62 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 1, JANUARY 2020

A Latency-Optimized and Energy-Efficient Write
Scheme in NVM-Based Main Memory

Yuncheng Guo, Yu Hua

Abstract—Nonvolatile memory (NVM) technologies are
promising candidates as the next-generation main memory due
to high scalability and low energy consumption. However, the
performance bottlenecks, such as high write latency and low
cell endurance, still exist in NVMs. To address these problems,
frequent pattern compression schemes have been widely used,
which however suffer from the lack of flexibility and adapt-
ability. In order to overcome these shortcomings, we propose a
well-adaptive NVM write scheme, called dynamic frequent pat-
tern compression (DFPC), to significantly reduce the amount of
write units and extend the lifetime. Instead of only using static
frequent patterns in existing FPC schemes, which are predefined
and not always efficient for all applications, the idea behind
DFPC is to exploit the characteristics of data distribution in
execution to obtain dynamic patterns, which often appear in
the real-world applications. To further improve the compression
ratio, we exploit the value locality in a cache line to extend
the granularity of dynamic patterns. Hence, DFPC can encode
the contents of cache lines with more kinds of frequent data
patterns. Moreover, to further support efficient write and read
operations in the context of multilevel/triple-level cell NVMs, we
need to extend the DFPC to improve performance in terms of
the access latency and energy consumption. We hence propose a
latency-optimized and energy-efficient compression write scheme
to encode the compressed data with low energy and latency states,
i.e., enhanced DFPC, thus reducing the latency and energy con-
sumption. We implement DFPC in GEMS with NVMain and
execute the applications from SPEC CPU2006 to evaluate our
scheme. Experimental results demonstrate the efficacy and effi-
ciency of DFPC. We have released the source codes for public
use at Github https://github.com/dfpcscheme/DFPCScheme.

Index Terms—Compression, encoder, frequent pattern, non-
volatile memory (NVM).

I. INTRODUCTION

WITH the rapid growth of massive data to be pro-
cessed, there is increasing demand to deploy large main
memories [1]. However, the traditional DRAM technology as

Manuscript received June 25, 2018; revised September 18, 2018; accepted
October 30, 2018. Date of publication November 29, 2018; date of current
version December 23, 2019. This work was supported by the National Natural
Science Foundation of China under Grant 61772212. The preliminary version
appears in the Proceedings of the 21st Design Automation and Test in Europe
(DATE), 2018. This paper was recommended by Associate Editor Z. Shao.
(Corresponding author: Yu Hua.)

The authors are with the Wuhan National Laboratory for Optoelectronics,
School of Computer Science and Technology, Huazhong University of
Science and Technology, Wuhan 430074, China (e-mail: ycguo@hust.edu.cn;
csyhua@hust.edu.cn; pfzuo@hust.edu.cn).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2018.2883981

, Senior Member, IEEE, and Pengfei Zuo, Student Member, IEEE

main memory is facing significant challenges in the cell scal-
ability and power leakage. Nonvolatile memories (NVMs),
such as phase change memory (PCM) and resistive random
access memory (ReRAM), have the potential to build future
memory systems due to their salient features of lower standby
power consumption and better scalability than DRAM [2]-
[8]. However, NVMs suffer from a number of shortcomings
in performance compared to DRAM [9]-[17]. In practice,
we need to carefully handle the problems of write latency
and limited lifetime in NVMs [18], [19]. For example, the
write latency of PCM cells is about 150 to 220 ns, much
more than the write latency of DRAM with 50 ns. As for
lifetime, PCM cells can be only written 107 — 108 times,
compared with the DRAM cells with 10" writes [18]. In
addition, Multilevel/triple-level cell (MLC/TLC) PCMs have
been put forward to offer higher capacity, which further reduce
the cell stability, and thus increase latencies and reduce cell
lifetime [12], [20]-[24].

In order to improve the write performance and endurance
of NVMs, existing schemes mainly consider to reduce the
number of write units. For example, Flip-N-Write (FNW) [25]
compares the old and new data to reduce the number of bits
changed by at least half. The efficiency of FNW depends on
the difference between the old and new data in each cache
line, which fails to exploit the data redundancy among dif-
ferent cache lines. In order to further reduce the data to be
written, frequent pattern compression (sFPC) [26] reduces the
number of the written bits via compressing each 32-bit word.
Specifically, sFPC maintains a pattern table in the memory
controller and the table contains multiple common word pat-
terns, such as the full-zero word pattern. If matching any of the
patterns in the table, each word in the cache line is encoded
into a compressed format, thus reducing the number of writ-
ten bits. The word patterns in the pattern table are preset and
cannot be modified, called static patterns. Dgien et al. [27]
proposed FPC that combines sFPC and FNW, and show that
FPC can reduce on average 2x more bit-writes than FNW.
However, the FPC cannot work for the applications in which
the word patterns with high frequency of appearance are not
matched with the static patterns.

In order to improve the flexibility and adaptability of data
patterns, we analyze the distribution of data values in each
word and the word patterns with high frequency of appearance
in different applications. We observe that different applications
have their own high-frequent word patterns that may not be
included in the pattern table. We call these high-frequent pat-
terns that are different from application to application dynamic

0278-0070 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.


https://orcid.org/0000-0001-7730-3796

GUO et al.: LATENCY-OPTIMIZED AND ENERGY-EFFICIENT WRITE SCHEME IN NVM-BASED MAIN MEMORY 63

patterns. Based on the observation, we propose a well-adaptive
NVM write scheme, called dynamic frequent pattern com-
pression (DFPC) [28]. The idea behind DFPC is to extend
the pattern table to include the dynamic patterns besides the
static patterns. The dynamic patterns are obtained via sampling
and analyzing the characteristic of bit value distribution in the
cache lines to be written to NVM. We reduce the overhead of
sampling by utilizing the match operations in the compression
scheme. Moreover, DFPC exploits the value locality in a cache
line to extend the granularity of dynamic patterns, from 32 bits
to 64 bytes. Specifically, our contributions are summarized as
follows.

1) Pattern Extraction at Runtime: In contrast to previous
frequent pattern compression schemes, which require
extensive statistical analysis to determine the patterns,
our proposed extracting algorithm obtains dynamic pat-
terns by sampling and analyzing the incoming data at
runtime, and hence improves the flexibility and adapt-
ability of the compression scheme in a cost-efficient
manner.

2) An Efficient NVM Write Scheme: We propose a write-
efficient NVM-based scheme, called DFPC. DFPC con-
sists of two important parts, including dynamic patterns
and extended patterns. By sampling the distribution of
zero-characters and extracting the potential dynamic data
patterns, DFPC compresses write data with dynamic pat-
terns to improve the adaptation of the compression. For
further reducing the amount of write-bits, DFPC extends
the data pattern for compressing the all-zero cache lines
and exploiting value locality. DFPC improves the system
performance in terms of read and write latency.

3) A Latency-Optimized and Energy-Efficient DFPC for
MLC/TLC NVMs: We propose a latency-optimized and
energy-efficient write scheme for MLC/TLC NVMs,
called enhanced DFPC (EDFPC), to further reduce
the latency and energy consumption. EDFPC leverages
the different physical properties of the cell states in
MLC/TLC NVMs and uses the free space in the cache
lines after compressions. EDFPC encodes the com-
pressed data in a cache line with lower energy and
latency states of all the cell states to reduce the write
latency and energy consumption. Hence, EDFPC can
accelerate the processing of instructions and reduce the
total energy consumption.

4) Real Implementation in GEM5: We have implemented
DFPC and EDFPC, in GEMS5 [29] with NVMain [30]
and evaluated it using SPEC CPU2006 benchmark
suites. Experiments demonstrate that DFPC has less
extra overheads and reduces more write-bits, compared
with the state-of-the-art work, data comparison write
(DCW), FNW, base-delta-immediate compression (BDI)
combined with FNW, and frequent pattern compression
combined with FNW (FPC). We have released the source
codes at Github.

The rest of this paper is organized as follows. Section II
introduces the background and our observations. Section III
presents the details of system design in DFPC. Section IV
presents the design of EDFPC. Section V shows the

performance evaluation. Section VI presents related work.
Finally, we conclude this paper in Section VII.

II. BACKGROUNDS AND MOTIVATIONS
A. NVM Properties and Limitations

Unlike traditional charge-based memories such as DRAM
and SRAM, emerging NVMs store data by using resistive
memories, which have higher density and scalability. Hence,
NVMs have the potential to be widely used in the main
memory.

Since all NVMs store information by changing the physical
states, the write operation consumes longer time and energy
than the read operation, which leads to the asymmetry of
read and write. Moreover, the write operation wears out the
NVM cell especially in high frequency, which results in the
limited endurance of NVMs. Therefore, NVM-based systems
need to reduce the number of write-bits in the write operation.
As one of the promising NVM technologies, PCM technol-
ogy uses the properties in resistance of chalcogenide glass to
store data [9]. The phase change material used is the alloy
of germanium, antimony, and tellurium, such as Ge,Sb;,Tes.
The material has two states, crystalline (SET) state and amor-
phous (RESET) state. The resistances of the material with
different states are drastically different. In general, the resis-
tance value of the amorphous-state material is much higher
than that of the crystalline-state material. PCM stores binary
informantion with two states by using the resistance gap of
the material. To perform a RESET (SET) operation to write
“0” (“1”) to the PCM cell, a PCM cell is heated above the
melting point to melt the chalcogenide material (above its
crystallization temperature but below its melting point) fol-
lowed by fast (slow) cooling to change the state. The ReRAM
cell uses the insulating dielectric within the Metal-Insulator-
Metal structure. By using suitable voltages, it may be changed
between low-resistance state (SET) and high-resistance
state (RESET).

B. Energy and Latency of MLC/TLC NVMs

Both PCM and RRAM support MLC/TLC technology, due
to the large gap between the lowest-resistance state (SET)
and highest-resistance state (RESET). For example, a cell of
TLC NVMs can be programed to eight stable resistance levels.
Hence, TLC NVMs can store three logical bits of data in each
cell. With this programming scheme, MLC/TLC NVMs can
store more data in a fixed-size device and increase the data
density and reach higher capacity [32]. However, MLC/TLC
cells have various states with different physical properties.
Compared with SLC NVMs, the programming for MLC/TLC
NVMs is more complicated. There are two state-of-the-art
program-and-verify (P&V) operations, reset-to-set (RTS) and
set-to-reset (STR) [33], [34]. We illustrate P&V for TLC NVM
module in Fig. 1. In RTS, one reset operation is first applied
to make the cell fully amorphous to the reset state, “000,”
and then a series of set operations with various iterations are
applied to reach the target state. Similarly, in STR, one set
operation is first applied to make the cell to the set state, “111,”
and then various iterations of reset operations are applied to



64 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 1, JANUARY 2020

latency energy
80 40
Z60 309
a0 20 &
< :
520 10 5
0 0

000 001 010 011 100 101 110 111

Cell State

Cell State | 000 | 001 | 010 | 011 | 100 | 101 | 110 | 111
Latency (ns)| 6 19 39 57 60 40 21 5
Energy (pJ)| 2 6.7 | 193351356 |196| 85 | 15

Fig. 1. Energy and latency for TLC NVMs P&V [20], [31].

reach the target state. In general, RTS is used to program states
“000” to “011” and STR is used to program states “111” to
“100.” As shown in Fig. 1, the required energy and latency for
programming a cell of TLC NVMs to states “011” and “100”
are about 10 to 20 times in comparison to the reset “000” and
set states “111” [20], [31].

C. DCW, FNW, and FPC

DCW [35] exploits the nonvolatility of NVMs and checks
the new write-bits with existing bits to determine the mod-
ified bits. Only the modified bits require a write operation.
FNW [25] compares the new write-bits with existing bits to
reduce the number of bit-flips. FNW reduces the number of
bits changed more than half by using only one tag bit per
compared unit.

Compression is an attractive approach to increase effec-
tive memory capacity of a large-size memory. Compression
increases space usage, and hence improves performance and
energy efficiency. Alameldeen and Wood proposed sFPC [26]
to compress write words based on a set of static patterns
recorded in a pattern table.

Dgien et al. proposed FPC by combining sFPC with
FNW [27]. This method uses two tag bits per word and reduces
the size of data before being written into the data array. Fig. 2
presents an example of a write operation with different write
schemes. We take 16-bit write unit as an example. In DCW
and FNW, the new data will be compared with the data in
memory for obtaining the different data bits. In this example,
the number of different bits is 6, which is smaller than the half
of the total bits of the write unit. So 6 bits will be written by
using DCW and FNW. As for FPC, we use a simple pattern
table to give an example. The pattern table uses 2-bit prefix
with 4 patterns, and each pattern contains 4 bits to represent
the 4-bit characters’ status (compressible or incompressible).
In Fig. 2, since the second and fourth characters of the new
data are zero-characters, the compression engine matches the
new data with the pattern “X0X0” and encodes the prefix of
this pattern “01” with the incompressible characters. Then the
compressed data with 10 bits will be written in data array
based on FNW. Finally, this write operation only writes 4 bits
with FPC (sFPC combined with FNW).

D. Extra Writing in MLC/TLC NVMs

Nowadays, MLC/TLC NVMs have been put forward to
offer higher capacity, which further increase the latencies and

[0]0) [A]A[A[1[1[1[i[1[0]0]0]1][0]0]1]1] Datain Memory

Flipp‘ing‘mg\1\1\1\0\0\0\0\0\1\0\0\1\0\0\0\0\ New Data

[1]1]1J00J0]0J0J1]0J0]1]0]0]0]0] Written Data (DCW)

|
I
I

} [1]1]1]0]0J00TO1]0JOT1[0OTO[0]0] Written Data (FNW)

Prefix

I
I [oJi[a]a[1J0o 1001 X[X]X[X|X|X]| Compressed New Data
I

[0]1] [o[1]1]1]1]o]1JoJo][1[0]1][00]1]1] Written Data (FPC)

Compressible tag

Fig. 2. TIllustration of different 16-bit write operations. The data bits in red
color need to be written. The blue data bits signify the matching prefix.

k=1 k=2 k=3

= n
> (=3
=) =)

[
S
=]

o
>
=}

=}

Expected Values of Write bits
S
S

0 64 128 192 256 320 384 448 512

Length of data (bit)

Fig. 3. Expected value of write-bits.

reduce cell lifetime [21], [31]. DFPC will have the same
advantages in MLC/TLC NVMs. However, compared with
SLC cells, TLC cells have more bits and states. Unlike FNW,
DCW is the first choice for writing. If there exist only one or
two pairs of different bits in a TLC cell between old and new
data, the whole cell with three bits will be written, which we
call Extra Writing in this paper. Extra writing increases the
probability of failure in DCW and the number of written bits.
To demonstrate our view, as shown in

sor-sn (- (- 5k)) o

we calculate the expected values of the number of written bits
after DCW in SLC and MLC NVMs, and present them in
Fig. 3. We consider all of the data bits in new data and exist-
ing data in memory are random. k is the number of bits in
each cell, and [ is the length of data. Two k-bit cells have a
1/k chance to be the same. At this moment DCW will take
effect. When the number of bits in a cell increases, DCW will
have low performance. Moreover, the compression schemes
have impact on DCW, which changes the positions of some
units, mitigates the efficiency of existing data structures and
increases the probabilities of extra writing after DCW. Fig. 4
presents an example of the comparison between SLC and TLC
NVMs. In SLC NVMs, after compression and DCW, the num-
ber of written bits decreases from 8 (only with DCW) to 4.
However, in TLC NVMs, the number of written bits increases
from 10 (3 cells and 1 bit) to 12 (4 cells). In these cases, com-
pressions deliver poor performance via DCW. We will show
the detailed evaluations in Section V-B6.



GUO et al.: LATENCY-OPTIMIZED AND ENERGY-EFFICIENT WRITE SCHEME IN NVM-BASED MAIN MEMORY 65

Flipp‘ing‘mg\1\1\1\0\0\0\0\0\1\0\0\1\0\0\0\0\ New Data
I
Il

[O[T[T[[[0[T[0[0[1[0]T[00]1]1] Writen Data (SLC)

[O[ITI]1[I]O[1TOJOTIJOTI]O]O]1]1] Written Data (TLC)

[A[1]1]1[1]1]1[1]0J0O]O[1]0O]O[1]1] Datain Memory

Prefix
*********

fi
[o[1[11[1]0]1[00 1 X[X[X[X|X][X| Compressed New Data

Compressible tag

Fig. 4. [Illustration of the comparison of the 16-bit write operations in SLC
and TLC NVMs.

——bzip —cactusADM

—
N s ® D
S S & & 2

Zero-character
Distribution (%)

0 L | [ | | | |
0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128
The Serial Number of Characters in a Cache Line

Fig. 5. Distribution of zero-characters.

E. Motivations

Existing schemes [26], [27] generally exploit static patterns
for compression, which are obtained by analyzing the statis-
tical characteristics of real-world applications. In general, the
frequency of selected patterns directly affects the number of
compressible cache lines. However, the high-frequent patterns
in the applications are not always matched with the static pat-
terns. In order to improve the patterns used in compression
schemes to adapt to different applications, we study the char-
acteristics of the data generated by applications. We observe
that most integers used in applications are compressed and
stored in a 32-bit form, in which only 4, 8, or 16 bits have
been really used. The low utilization results in the wide distri-
bution of zero (in 4-bit character) [36]. Since read and write
operations access one cache line (64 bytes) at a time, the
zero-character distribution of the cache line can fully exhibit
the data distribution of applications. To verify this point, we
conduct the simulation of examining write accesses. We use
the applications from SPEC CPU2006 for mimicking the real-
world workloads. The results reveal that the potential patterns
of the zero-character distribution. We observe that the charac-
ters in some specific serial numbers, where the zero-character
appears frequently, form a part of a periodic cycle. As shown
in Fig. 5, each 8-character data corresponds to a periodic cycle
in bzip. In each periodic cycle, the fourth, seventh, and eighth
characters have high frequency of “0.” In cactusADM, the spe-
cific serial numbers are different with those in bzip since the
data patterns have changed. If we consider zero-character as
the compressible unit, the higher points which represent the
higher frequent occurrence of zero-character will be regarded
as the compressible part of data pattern. The data patterns of
[(64 x 8bit)/(32bit)] = 16 words in the cache line can be
extracted based on the distribution at runtime.

III. SYSTEM DESIGN AND IMPLEMENTATION

In order to describe the design of DFPC, we first define the
dynamic pattern extracted from the applications and explain its

300000000 B0000XXXX BXXXX0000
BEXXX0XX00 BXXXXXXXX

40%

=

Fig. 6. Distribution of data patterns in bzip. The first three patterns are static
patterns. “XXX0XX00” is a dynamic pattern extracted from the distribution.
The pattern with all “X” means the incompressible word.

high compressibility and the feasibility of pattern extraction.
We then introduce the extended pattern for improving the effi-
ciency of write operations. Finally, we present a well-adaptive
NVM write scheme, called DFPC, and the system architecture
as well as the workflow of DFPC.

A. Dynamic Pattern

Based on our observation, we first define the static pattern
and the dynamic pattern. The static pattern is interpreted as
the pattern predefined that fails to be modified at runtime.
The dynamic pattern is interpreted as the pattern obtained by
sampling and analyzing the characteristic of bit value distri-
bution in the incoming data at runtime. Fig. 6 presents an
example showing the pattern extracted from the distribution
in bzip. In this example, the dynamic pattern, “XXX0XX00”
(the incompressible 4-bit character is expressed as “X”), can
be obviously obtained by observing the zero-character distribu-
tion. This pattern occupies 36% of the words, more than other
static patterns, which reveals the potential high frequency of
the dynamic patterns. We can add the dynamic patterns to the
pattern table to enhance the compressibility of the compression
scheme.

B. Extended Pattern

Dynamic patterns can improve the adaptation of compres-
sion in various applications. However, the scalability of data
patterns in compression is low due to the fixed format of data
patterns. In our observation, the requests always access one
64-byte cache line at a time, but FPC only compresses words
with 32-bit form. When a write request with all zero bits
accesses the data array, it will be divided into 16 words for
compression, which causes 3 x 16 = 48 write bits before being
written. For further reducing the number of bit-writes with
high efficiency, we extend the size of dynamic patterns. We
improve the traditional extract algorithm to detect more com-
plex patterns, such as BDI patterns, which exploit the value
locality of the cache line [37], [38].

C. Dynamic Frequent Pattern Compression

By using the extended dynamic patterns, we propose a
well-adaptive NVM write scheme. The idea is to extract the
dynamic patterns from the zero-character distribution and use
both static patterns and dynamic patterns to compress more



66 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 1, JANUARY 2020

data. The scheme is implemented in the Memory Controller.
For the compression with common patterns, the scheme
divides the 64-byte cache line into 16 32-bit words. The con-
tent of a word is checked to determine if matching any of the
patterns with high frequency. Each data pattern contains eight
bits to represent 8 4-bit characters’ status (compressible or
incompressible). For the compression with the extended pat-
terns, the scheme can select appropriate matching algorithms.
For supporting compression in NVMs, the cache line is mod-
ified to include the tag bits. Each word needs two tag bits as
the compressible tag and flipping tag, and hence 32 additional
tag bits are added into a 64-byte cache line. Fig. 7 shows
the architecture of the NVM-based main memory system with
DFPC. We add a component in the architecture of compres-
sion scheme, called Sampling Engine, which consists of a
group of counters for sampling the zero-character distribution
of the application and extracting the dynamic patterns. After
obtaining the dynamic patterns, the sampling engine adds the
patterns to the dynamic pattern table. For write accesses, the
scheme consists of three stages, i.e., sampling stage, analysis
stage, and dual-pattern compression stage.

1) Sampling Stage: The dynamic patterns require sufficient
number of words to be obtained by the extraction algorithm.
To facilitate compression operations in the Sampling stage,
a few static patterns are predefined in a pattern table. In
our experiments, we use four static patterns and 3-bit pre-
fix to maintain eight data patterns in total. So the number of
appropriate dynamic patterns after filtering should be no more
than 4. During a write access, if a word is compressible and
matched with a pattern, it is encoded along with a prefix. The
compressible tag is set to be enabled. Before being written
through the cache line of NVMs, the bits of each word are
compared with existing bits. If more than half of the bits are
different, the whole word will flip, and the flipping tag is set
to be enabled. For sampling, we design a sampling engine to
record the most frequent patterns. The sampling engine uses
two groups of counters. One group is for counting the num-
ber of zero-characters in the cache line in sampling stage.
The number of counters is set as 128 (64 byte/4 bits per
counter). The other group is for counting the reduced bits of
the extended patterns in analysis stage (All-zero cache lines are
not included). To reduce additional overhead of sampling, we
leverage a match operation, which reads the value of each char-
acter, and supports the sampling operation in the meantime.
Hence, the sampling information in the sampling engine comes
from the compression engine rather than the write buffer.

2) Analysis Stage: When the sampling amount reaches the
sampling granularity N, the dynamic patterns are obtained by
analyzing the zero-character distribution. The distribution may
be quite complex in some application. So we design a simple
and effective pattern extracting algorithm with high efficiency.
In the analysis stage, the counters are analyzed by the extract-
ing algorithm (as shown in Algorithm 1). First, the counters
are checked for obtaining the upper bound (UB) and the lower
bound (LB). The value of the threshold T is calculated by
using the equation in line 5 of Algorithm 1.

The threshold factor (TF) and the sampling granularity N
are predefined via experimental verification in Section V-A.

| Last Level Cache |

Memory Controller

1 Read Buffer

I Write Buffer rl‘

Compression
En_%ine

Sampling Engine
Decompression |

|l—| Pattern Table .
En_%me

L |
| NVM Data Array |

Fig. 7. DFPC system.

Algorithm 1 Algorithm for Extracting Dynamic Patterns
Require:
The array of count values in counters, C;
The number of counters, #;
The threshold factor, TF;
Ensure:
The array of dynamic patterns, P;
1: for each i € [1,n] do
2 UB = MAX(UB, Cl[i]);
3 LB = MIN(LB, C[i]);
4: end for
5: T=LB+ (UB—LB) xTF
6
7
8
9

: for each i € [1, n] do
if C[i] > T then

Cli]=0;
. else
10: Clil=1;
11:  end if
12: end for

13: extracting g dynamic patterns from C and adding them to
P

14: filtering: eliminating existed and repeated patterns

15: return P.

The dynamic patterns can be extracted by comparing the
count values of the counters with the threshold. When the
count value is larger than or equal to the threshold, the pattern
code is set as “0,” which means this character is compressible.
Otherwise, the pattern code is set as “1” (“X”). After check-
ing all counters, the algorithm extracts 16 patterns. However,
some of the extracted patterns are repeated or useless, like
“XXXXXXXX.” The repeated patterns and incompressible
pattern should be removed. DFPC also filters the extracted
patterns in the analysis stage. The data to be written are
encoded by the compression with a prefix based on the data
pattern which contains 8 4-bit characters. For a 3-bit pre-
fix, the data pattern with one compressible character “0” can
only save 4 — 3 = 1 bit, which has low efficiency and long
latency especially when the compressed data is decoded for
reading. In the applications with low distribution of all-zero
units, most extracted dynamic patterns have 3 or less “0,”
which have lower compressibility than the static patterns. In
order to make a tradeoff between the compressibility and
extra overheads, DFPC filters out the extracted patterns with



GUO et al.: LATENCY-OPTIMIZED AND ENERGY-EFFICIENT WRITE SCHEME IN NVM-BASED MAIN MEMORY 67

k=1 k=2 k=3 k=1

900 §3.0

5750 25

£ B

£ 600 220

- =

S 450 515

E ]

Z 300 310

E150 305

g 3

0 200

= 0 64 128 192 256 320 384 448 512 & 0 64 128

Length of data (bit)

Fig. 8.

low compressibility (only one “0”) in the Analysis stage. In
order to make full use of the limited number of prefixes,
DFPC selects top-4 patterns based on the compression ratios of
these extracted patterns and extended patterns. The compres-
sion ratio is determined by the pattern’s compressibility and
frequency of occurrence. Finally, the remaining four dynamic
patterns are added to the pattern table and will not be modified.

3) Dual-Pattern Compression Stage: In the dual-pattern
compression stage, the compression engine can obtain two
kinds of data patterns from the dynamic pattern table and the
static pattern table, respectively. The content of a word is com-
pressed based on the static and dynamic patterns concurrently.
The compression engine then compares the numbers of com-
pressible bits in two data patterns, and chooses the pattern
with more compressible bits as the matching result to execute
the compression operation.

During the read accesses, the state of a compressible tag
bit determines if the data are compressed. The state of flip-
ping tag bit presents the flipped data. After parsing these tags,
the Decompression Engine can decoded the word rapidly. If
the data are flipped, the Decompression Engine will first flip
the data. Then if the data is compressed, the Decompression
Engine will read the first three bits to obtain the prefix, which
establishes a match between the compressed word and the
matching pattern, and find the matching pattern. Finally, the
Decompression Engine decodes the compressed data and is
filled with zero-characters based on the pattern.

D. Temporal and Spatial Overheads

The implementation of DFPC consists of compression and
pattern extraction. The time overhead of compression is about
several cycles on average in the memory controller [38].
In Section V-A, we define the access time as three cycles
in compression and two cycles in decompression. For pat-
tern extraction in the analysis stage, Algorithm 1 traverses
the counters with constant-scale time complexity. Since most
applications usually run quite a period of time after warming
up, the time consumption of pattern extraction can be negligi-
ble. After pattern extraction, the static patterns are still retained
in the pattern table. Thus, the old data compressed by using
static patterns can be decompressed via its prefix during the
read accesses.

As we mentioned, the cache line is modified to provide the
tag bits. FNW needs one flipping tag bit per word. For sup-
porting compressions, like FPC and DFPC, each word needs
another tag bit to mark the word compressible or not. In order

192 256 320 384 448 512
Length of data (bit)

k=2 k=3

o
>

Fy
>

g
o

=
=

S
=

0 64 128 192 256 320 384 448 512

Length of data (bit)

Expected Values of Latency (us)
~n
)

Expected value of written bits, energy, and latency in different kinds of encoding schemes.

to carry out the sampling, DFPC needs a set of counters, which
only use 128(counters) x 8 byte(64 —bit int) = 1 KB and incur
no extra space overhead at run time.

IV. ENHANCED DYNAMIC FREQUENT
PATTERN COMPRESSION

A. Latency-Optimized and Energy-Efficient Encoding Scheme
in MLC/TLC Cells

Taking TLC cell as an example, each TLC cell has eight
different states which can store three bits of data. As shown in
Fig. 1, there are huge gaps of energy and latency among the
states. We can use several of them for storing data to reduce
the energy consumption and latency. However, this encoding
scheme will increase the size of data. Fortunately, compression
can delete useless information and reduce the size of data,
which offers the platform for encoding scheme.

As shown in Fig. 8, we calculate the expected values of the
number of written bits, energy consumption and write latency
in different kinds of encoding schemes (k is the number of bits
in each encoded cell). With encoding scheme, we can further
reduce the energy consumption and write latency.

B. Enhanced Dynamic Frequent Pattern Compression

By using the encoding scheme after compression, we pro-
pose an enhanced DFPC for MLC/TLC NVMs, called EDFPC.
We leverage the free space in the cache lines after compres-
sions and encode the compressed data with low energy and
latency states. For supporting the encoding scheme, we add
a pair of components including an encoder and a decoder
in memory controller. Fig. 9 shows the architecture of the
MLC/TLC NVM-based main memory system with EDFPC.

After compressing the raw data, if the data from the com-
pression engine is incompressible (determined by checking the
compressible tag bit) or with low compression ratio, the data
will be written directly to NVMs. Otherwise, the encoder will
encode the compressed data to reduce the energy and write
latency.

Fig. 10 shows an example of the proposed encoding scheme.
After compression, the compressed data only has 10 bits but
12 different bits (4 cells) compared with the old data in TLC
NVMs, which occurs in Extra Writing. To mitigate the impact
of the extra writing, as shown in Section IV-A, we select 4
states of the TLC cell with low energy and latency (“000,”
“001,” “110,” “111”) for encoding. Thus, each 2-bit com-
pressed data (“00,” “01,” “10,” “11”) will be encoded into



68 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 1, JANUARY 2020

Last Level Cache

_l |._

ot
=2
S
féi Sampling Engine
S
2> [ Compression Pattern Table Decompression
g Engine Engine
=
Encoder Decoder

| Write Buffer I

| NVM Data Array

NVM Module

| Read Buffer I

Fig. 9. EDFPC system.

[0]0] [T[1[1[1[1[1[1[1[0[0[0[I1[0]0]1]1] DatainMemory

Flippingtag 1]1][1]0[0]0]0J0[1]0]0][1]0]0[0]0] New Data
I Prefix

|| [OIAATIT0]I[00IX[XXIX[XIX] Compressed New Data
[0]T[1[1[1]0[T[0]0]1[0[L[0]0]1][T] Written Data (SLC)

[O[I[I[T][1]0]T]00[T]0]1[0]O]T]1] Written Data

Compressible tag Suffix
(O[O T[T [1]T[A[1[0[T[T[0]0]0[1]1] Encoded Data

[1] 10\0\111\1\111\1\011\1\010\0\1}1\ Written Encoded Data

TLC

Fig. 10. Illustration of a 16-bit write operation in EDFPC.

3-bit encoded cell (“000,” “001,” “110,” “111”). In this exam-
ple, compared with the written data of DFPC with 178 ns
write latency and 98.8 pJ energy, the encoded data only costs
90 ns write latency and 33.4 pJ energy, without using DCW.
After encoding, the encoder adds one bit “1” as the encoding
suffix for decoding. However, the suffix could create an extra
word in the write phase. In the implementation of EDFPC,
we merge the 1-bit suffix and the 3-bit compression prefix of
DFPC into a 4-bit character to maintain the write order and
facilitate the decode operation.

V. PERFORMANCE EVALUATION

In this section, we take PCM as an example of NVMs
to demonstrate the performance of DFPC. We evaluate the
efficacy and efficiency of our design using the applica-
tions from SPEC CPU2006. We first analyze the impact
of the parameters, such as TF and sample granularity.
We then present the results of write-bit reduction, write
latency, read latency, instructions per cycle (IPC), as well as
energy consumption. In TLC NVMs, we point out the poor
performance of the compressions and show the improvement
of EDFPC.

A. Experimental Configurations

We present the configuration and the experimental envi-
ronment. The GEMS simulator is a modular platform for
computer-system architecture research, and supports a stan-
dard PC platform. NVMain is a cycle-accurate main memory

TABLE I
EXPERIMENT CONFIGURATIONS

Processor and Cache
CPU 4 cores x86-64 processor, 2 GHz
Private L1/L2 caches [ 32 KB/ 2048 KB
Memory Using PCM-based Memory

Capacity 8 GB, 1 channel, I ranks, 8 banks
Read latency 75 ns
Set latency 37.5 ns for each word of 32 bits

12.5 ns for each word of 32 bits
Parameters of DFPC

Compression latency 1.5 ns [38]

Decompression latency 1 ns [38]

Sample granularity N 5 million write accesses

Threshold factor T F 0.5

Reset latency

simulator designed to simulate emerging NVMs at the archi-
tectural level. We implemented DFPC and EDFPC in the
GEMS5 simulator [29] with NVMain [30] to evaluate our
design. The SPEC CPU2006 applications reflect a variety of
real integer and floating-point-based workloads used by mod-
ern computing systems. The configurations of the simulation
are shown in Table I. In our experiments, the memory traces
from the applications on a machine running two 4-core Intel
Xeon E5620 CPUs with 2.4GHz frequency. We also simu-
late the whole memory hierarchy and adopt two-level cache
(L1 and L2 caches). All caches have 64B cache line size. The
8GB PCM main memory has 1 rank and 8 banks and the
main memory controller has individual read and write queues
and uses FRFCFS scheduling algorithm of NVMain which
schedules read requests and only deals with write requests,
when the queue of write requests is full. The static patterns
(“00000000,” “00001111” and “11110000”) are selected from
the zero-extended patterns in [27] and [39]. The read latency
of the PCM is 75 ns and the set (reset) latency is 37.5 (12.5) ns
per 32-bit word, like the configurations in [39]-[41]. During
trace generation, the applications are first run through 10 mil-
lion instructions to warm up the system [38]. The applications
then run 2 billion instructions to record enough accesses. We
evaluate and compare the performance of our DFPC to three
state-of-the-art methods, FNW [25], BDI with FNW (BDI),
and frequent pattern compression with FNW (FPC) [27]. In
TLC PCMs, we replace FNW with DCW. The latency and
energy of each state in the TLC cell follows the parameters
in [20] and [31].

1) Threshold Factor: Before performing the evaluation of
DFPC, we first analyze the impact of the parameters in the
design. The TF is an important parameter of the extraction
algorithm used in DFPC. With a high TF, the dynamic pat-
terns extracted from the distribution can compress more words
due to the less number of specific serial numbers. The dynamic
patterns extracted by presetting lower TF have more compress-
ible characters in a word. We consider that if we preset the
TF within a rational range, there will be a small effect on the
performance of write-bits reduction. To verify this point, we
implement DFPC and count the amount of written bits in 8
applications with the TF from 0.3 to 0.6. Statistical results are
shown in Fig. 11. We observe that the reductions of write-bits
perform well from 0.4 to 0.6. Hence, we choose 0.5 as the
default TF.



GUO et al.: LATENCY-OPTIMIZED AND ENERGY-EFFICIENT WRITE SCHEME IN NVM-BASED MAIN MEMORY

350

BFNW

BDI

@ FPC

B DFPC

£ 300
£250
-]

© 200

£ 150

f
—
S
=

5.0

N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N

Percentage of Wri
=4
=}

s s st st s s

69

~
< 16 ——bzip
w ——tmeTNNE
o[\ il
S 10 4 --=--gromacs
e U e t.\\ s
§ 8 P ‘":‘:’"5; ——cactusADM
= 6 ——leslis3d
= 4 ——namd
] 2
- . . ‘ soplex
-
5 0.3 0.4 0.5 0.6 -—~—lbm
A~ Threshold Factor
Fig. 11. Write-bits with different TFs.
g —N=10 million N=20 million ——N=30 million
=
g
£
{
N
% ----- N=10 million — N=20 million ---- N=30 million —N=40 million
£ 100
28 F e = {"w_—
§ 60 | =3 ==ll&=: “Igjﬁ
B 4y ! A | | ||
gl W !v /L A
g
5o I | [
O A I A RIS
N The Serial Numbers of Characters in a Cache Line
(b)
Fig. 12.  Zero-character distribution with different sample granularities.

(a) bzip. (b) cactusADM.

2) Sample Granularity: To improve the representation of
the dynamic patterns, we need to select appropriate sample
granularity N. We use DFPC to collect the zero-character
distribution every 10 million write accesses. We present the
change of zero-character distribution with the sample granu-
larity N in Fig. 12, and the fluctuant number of compressible
characters in the cache line within a narrow range is corre-
lated with the result of the extraction algorithm. We observe
that there are few differences among the statistics. The cycle of
distribution remains unchanged in all statistical results, while
the number of compressible characters in a word fluctuates
within a narrow range. The dynamic patterns will be more
representative when expanding the sample granularity, while
the dynamic patterns will be extracted fairly later and perhaps
cause performance degradation.

B. Comparisons Between DFPC and Existing NVM Write
Schemes

1) Write-Bit Reduction: DFPC compresses the contents of
words, based on the static and dynamic patterns, to reduce
the number of the bits to be written. The write-bit reduction
reduces the energy consumption and improves the endurance
of PCM. As shown in Fig. 13, by using FNW, FPC, and BDI
can reduce more than 70% written bits. With dynamic patterns,
DFPC outperforms FNW, FPC, and BDI, and decreases 75%,
72%, and 68% written bits on average.

Fig. 13. Percentage of write-bits in SLC NVMs.
L0 5 FNW S BDI #FPC EDFPC
: N N N
q N N N
. N N N N
25 NI N LR X
g Y N NI N N N N N
<06 N N N N N N N N
e N, INH BN INE N N N N
~ N N N N N N N N
© NN N N N IR INE N N
204 N N N N N N N N N
T N N N N N N N N N
= N N N N N N N N N
s NN N N N N INE N N
0.2 N N N N N N N N N
NI INE N N N N N R \
0.0 UN N N N N N N N N
- A S & &
;N & ¥
< & &b& s& A3 vﬁé
Fig. 14.  Write latency reduction in SLC NVMs (normalized to FNW).

B FNW BDI & FPC mDFPC

1.0

q
N X
\ A
N N
N N
N} N
N N
N N
N} N
\ \
N N

(S S SSSSd\

%, 8
%,
%0’

Fig. 15. Read latency reduction in SLC NVMs (normalized to FNW).

2) Write Latency: Compression schemes can significantly
reduce the number of written bits before executing compari-
son in a write operation. Hence, the number of writing words
can also be reduced before being written. The write accesses
in compressions can be completed more quickly compared
with FNW. Experimental results of write latency are shown in
Fig. 14. DFPC encodes the all-zero cache line from 64 bits to
3 bits, which can be written as one word, and hence improves
the performance of write accesses. All of the applications have
lower write latency compared with FNW, which demonstrates
that FNW indeed has impact on the write-bit reduction of com-
pression schemes. In general, DFPC outperforms FNW, FPC,
and BDI, and decreases 74%, 43%, and 61% write latency on
average.

3) Read Latency: Read latency is important to the PCM-
based main memory performance. Compression schemes
reduce the write latency, and hence improve the efficiency
of the queue of operations and reduce the waiting time of
read operations, which is an important fraction of read latency.
Fig. 15 shows the read latency reductions of DFPC, BDI,
and FPC compared with FNW. By using compressions, one
read phase can gain more data with the decreasing size of the



70 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 1, JANUARY 2020

BFNW BDI & FpPC B DFPC
140.0
130.0 |
£ 1200
£ 1100
100.0
90.0 N N
o & 3 & &
&8 céo&‘::&&?ﬁ\\@.? 4 & e“Q\z s V'&@%
Fig. 16. IPC improvement in SLC NVMs (normalized to FNW).

B FNW BDI @ FPC EDFPC

L7
(SIS LSS LS LSS SS IS LS

(A A 1A A ST
]

Q
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N

74
s

Ll

-
W

“4,
Cp
)
/&
@,
Q’V
.
V
%
%o

Fig. 17. Energy consumption reduction in SLC NVMs (normalized to FNW).

compressed word, and the experimental results verify that the
performance of write-bits reduction impacts on read latency.
Due to the improvement in write latency, the experimental
results of DFPC in read latency outperform BDI and FPC.
DFPC obtains 38% more read latency reduction compared
with FNW.

4) IPC Improvement: IPC is important to the entire system
performance. Minimizing the number of write-bits can reduce
the response time and improve the access speed. IPC is influ-
enced by a variety of factors, including the latency of the
accesses. The results of IPC improvement are illustrated in
Fig. 16. DFPC performs well in most applications, especially
in bzip and I[bm due to the high compressibility of dynamic
patterns and high frequency of write accesses. DFPC obtains
23% speedup on average, compared with FNW.

5) Energy Improvement: Energy consumption is an impor-
tant concern in the PCM-based main memory, especially in
MLC and TLC PCMs. In write accesses, the PCM cell requires
high current. Handling the high levels of power is a crucial
challenge for the PCM devices and the entire system, espe-
cially during the high frequency of write accesses. High energy
consumption causes the heat problem, which decreases the
endurance and possibly destroys the device, and increases the
budget for cooling. Hence, the improvement on energy can
bring significant benefits to both the budget saving and envi-
ronment. As shown in Fig. 17, DFPC alleviates the energy
consumption and extends the lifetime. On average, DFPC
saves 41% energy compared with FNW.

6) Performance Metrics in TLC NVMs: We compare DFPC
and existing compression schemes in TLC NVMs. Unlike SLC
NVMs, it is inefficient to deploy FNW in the TLC NVM mod-
ules since the number of cell states is more than 2. In the

ODCW SFPC mBDI mDFPC BEDFPC

» 80%
= 70%
& 60%
[0} 0
= 50%
40%
5 30%
= 20%
10%
0%

f Wi

The Amoun

N N N R A
& & V~Q X o"’& oQ\e & & e&%
&5 eS¢
& ¥
The Application

Fig. 18. Percentage of write-bits in TLC NVMs.

ODCW ®SFPC mBDI mDFPC BEDFPC

180%
> 160%
140%
120%
100%

80%
T 60%
40%
20%

0%

Latenc

Rea

The Application

Fig. 19. Read latency in TLC NVMs (normalized to DCW).

oDCW SFPC ®BDI mDFPC IEDFPC|

300%
©'250%
£ 200%
2 150%
£ 100%

50%

0%

1

Wr

The Application

Fig. 20. Write latency in TLC NVMs (normalized to DCW).

EDCW ®FPC ®BDI mDFPC IEDFPC|

IPC Improvement

The Application

Fig. 21. IPC in TLC NVMs (normalized to DCW).

evaluation, we use DCW before writing new data to the data
array. Figs. 18-22 present the evaluation results. We observe
that compressions do not work well as expected. In most of
the applications, FPC has the lowest performance among the
three compressions, even poorer than baseline (DCW). As for
BDI and DFPC, the two compression schemes do reduce the



GUO et al.: LATENCY-OPTIMIZED AND ENERGY-EFFICIENT WRITE SCHEME IN NVM-BASED MAIN MEMORY 71

oDCW SFPC @BDI mDFPC mEDFPC

The Application

Fig. 22.  Energy consumption in TLC NVMs (normalized to DCW).
60 oDbCW 8 BDI #FPC EDFPC
=]
5 50
= 40
=]
Z 30
2
= 20
g
S 10
0
Fig. 23.  Compression ratio comparisons.

number of the written bits, but there are not dramatic improve-
ments in other metrics. We count the compression ratios of the
three compression schemes based on the (2) and analysis the
reason of the performance reduction

Original Size

Compression Ratio =

— - 2
Compression Size
As shown in Fig. 23, DFPC outperforms the other two com-
pression schemes in the write-bit reduction before writing.
However, DFPC delivers poor performance with DCW due
to the extra writes. The word-level compressions, such as
FPC and part of DFPC, divide a cache line into 16 32-bit
words and match each word with a data pattern in the pat-
tern table, which dramatically changes the structures of new
data. In addition, BDI does not provide the high compression
ratio, but with compressing the whole cache line rather than
32-bit word, BDI achieves the highest write performance of
the three compression schemes. These evaluation results ver-
ify our argument in Section II-D that compression increases
the probabilities of extra writing in TLC NVMs and leads to
performance degradation after DCW.

C. Comparisons Between DFPC and EDFPC in TLC NVMs

In this section, we compare DFPC and EDFPC in terms of
write-bit reduction, latency, IPC and energy consumption. We
deploy the simulator in CPU-memory mode and use ten appli-
cations of SPEC CPU2006 and set the parameters of NVM
based on [20], [31]. We use DCW before writing data to the
NVM data array to reduce the energy consumption and extend
the lifetime of NVM devices.

1) Written Bits: In Section IV-A, we have explained the
potential write-bit increase in theory when the data bits in the

cells are all random. To show the acceptable overhead of writ-
ten bits, we evaluate the changes of the written bits. As shown
in Fig. 18, in most of the applications, EDFPC performs well
without many extra data bits, which seems to be contrary to
the expected results. After compression, the cell bits of the
compressed data mitigate most of the redundancies and tend
to be random, which meets the requirements in the equation of
the theoretical model in Section IV-A. However, as part of the
space overhead in compressions, the 3-bit prefix can only rep-
resent eight data patterns. There are still redundant data bits in
the compressed data. When writing the compressed data with
TLC mode (3 bits per cell), none of the write units, such as
4-bit character, 8-bit byte and 32-bit word, can be just divided
without being combined with other ones, which disrupts the
correlation within the write units after compression, increases
the probabilities of different cell data and occurs extra writ-
ing. On the contrary, when writing the encoded compressed
data with SLC (MLC) mode [1 (2) bit(s) per cell], all of the
4-bit character, 8-bit byte and 32-bit word can be just divided
into 4 (2), 8 (4), 32 (16) cells, respectively. Each cell still
reserves the redundant data which is beneficial for DCW but
being omitted by the compressions. With an encoder, EDFPC
decreases 10%, 18% written bits on average, compared with
DFPC and DCW.

2) Write Latency: To show the benefits of EDFPC, we use
DCW without any compression schemes as the baseline and
normalize the experimental results. The average write latency
is shown in Fig. 20. We can observe that EDFPC reduces the
write latency by about 39% compared with DFPC. There are
two reasons. We have explained the improvement of written
bits in Section V-C1. Fewer written bits mean fewer writ-
ten units, which reduce some write latency. On the other
hand, the encoder uses a few of the eight states which have
low latency and energy. For example, in the MLC mode,
the encoder selects four states with an average latency of
12.75 ns. Compared with the original TLC mode with an aver-
age latency of 30.875 ns, that is nearly 2.4 times than that of
the MLC mode, writing encoded data in NVM data array can
significantly reduce the write latency.

3) Read Latency: Read latency shows the reduction in
standby and idle time in the request queue of the NVM mod-
ule. The average read latency is shown in Fig. 19. We can
observe that EDFPC reduces the read latency by about 19%
compared with DFPC. The reduction of write latency accel-
erates the processing of instructions. The reduction in written
bits does not have a significant impact on read latency, since
the decoder has to read all the data in the cache line to decode
the written data into the original data. With the combina-
tion of the decoding tag bit and the compression prefix, the
decoder can quickly determine whether the data needs to be
decoded.

4) IPC Improvement: The average IPC is shown in Fig. 21.
We can observe that EDFPC speeds up the whole TLC-
NVM-based main memory system by about 17% compared
with DFPC. In the previous evaluation, EDFPC is effective
in reducing the write and read latency. Compared with IPC,
which reflects the overall performance of the system, the
latency is only part of a measure of system performance.



72 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 1, JANUARY 2020

Therefore, the improvement of IPC is a little lower than that
of the latency.

5) Energy Improvement: As with the evaluation of write
latency, we evaluate the energy consumption with the con-
figuration in Fig. 1. The average total energy is shown in
Fig. 22. We can observe that EDFPC reduces the energy con-
sumption by about 20% compared with DFPC. In the MLC
mode, the encoder selects 4 states with an average energy of
4.68 pJ. Compared with the original TLC mode with an aver-
age energy of 16.04 pJ, that is nearly 3.4 times than that of
the MLC mode, writing encoded data in NVM data array can
significantly reduce the energy consumption.

VI. RELATED WORK
A. Write Reduction

There are many schemes aiming to reduce the amount
of write-bits and improve the write performance. DCW [35]
exploits the nonvolatility of NVMs and checks the new write-
bits with existing bits to determine the modified bits. Only
the modified bits require a write operation. DCW can reduce
the write power consumption to a half. FNW [25] compares
new data with existing data to reduce the number of bit-
flips. FNW reduces the number of bits changed more than
half by using only one tag bit per comparing unit. 2-Stage-
Write [42] was proposed to increase parallelism within a
bank by leveraging the time and power asymmetry of writ-
ing “0” and “1.” 2-Stage-Write decreases the number of “1”
in a write access by flipping a word if the number of “1”
is more than half of the whole word. The performance of
2-Stage-Write mainly depends on the new data without extra
read overhead. Moreover, DeWrite [43] proposes a lightweight
deduplication scheme to eliminate entire-line duplicate writes
to encrypted NVMs.

Compressions are also widely used in NVM-based main
memory systems. Kong and Zhou [44] try to improve the
lifetime and privacy of NVM. They study redundant bit
write removal (RBR) in NVM-based main memory system
and observe that encryption with counter-mode can make
some previously proposed wear-leveling techniques inefficient.
To solve this problem, they propose an encryption scheme
to dynamically adjust the strength of ECC and reduce the
amount of write-bits since data encryption techniques intro-
duce randomness and reduce data redundancy. Yang et al. [45]
proposed a cache compression, named frequent value com-
pression (FVC), using several tags to replace some values
with high frequency of occurrence. This scheme only catches
a few values and has limited performance in floating point
benchmarks. Alameldeen and Wood [26] observed that most
data stored in fixed size only use several bits and they
propose a significance-base compression scheme, call sFPC.
Dgien et al. [27] combined sFPC with FNW, and observe
that DCW and FNW can not work as expected with the com-
pressed data. They then propose an incremental FPC with a
wear-leveling policy to gain performance improvement with
an additional position tag bit. They also demonstrate the
improvement compared with FVC (combined with FNW).
BDI [37] exploits the value locality of the words in one cache

line. BDI has high compression ratio, but delivers inefficient
performance in some application when combined with FNW.
Palangappa and Mohanram [38] proposed a coding scheme in
MLC/TLC NVMs, which encodes the contents of cache lines
with static integer patterns and BDI patterns. Hycomp [46] is a
hybrid cache compression framework, which selects the appro-
priate compression based on the feature of the cache lines in
last level cache. This general framework has high compres-
sion ratio and strong compatibility. Our DFPC can be also
implemented within Hycomp.

B. Energy Saving

Due to the asymmetry between read and write operations
in NVMs [47] and reliability, performing a write opera-
tion requires high current. The high levels of power is a
crucial challenge for the NVM devices and the system, espe-
cially during the high frequency of write accesses. The power
budget also limits the extendibility of the write units and
the improvement of parallel. Hay et al. [48] proposed a
power-token-based scheme, which leverages wear reduction
schemes to reduce the write power. The proposed scheme
consists of some policies, which focus on monitoring the
changed bits during write accesses instead of the whole
cache line. By using this scheme, the memory controller
can perform more write accesses to reduce the latency.
Li et al. [49] designed a PCM write scheme and implement
with hardware circuits to rearrange all original data units and
maximize the power budget utilization, which causes hardware
overhead.

C. Endurance Improvement

The poor endurance is also one of the most serious problems
in NVM-based main memory systems. Currently, numerous
researches focus on improving the reliability and extending
the lifetime of NVM cells. P2F [50] is a compression-based
scheme to postpone the occurrence of hard errors and improve
the lifetime of MLC PCM devices, which uses byte-level
compression to convert blocks from MLC to SLC mode.
Du et al. [51] studied the performance of hybrid DRAM/PCM
memory systems. They propose a DRAM cache organization
for compression. When performing a write operation. The
proposed approach compares the new data with the existing
data in NVMs and computes the difference-value (D-value).
The D-value is compressed and stored in DRAM due to the
low latency of DRAM. The compression can dynamically
determine to compress the data or not. The approach only com-
presses the frequently modified data and aims to reduce the
write operations in NVMs by increasing the write operations
in DRAM and the read operations in NVMs. Start-Gap [52] is
an effective wear-leveling technique for transforming the log-
ical memory addresses into the physical addresses with two
registers. Start-Gap also combine with simple address-space
randomization techniques to significantly enhance the NVM
endurance. Fine-grained wear-leveling [11] rotates the cache
blocks within the physical NVM frame and reduces the write
traffic in NVMs to explore a tradeoff for the hybrid system
consisting of NVM and DRAM.



GUO et al.: LATENCY-OPTIMIZED AND ENERGY-EFFICIENT WRITE SCHEME IN NVM-BASED MAIN MEMORY 73

VII. CONCLUSION

NVMs has the advantages of scalability and energy effi-
ciency in the idle status. However, NVMs face some new
challenges with the endurance, power, and performance. To
improve write performance of NVMs and offer the flexibility
of compression schemes, we propose a well-adaptive NVM
write scheme, called DFPC. DFPC compresses the data con-
tents based on a set of specific patterns to minimize the written
data. We observe that some zero characters in the specific
localities, where the zero-character appears frequently, form
a periodic cycle in the typical data distribution. By consid-
ering these localities as the compressible part of a word,
we extract dynamic patterns by sampling and analyzing the
regularity of bit value distribution in the incoming data at
runtime. DFPC also extends the data patterns by exploiting
the value locality in a cache line to include more kinds of
patterns and achieve higher compression ratio. To accelerate
the processing of instructions and reduce the total energy con-
sumption in the context of MLC/TLC NVMs, we propose a
latency-optimized and energy-efficient DFPC for MLC/TLC
NVMs, ie., EDFPC, to encode the compressed data with
low energy and latency states. Experimental results demon-
strate that DFPC and EDFPC reduce the amount of write-bits,
write latency, and read latency while gaining about 1.2x IPC
improvements, compared with the state-of-the-art compression
write schemes. While we take PCM as an example of NVMs,
the proposed scheme should also improve the performance of
other NVMs, such as ReRAM and STT-RAM, which have
long write latency and low cell endurance. We have released
the source code for public use.

REFERENCES

[1] P. J. Nair, D.-H. Kim, and M. K. Qureshi, “ArchShield: Architectural
framework for assisting dram scaling by tolerating high error rates,” in
Proc. ISCA, 2013, pp. 72-83.

[2] Z.Li, R. Zhou, and T. Li, “Exploring high-performance and energy pro-
portional interface for phase change memory systems,” in Proc. HPCA,
2013, pp. 210-221.

[3] L. Wilson, “International technology roadmap for semiconductors,”
Semicond. Ind. Assoc., Washington, DC, USA, 2011.

[4] H. Zhang, X. Chen, N. Xiao, and F. Liu, “Architecting energy-efficient
STT-RAM based register file on GPGPUs via delta compression,” in
Proc. DAC, 2016, pp. 1-6.

[5] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger, “Phase change memory
architecture and the quest for scalability,” Commun. ACM, vol. 53, no. 7,
pp. 99-106, 2010.

[6] B. C. Lee et al., “Phase-change technology and the future of main
memory,” IEEE Micro, vol. 30, no. 1, p. 143, Jan./Feb. 2010.

[7]1 L. Wilson, International Technology Roadmap for Semiconductors
(ITRS), Semicond. Ind. Assoc., Washington, DC, USA, 2013.

[8] S. Raoux et al, “Phase-change random access memory: A scalable
technology,” IBM J. Res. Develop., vol. 52, nos. 4-5, pp. 465479,
Jul. 2008.

[9] B.C. Lee, E. Ipek, O. Mutlu, and D. Burger, “Architecting phase change
memory as a scalable dram alternative,” ACM SIGARCH Comput. Archit.
News, vol. 37, no. 3, pp. 2-13, 2009.

[10] P.Zhou, B. Zhao, J. Yang, and Y. Zhang, “A durable and energy efficient
main memory using phase change memory technology,” ACM SIGARCH
Comput. Archit. News, vol. 37, no. 3, pp. 14-23, 2009.

[11] M. K. Qureshi, V. Srinivasan, and J. A. Rivers, “Scalable high
performance main memory system using phase-change memory technol-
ogy,” ACM SIGARCH Comput. Archit. News, vol. 37, no. 3, pp. 24-33,
2009.

[12] L. Jiang, Y. Zhang, B. R. Childers, and J. Yang, “FPB: Fine-grained
power budgeting to improve write throughput of multi-level cell phase
change memory,” in Proc. MICRO, 2012, pp. 1-12.

[13] Z. Li et al., “Tetris write: Exploring more write parallelism considering
PCM asymmetries,” in Proc. ICPP, 2016, pp. 159-168.

[14] N. H. Seong, D. H. Woo, and H.-H. S. Lee, “Security refresh: Prevent
malicious wear-out and increase durability for phase-change memory
with dynamically randomized address mapping,” ACM SIGARCH
Comput. Archit. News, vol. 38, no. 3, pp. 383-394, 2010.

[15] F. Huang et al., “Security RBSG: Protecting phase change memory
with security-level adjustable dynamic mapping,” in Proc. IPDPS, 2016,
pp. 1081-1090.

[16] L. Jiang et al., “Hardware-assisted cooperative integration of wear-
leveling and salvaging for phase change memory,” ACM Trans. Archit.
Code Optim., vol. 10, no. 2, p. 7, 2013.

[17] H. Mao, X. Zhang, G. Sun, and J. Shu, “Protect non-volatile memory
from wear-out attack based on timing difference of row buffer hit/miss,”
in Proc. DATE, 2017, pp. 1623-1626.

[18] M. K. Qureshi, S. Gurumurthi, and B. Rajendran, “Phase change
memory: From devices to systems,” Synth. Lectures Comput. Archit.,
vol. 6, no. 4, pp. 1-134, 2011.

[19] P. Zuo and Y. Hua, “A write-friendly hashing scheme for non-volatile
memory systems,” in Proc. 33rd Int. Conf. Massive Storage Syst.
Technol. (MSST), 2017, pp. 1-10.

[20] C. Xu, D. Niu, N. Muralimanohar, N. P. Jouppi, and Y. Xie,
“Understanding the trade-offs in multi-level cell ReRAM memory
design,” in Proc. DAC, 2013, pp. 1-6.

[21] L. Jiang, Y. Zhang, and J. Yang, “ER: Elastic RESET for low power and
long endurance MLC based phase change memory,” in Proc. ACM/IEEE
Int. Symp. Low Power Electron. Design, 2012, pp. 39-44.

[22] Y. Du, M. Zhou, B. R. Childers, D. Mossé, and R. Melhem, “Bit map-
ping for balanced PCM cell programming,” ACM SIGARCH Comput.
Archit. News, vol. 41, no. 3, pp. 428-439, 2013.

[23] H. Yoon, J. Meza, N. Muralimanohar, N. P. Jouppi, and O. Mutlu,
“Efficient data mapping and buffering techniques for multilevel cell
phase-change memories,” ACM Trans. Archit. Code Optim., vol. 11,
no. 4, p. 40, 2015.

[24] M. K. Qureshi, M. M. Franceschini, L. A. Lastras-Montafio, and
J. P. Karidis, “Morphable memory system: A robust architecture
for exploiting multi-level phase change memories,” ACM SIGARCH
Comput. Archit. News, vol. 38, no. 3, pp. 153-162, 2010.

[25] S. Cho and H. Lee, “Flip-N-write: A simple deterministic technique
to improve PRAM write performance, energy and endurance,” in Proc.
MICRO, 2009, pp. 347-357.

[26] A. R. Alameldeen and D. A. Wood, “Frequent pattern compression: A
significance-based compression scheme for L2 caches,” Dept. Comput.
Sci., Univ. Wisconsin-Madison, Madison, WI, USA, Rep. 1500, 2004.

[27] D. B. Dgien, P. M. Palangappa, N. A. Hunter, J. Li, and K. Mohanram,
“Compression architecture for bit-write reduction in non-volatile
memory technologies,” in Proc. NANOARCH, 2014, pp. 51-56.

[28] Y. Guo, Y. Hua, and P. Zuo, “DFPC: A dynamic frequent pattern com-
pression scheme in NVM-based main memory,” in Proc. Design Autom.
Test Europe Conf. Exhibit. (DATE), 2018, pp. 1622-1627.

[29] N. Binkert et al., “The gemS simulator,” ACM SIGARCH Comput. Archit.
News, vol. 39, no. 2, pp. 1-7, 2011.

[30] M. Poremba, T. Zhang, and Y. Xie, “NVMain 2.0: A user-friendly
memory simulator to model (non-) volatile memory systems,” [EEE
Comput. Archit. Lett., vol. 14, no. 2, pp. 140-143, Jul./Dec. 2015.

[31] D. Niu, Q. Zou, C. Xu, and Y. Xie, “Low power multi-level-cell resistive
memory design with incomplete data mapping,” in Proc. ICCD, 2013,
pp. 131-137.

[32] M. Zhao, L. Jiang, Y. Zhang, and C. J. Xue, “SLC-enabled wear level-
ing for MLC PCM considering process variation,” in Proc. DAC, 2014,
pp. 1-6.

[33] F. Bedeschi et al., “A bipolar-selected phase change memory featuring
multi-level cell storage,” IEEE J. Solid-State Circuits, vol. 44, no. 1,
pp. 217-227, Jan. 2009.

[34] T. Nirschl et al., “Write strategies for 2 and 4-bit multi-level phase-
change memory,” in Proc. Int. Electron Devices Meeting, 2007,
pp. 461-464.

[35] B.-D. Yang et al., “A low power phase-change random access memory
using a data-comparison write scheme,” in Proc. IEEE ISCAS, 2007,
pp. 3014-3017.

[36] M. Ekman and P. Stenstrom, “A robust main-memory compression
scheme,” in Proc. ISCA, 2005, pp. 74-85.



74 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 1, JANUARY 2020

[37] G. Pekhimenko et al., “Base-delta-immediate compression: Practical
data compression for on-chip caches,” in Proc. PACT, 2012,
pp. 377-388.

P. M. Palangappa and K. Mohanram, “CompEX++: Compression-

expansion coding for energy, latency, and lifetime improvements in

MLC/TLC NVMS,” ACM Trans. Archit. Code Optim., vol. 14, no. 1,

p. 10, 2017.

[39] Z. Li et al., “Exploiting more parallelism from write operations on

PCM,” in Proc. DATE, 2016, pp. 768-773.

V. Young, P. J. Nair, and M. K. Qureshi, “DEUCE: Write-efficient

encryption for non-volatile memories,” in Proc. ACM ASPLOS, 2015,

pp. 33-44.

A. Awad, P. Manadhata, S. Haber, Y. Solihin, and W. Horne, “Silent

shredder: Zero-cost shredding for secure non-volatile main memory

controllers,” in Proc. ACM ASPLOS, 2016, pp. 263-276.

[42] J. Yue and Y. Zhu, “Accelerating write by exploiting PCM asymmetries,”
in Proc. 19th Int. Symp. High Perform. Comput. Archit. (HPCA), 2013,
pp. 282-293.

[43] P. Zuo, Y. Hua, M. Zhao, W. Zhou, and Y. Guo, “Improving the
performance and endurance of encrypted non-volatile main memory
through deduplicating writes,” in Proc. 51st IEEE/ACM Int. Symp.
Microarchit. (MICRO), 2018, pp. 442-454.

[44] J. Kong and H. Zhou, “Improving privacy and lifetime of PCM-based
main memory,” in Proc. DSN, 2010, pp. 333-342.

[45] J. Yang, Y. Zhang, and R. Gupta, “Frequent value compression in data
caches,” in Proc. MICRO, 2000, pp. 258-265.

[46] A. Arelakis, F. Dahlgren, and P. Stenstrom, “HyComp: A hybrid cache
compression method for selection of data-type-specific compression
methods,” in Proc. MICRO, 2015, pp. 38—49.

[47] F. Xia et al., “DWC: Dynamic write consolidation for phase change
memory systems,” in Proc. ICS, 2014, pp. 211-220.

[48] A. Hay, K. Strauss, T. Sherwood, G. H. Loh, and D. Burger, “Preventing
PCM banks from seizing too much power,” in Proc. MICRO, 2011,
pp. 186-195.

[49] Z. Li et al., “MaxPB: Accelerating PCM write by maximizing the power
budget utilization,” ACM Trans. Archit. Code Optim., vol. 13, no. 4,
p- 46, 2016.

[50] M. Jalili and H. Sarbazi-Azad, “Tolerating more hard errors in MLC
PCMs using compression,” in Proc. ICCD, 2016, pp. 304-311.

[511 Y. Du, M. Zhou, B. Childers, R. Melhem, and D. Mossé, “Delta-

compressed caching for overcoming the write bandwidth limitation of

hybrid main memory,” ACM Trans. Archit. Code Optim., vol. 9, no. 4,

p. 55, 2013.

M. K. Qureshi et al., “Enhancing lifetime and security of PCM-based

main memory with start-gap wear leveling,” in Proc. MICRO, 2009,

pp. 14-23.

[38]

[40]

[41]

[52]

Yuncheng Guo received the B.E. and master’s
degrees in computer science and technology from
the Huazhong University of Science and Technology,
Wuhan, China, in 2015 and 2018, respectively.

His current research interests include nonvolatile
memory, algorithms of hashing, and data analytics.

Yu Hua (SM’13) received the B.E. and Ph.D.
degrees in computer science from Wuhan University,
Wauhan, China, in 2001 and 2005, respectively.

He is a Professor with the Huazhong University
of Science and Technology, Wuhan. He has
over 100 papers to his credit in major jour-
nals and international conferences, including
the IEEE TRANSACTIONS ON COMPUTERS,
the IEEE TRANSACTIONS ON PARALLEL AND
DISTRIBUTED SYSTEMS, OSDI, MICRO, USENIX
FAST, USENIX ATC, ACM SoCC, SC, HPDC,
ICDCS, IPDPS, and MSST. His current research interests include file
systems, cloud storage systems, nonvolatile memory, and big data analytics.

Dr. Hua serves for multiple international conferences, including
ASPLOS (ERC), SOSP (SRC and Poster), USENIX ATC, ICS (ERC), RTSS,
SoCC, ICDCS, INFOCOM, IPDPS, DAC (ERC), MSST, and DATE. He is a
Distinguished Member of CCF, a Senior Member of ACM, and a member
of USENIX.

Pengfei Zuo (S’ 17) received the B.E. degree in com-
puter science and technology from the Huazhong
University of Science and Technology, Wuhan,
China, in 2014, where he is currently pursu-
ing the Ph.D. degree in computer science and
technology.

He publishes several papers in major confer-
ences, including OSDI, MICRO, USENIX ATC,
SoCC, ICDCS, IPDPS, MSST, and DATE. His cur-
rent research interests include data deduplication,
nonvolatile memory, and key-value store.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


