSlug false
			/CropImagesToFrames true
			/IncludeNonPrinting false
			/OmitPlacedBitmaps false
			/AsReaderSpreads false
			/Namespace [
				(Adobe)
				(InDesign)
				(4.0)
]
			/FlattenerIgnoreSpreadOverrides false
			/OmitPlacedEPS false
			/OmitPlacedPDF false
			/SimulateOverprint /Legacy
			/IncludeGuidesGrids false
			/ErrorControl /WarnAndContinue
		>>
		<<
			/IgnoreHTMLPageBreaks false
			/IncludeHeaderFooter false
			/AllowTableBreaks true
			/UseHTMLTitleAsMetadata true
			/MetadataTitle /
			/ShrinkContent true
			/UseEmbeddedProfiles false
			/TreatColorsAs /MainMonitorColors
			/MetricUnit /inch
			/RemoveBackground false
			/HonorBaseURL true
			/ExpandPage false
			/AllowImageBreaks true
			/MetadataSubject /
			/MarginOffset [
				0.0
				0.0
				0.0
				0.0
]
			/Namespace [
				(Adobe)
				(GoLive)
				(8.0)
]
			/OpenZoomToHTMLFontSize false
			/PageOrientation /Portrait
			/MetadataAuthor /
			/MobileCompatible 0.0
			/MetadataKeywords /
			/MetricPageSize [
				0.0
				0.0
]
			/HonorRolloverEffect false
		>>
		<<
			/IncludeProfiles true
			/ConvertColors /NoConversion
			/FormElements true
			/MarksOffset 6.0
			/FlattenerPreset <<
				/PresetSelector /MediumResolution
			>>
			/DestinationProfileSelector /UseName
			/MultimediaHandling /UseObjectSettings
			/PreserveEditing true
			/PDFXOutputIntentProfileSelector /UseName
			/BleedOffset [
				0.0
				0.0
				0.0
				0.0
]
			/UntaggedRGBHandling /LeaveUntagged
			/GenerateStructure false
			/AddRegMarks false
			/IncludeHyperlinks false
			/IncludeBookmarks false
			/MarksWeight 0.25
			/PageMarksFile /RomanDefault
			/UntaggedCMYKHandling /LeaveUntagged
			/AddPageInfo false
			/AddBleedMarks false
			/IncludeLayers false
			/IncludeInteractive false
			/AddColorBars false
			/UseDocumentBleed false
			/AddCropMarks false
			/DestinationProfileName (U.S. Web Coated \050SWOP\051 v2)
			/Namespace [
				(Adobe)
				(CreativeSuite)
				(2.0)
]
			/Downsample16BitImages true
		>>
]
	/CompressPages true
	/GrayImageMinResolution 200
	/CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
	/PDFXBleedBoxToTrimBoxOffset [
		0.0
		0.0
		0.0
		0.0
]
	/AutoFilterGrayImages false
	/EncodeColorImages true
	/AlwaysEmbed [
]
	/EndPage -1
	/DownsampleColorImages true
	/ASCII85EncodePages false
	/PreserveEPSInfo false
	/PDFXTrimBoxToMediaBoxOffset [
		0.0
		0.0
		0.0
		0.0
]
	/CompatibilityLevel 1.7
	/MonoImageResolution 600
	/NeverEmbed [
]
	/CannotEmbedFontPolicy /Error
	/PreserveOPIComments false
	/AutoPositionEPSFiles false
	/JPEG2000GrayACSImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
	/EmbedJobOptions true
	/JPEG2000ColorACSImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/MonoImageDownsampleType /Bicubic
	/DetectBlends true
	/EmitDSCWarnings false
	/ColorImageDownsampleType /Bicubic
	/EncodeGrayImages true
	/Namespace [
		(Adobe)
		(Common)
		(1.0)
]
	/AutoFilterColorImages false
	/DownsampleGrayImages true
	/GrayImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/AntiAliasMonoImages false
	/GrayImageAutoFilterStrategy /JPEG
	/GrayACSImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/ColorImageAutoFilterStrategy /JPEG
	/ColorImageMinResolutionPolicy /OK
	/ColorImageResolution 300
	/PDFXRegistryName (http://www.color.org)
	/MonoImageFilter /CCITTFaxEncode
	/CalGrayProfile (Dot Gain 15%)
	/ColorImageMinDownsampleDepth 1
	/PDFXTrapped /False
	/DetectCurves 0.0
	/ColorImageDepth -1
	/JPEG2000GrayImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/TransferFunctionInfo /Remove
	/ColorImageFilter /DCTEncode
	/PDFX3Check false
	/ParseICCProfilesInComments true
	/DSCReportingLevel 0
	/ColorACSImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/PDFXOutputConditionIdentifier (CGATS TR 001)
	/PDFXCompliantPDFOnly false
	/AllowTransparency false
	/UsePrologue false
	/PreserveCopyPage true
	/StartPage 1
	/MonoImageDownsampleThreshold 1.5
	/GrayImageDownsampleThreshold 1.5
	/CheckCompliance [
		/None
]
	/CreateJDFFile false
	/PDFXSetBleedBoxToMediaBox true
	/EmbedOpenType false
	/OPM 1
	/PreserveOverprintSettings true
	/UCRandBGInfo /Preserve
	/ColorImageDownsampleThreshold 1.5
	/MonoImageDict <<
		/K -1
	>>
	/GrayImageDownsampleType /Bicubic
	/Description <<
		/ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
		/GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
		/FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
		/KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
		/HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
		/NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
		/DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
		/CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
		/ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
		/DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
		/JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
		/SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
		/SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
		/CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
		/CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
		/ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
		/RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
		/HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
		/PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
		/NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
		/TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
		/POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
		/HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
		/SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
		/RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
		/ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
	>>
	/CropMonoImages false
	/DefaultRenderingIntent /Default
	/PreserveHalftoneInfo true
	/ColorImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/CropGrayImages false
	/PDFXOutputCondition ()
	/SubsetFonts false
	/EncodeMonoImages true
	/CropColorImages false
	/PDFXNoTrimBoxError true
>>
setdistillerparams
<<
	/PageSize [
		612.0
		792.0
]
	/HWResolution [
		600
		600
]
>>
setpagedevice

