
2516 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 10, OCTOBER 2020

A Low-Overhead Encoding Scheme to Extend the
Lifetime of Nonvolatile Memories

Dan Feng, Member, IEEE, Jie Xu , Yu Hua , Senior Member, IEEE, Wei Tong ,

Jingning Liu , Chunyan Li, and Yiran Chen , Fellow, IEEE

Abstract—Emerging nonvolatile memories (NVMs) are
promising to replace DRAM as main memory. However, NVMs
suffer from limited write endurance and high write energy.
Encoding method reduces the bit flips of NVMs by exploiting
additional tag bits to encode the data. The effect of the encoding
method is limited by the capacity overhead of the tag bits. In this
article, we propose to exploit the space saved by compression
to store the tag bits of the encoding method. We observe that
the saved space size of each compressed cache line varies, and
different encoding methods have different tradeoffs between
capacity overhead and effect. To fully exploit the space saved
by compression for improving lifetime, we select the proper
encoding method according to the saved space size. To improve
the compression coverage and compression ratio, we select an
efficient compression scheme from two compression algorithms
and provide more space for data encoding. Still, some data
patterns cannot be compressed by any compression technique.
We use the Flip-N-Write with 3.1% capacity overhead to encode
uncompressible cache lines. The experimental results show that
our scheme reduces the bit flips by 32.5%, decreases the energy
consumption by 22.6% and improves the lifetime by 69.9% with
3.5% capacity overhead.

Index Terms—Bit flips, compression, encoding, lifetime,
nonvolatile memories (NVMs).

I. INTRODUCTION

NONVOLATILE memories (NVMs), such as phase change
memory (PCM) and resistive RAM (RRAM) have

emerged as potential replacement candidates of the DRAM
technology due to their nonvolatility, high density, and low

Manuscript received April 3, 2019; revised July 16, 2019, September 24,
2019, and November 27, 2019; accepted December 7, 2019. Date of pub-
lication December 24, 2019; date of current version September 18, 2020.
This work was supported in part by the National Natural Science Foundation
of China under Grant 61821003, Grant 61832007, Grant 61772222,
Grant U1705261, and Grant 61772212, in part by the National High
Technology Research and Development Program (863 Program) under Grant
2015AA015301, in part by the Shenzhen Research Funding of Science and
Technology under Grant JCYJ20170307172447622, and in part by the Key
Laboratory of Information Storage System, Ministry of Education, China.
The preliminary manuscript was published in the proceedings of Design
Automation and Test in Europe (DATE), 2018. This article was recommended
by Associate Editor P. R. Panda. (Corresponding author: Wei Tong.)

Dan Feng, Jie Xu, Yu Hua, Wei Tong, Jingning Liu, and Chunyan Li are
with the Wuhan National Laboratory for Optoelectronics, Key Laboratory
of Information Storage System, Engineering Research Center of Data
Storage Systems and Technology, Ministry of Education of China, School
of Computer Science and Technology, Huazhong University of Science
and Technology, Wuhan 430074, China (e-mail: dfeng@hust.edu.cn;
xujie_dsal@hust.edu.cn; csyhua@hust.edu.cn; tongwei@hust.edu.cn;
jnliu@hust.edu.cn; lichunyan@hust.edu.cn).

Yiran Chen is with the Department of Electrical and Computer Engineering,
Duke University, Durham, NC 27708 USA (yiran.chen@duke.edu).

Digital Object Identifier 10.1109/TCAD.2019.2962127

read latency. However, they suffer from high write energy
and limited write endurance. The write energy of PCM and
RRAM is several times more than that of DRAM. Besides,
the endurances of PCM and RRAM are 108 and 1010, respec-
tively [1]–[3], which are several orders of magnitude fewer
than DRAM (1016). After enduring limited number of bit flips
(i.e., the write processes of 1→ 0 and 0→ 1 for NVM cells),
cells will be worn out, and the NVM-based main memory
system will fail.

If we can reduce the bit flips of NVMs, the lifetime of
NVMs will be improved. Some existing works [4]–[8] propose
to reduce the bit flips through data encoding. Flip-N-Write [6]
encodes the new data bits by giving every N data bits one
tag bit. If the bit flips of writing the new data and its tag
bit exceed (N + 1)/2, the new data bits will be flipped and
the tag bit will be set to 1. If we give fewer data bits one
tag bit, Flip-N-Write can reduce more bit flips. For example,
Flip-N-Write reduces the bit flips by 25% with 1 tag bit for
every 2 data bits, while the reduction is decreased to 14.6%
with 1 tag bit for every 16 data bits. However, the tag bits will
incur significant capacity overhead if we give fewer data bits
one tag bit. The capacity overhead is 50% when we give 2 data
bits 1 tag bit. To avoid high capacity overhead, every 16 or
32 data bits share 1 tag bit in general. The restricted capacity
overhead limits the efficiency of Flip-N-Write. Similarly, the
efficiency of other encoding schemes is also limited by the
capacity overhead. FlipMin [4] reduces the bit flips by 31.2%
with 100% capacity overhead. The decrease of bit flips will
drop to 24.5% if the capacity overhead is 12.5%. Although
these methods can reduce the bit flips, the capacity overhead
cannot be ignored. The capacity overhead will increase to the
unacceptable degree when we want to reduce significant bit
flips with data encoding.

This article aims to reduce the bit flips with negligible
capacity overhead. Data encoding methods [4], [6] consume
additional space to store the tag bits. Data compression tech-
niques [9], [10] can reduce the size of the data to store and
save space. The two different techniques can be combined.
We propose to exploit the space saved by data compression
techniques to store the tag bits of data encoding methods.
Data compression techniques, e.g., frequent pattern compres-
sion (FPC) [9], can compress the 64-bit word to only 32-bit
data. The remaining 32 bits are saved and can be used to
store the tag bits of the data encoding methods. The space
used to store the tag bits is offered by the compression tech-
niques, and therefore data encoding methods can work with

0278-0070 c© 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on September 26,2020 at 09:28:01 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-5286-9216
https://orcid.org/0000-0001-7730-3796
https://orcid.org/0000-0002-8834-4953
https://orcid.org/0000-0002-2680-7422
https://orcid.org/0000-0002-1486-8412

FENG et al.: LOW-OVERHEAD ENCODING SCHEME TO EXTEND LIFETIME OF NVMs 2517

negligible capacity overhead. Moreover, we observe that the
size of the space saved by each compressed cache line is dif-
ferent. Some highly compressed cache lines can offer more
capacity, while slightly compressed cache lines can offer less
capacity. Besides, different encoding methods have different
tradeoffs between capacity and effect. Large capacity over-
head can be used to reduce more bit flips. To fully exploit the
saved space for reducing bit flips, we dynamically select the
encoding method according to the saved space size. For exam-
ple, we use the encoding method with high capacity overhead
for those highly compressed cache lines.

Data compression techniques, such as FPC [9] and
base–delta–immediate (BDI) [10], are frequently used in
memory compression. Compared with FPC, BDI has low com-
pression coverage (the percentage of compressible cache lines)
but high compression ratio (original size/compressed size).
To take the advantages of both compression techniques, we
propose to compress the cache line with both FPC and BDI.
After compression, we compare the saved space sizes and
select the compression technique which has higher compres-
sion ratio for each cache line. Since two different compression
techniques are used, more space is provided for data encoding,
and encoding methods can reduce more bit flips.

Although two compression techniques are used, the com-
pressible data patterns are still limited. Some irregular data
are uncompressible. No space is offered by the uncompress-
ible cache line, and the encoding method cannot reduce the bit
flips of the uncompressed cache line. If most cache lines are
uncompressible in an application, the write energy reduction
will be very small. To ensure the write energy reduction of
these uncompressible cache lines, we use Flip-N-Write with
low capacity overhead. We give every 32-bit data one tag bit.
The capacity overhead of Flip-N-Write is only 3.1%. We have
the following contributions.

1) To reduce the bit flips while consuming negligible
capacity, we propose to exploit the space saved by
compression to store the tag bits of data encoding
methods.

2) We observe that the space saved by compression varies.
To fully exploit the saved space for reducing bit flips, we
select the best-performing encoding method according to
the size of the space saved by compression.

3) To improve the compression coverage and compression
ratio and provide more space for data encoding, we
propose to select the compression algorithm which has
smaller compressed cache line size from FPC and BDI.

4) To ensure the bit flip reduction of uncompressible
cache lines, we propose to combine our technique with
Flip-N-Write.

5) The experimental results show that our scheme reduces
the bit flips by 32.5%, decreases the energy consumption
by 22.6% and improves the lifetime by 69.9% with 3.5%
capacity overhead.

The remainder of this article is structured as follows.
Section II introduces the background and related work.
Section III describes the motivation. Section IV presents the
design and implementation. Sections V and VI describe the
experiment setup and conclusion.

II. BACKGROUND AND RELATED WORK

A. Background

NVMs, such as PCM and RRAM, have the advantages of
high density, nonvolatility, and fast read speed. They are con-
sidered as promising replacement candidates of the traditional
DRAM technology. However, they also suffer from high write
energy and limited write endurance.

PCM exploits phase change material such as Ge2Sb2Te2
(GST) to store digital bits. When the GST is in crystalline
state, the resistance of PCM cell is low, and this low-resistance
state (LRS) represents the logical value “1.” When the GST
is in high-resistance state (amorphous state), PCM stores “0.”
The PCM cell will be reset if it is heated above 600 ◦C for
a short duration. In contrast, a long duration but small ampli-
tude current is applied to set a PCM cell. The repeated heat
stress will damage the phase change material, and a PCM cell
may get stuck at the amorphous or the crystalline state after
106–109 bit flips [11]. The endurance of PCM is several order
of magnitudes fewer than DRAM (1016). Besides, PCM suf-
fers from high write energy. The write energy of PCM is about
20 pJ/bit [12], which is twice more than DRAM. A RRAM
cell consists of a top electrode and a bottom electrode, and a
metal–oxide layer (HfO2, Ta2O5, etc.) [13] between them. The
logical values are stored in RRAM by changing the resistance
of the RRAM cells. The high-resistance state (HRS) is used
to represent logical value 0, and LRS represents 1. In order
to change the resistance of a RRAM cell, an external voltage
(Vset or Vreset) is applied across the cell. A RRAM cell can
endure 1010 bit flips [3], [14] in the best existing architectures.
The write energy of RRAM is also several times more than
DRAM.

B. Related Work

Many works have been proposed to reduce the bit flips and
improve lifetime of NVMs. We divide the existing works into
the following two categories.

1) Reducing Bit Flips With Data Encoding: Encoding
methods map the new data bits into the vector with fewer
bit flips. Flip-N-Write [6] divides the cache line into sev-
eral N-bit data. Each N-bit data are given one tag bit. The
new data are flipped to reduce the bit flips. CAFO [5] mod-
els the cache line as a number of n × m matrices and uses
Flip-N-Write in both rows and columns to minimize the bit
flips. Captopril [8] observes that some specific locations (i.e.,
hot locations) of the cache lines endure the most of the bit
flips and extends Flip-N-Write to reduce bit flips in hot loca-
tions. Different from Flip-N-Write, FlipMin [4] uses coset
code to generate vectors. FlipMin maps each data chunk
into a set of vectors (i.e., coset). The vector that results in
the minimum bit flips is selected as the encoded new data.
Pseudo-Random [7] maps the data bits into highly random
data vectors based on the observation that increasing the ran-
domness of the elements in the coset can decrease the bit flips.
Min-Shift [15] proposes to minimize the bit flips by shift-
ing and flipping the bits. MFNW [16] extends Flip-N-Write
to multilevel cell (MLC)/triple-level cell (TLC) NVMs by
minimizing the cell Hamming distance and energy Hamming

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on September 26,2020 at 09:28:01 UTC from IEEE Xplore. Restrictions apply.

2518 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 10, OCTOBER 2020

TABLE I
DATA PATTERNS OF 64-BIT FPC [9], [28]

distance. ES [17] extends the methods for single-level cell
(SLC) to MLC magnetic memories through encoding the
hard bits and soft bits separately for fewer state transitions.
Wang et al. [18] observed that the write energy of MLC PCM
is significantly dependent on the cell states. They proposed
to reduce the write energy by mapping the frequent data pat-
terns to the low-power states. OSSR [19] optimizes static state
remapping based on profiling. OISR [20] reduces the write
of the intermediate states (i.e., “01” and “10”) through state
remapping. EARO [20] reduces the hard-bit write of MLC
spin-transfer torque magnetic RAM (STT-RAM) through state
remapping. Data encoding methods reduce the bit flips at the
cost of capacity overhead. To gain significant bit flip reduc-
tion, data encoding techniques consume unacceptable capacity
overhead.

2) Data Compression With Data Encoding: Some other
works propose to combine the data encoding with data com-
pression. Dgien et al. [21] proposed to compress the data
bits before write operations. The compression–decompression
engine (CDE) is implemented in the NVM module controller.
When the NVM module receives a write access, CDE attempts
to compress the cache line. During the read access, CDE
decompresses the compressed cache line first. AFNW [22]
extends Flip-N-Write by adapting the tag bits to the com-
pressed data bits. Since the compressed cache line size is much
smaller than the original size, AFNW can have a fine-grained
encoding. In CDE [21] and AFNW [22], the saved space is
wasted. DIN [23] compresses the cache line and uses the saved
space to mitigate the write disturbance. DIN encodes n-bit data
using m-bit code, where m > n, to reduce the write disturbance
when the cache line is compressible. Jadidi et al. [24] exploited
the space saved by compression for hard-error tolerance and
wear leveling. COEF [25] exploits the space saved by com-
pression to store the tag bits of the data encoding methods. An
efficient encoding method is selected according to the saved
space size. COEF is unable to reduce the write energy when
the cache line is uncompressible. DFPC [26] exploits the distri-
butions of 4-bit 0x0 to dynamically recognize and extend the
compressible data patterns. Different from them, this article
combines different data encoding methods with multiple data
compression algorithms to reduce the bit flips of NVMs. For
TLC NVMs, CRADE [27] and CompEx++ [28] integrate data
compression with expansion coding to reduce write energy and
latency. CompEx++ and CRADE first compress the cache
line, and then expand the compressed cache line. During the
encoding, it is ensured that the expanded cache line size does

Fig. 1. Distribution of the compressed cache line size.

not exceed the cache line size. WLCRC [29] proposes a high
coverage compression scheme and uses the saved space to
store the tag bits of the restricted coset code. WIPE [30] pro-
poses to use static and dynamic profiling to find the frequent
data patterns and encodes them into a fewer number of bits.
Some other works [31]–[34] propose to dynamically configure
the MLC as SLC, tri-state cell, or MLC according to the size
of the space saved by compression.

III. MOTIVATION

A. Size of the Space Saved by Compression Is Various

Various compression techniques have been proposed. We
take FPC [9] as an example in this section to evaluate the saved
space size of compression algorithm. The original FPC [9]
compresses the data at the granularity of 32-bit word. Each
compressed word requires a 3-bit prefix to indicate the data
pattern and the size of the compressed word. To reduce the
overhead of prefixes, FPC is extended for 64-bit word in this
article. Table I lists the data patterns that 64-bit FPC can
compress [9], [28]. A 64-bit word can be compressed to 0,
8, 16, or 32 bits. The compressed word size may be dif-
ferent. For a cache line which consists of eight words, the
compressed size of each word is different, and the size of
the compressed cache line is also different. The total num-
ber of bits in the compressed cache line may range from 0
to 512. We analyze the distribution of the compressed cache
line sizes through experiments. The detailed system configura-
tion is shown in Table IV. Fig. 1 shows the compressed cache
line size distribution for 15 benchmarks selected from SPEC
CPU 2006 [35]. In the bwaves benchmark, the sizes of about

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on September 26,2020 at 09:28:01 UTC from IEEE Xplore. Restrictions apply.

FENG et al.: LOW-OVERHEAD ENCODING SCHEME TO EXTEND LIFETIME OF NVMs 2519

Fig. 2. Example of Flip-N-Write.

half of the compressed cache lines are between 0 and 1 word.
The saved space sizes are between 7 and 8 words, and these
cache lines are highly compressed and can offer large space
for encoding. The compressed sizes of about 1% cache lines in
the bwaves benchmark are between six words and eight words
(slightly compressed). For these slightly cache lines, the saved
space is limited. Among the 15 benchmarks, a large amount
of the cache lines are highly compressed in the bwaves, sjeng,
wrf, h264ref, and libquantum benchmarks, while most cache
lines are slightly compressed in the milc, bzip2, leslie3d, and
gromacs benchmarks. We conclude that the saved space sizes
are different for different data patterns. For the highly com-
pressed cache lines, more space is saved and offered to data
encoding. In contrast, the slightly compressed cache lines have
less space for data encoding.

B. Tradeoffs Exist Between Effect and Capacity Overhead in
Encoding Methods

Most of the existing encoding schemes are designed based
on Flip-N-Write [6] or FlipMin [4]. We take Flip-N-Write [6]
and FlipMin [4] as examples to discuss the tradeoffs between
effect and capacity overhead.

1) Flip-N-Write: Flip-N-Write reduces the bit flips by flip-
ping the data to be written. In Flip-N-Write [6], a cache line
is divided into M words, and each word has N bits. For each
N-bit word, a tag bit is given to indicate whether the word
is flipped or not. The tag bit is initialized to 0 before encod-
ing. If the bit flips of writing the new data and its tag bit
exceed (N + 1)/2, the new data bits need to be flipped, and
the tag bit will be set to 1. Fig. 2 illustrates an example of
Flip-N-Write. One tag bit is assigned to every 16-bit data.
Writing the new data incurs 11 bit flips (indicated in red
color), which exceeds (16+1)/2. Therefore, the new data are
flipped, and only six bit flips (indicated in green color) are
required. The bit flip of the tag bit is also included in the 6 bit
flips. The reduction of bit flips will decrease if N increases.
When N equals 2, the effect of Flip-N-Write is the best, and
Flip-N-Write can reduce 25% more bit flips than DCW [36].
The reduction drops to 14.6% when N equals 16. However,
the capacity overhead of Flip-N-Write will increase signifi-
cantly if N decreases. The capacity overhead is 50% when N
equals 2, and the overhead drops to 6.25% when N equals 16.
The encoding and decoding processes of Flip-N-Write are
very simple, and the latency overhead of Flip-N-Write is
negligible.

2) FlipMin: FlipMin [4] uses the coset code to minimize
the bit flips. Each N-bit data is mapped to a set of vectors,
and FlipMin chooses the vector that has the minimum bit
flips. Fig. 3 shows an example of FlipMin. Every 2-bit data
are mapped into four vectors. The set of the four vectors is

Fig. 3. Example of FlipMin.

TABLE II
COMPARISON OF FLIP-N-WRITE AND FLIPMIN [4], [6]

called “coset.” When writing the new data “11,” we select the
vector “1011” from the coset because the vector 1011 incurs
only 1 bit flip. The bit flip reduction of FlipMin increases
with more capacity overhead. FlipMin can reduce the bit flips
by 31.2% with 100% capacity overhead, and the reduction is
decreased to 24.5% when capacity overhead is 12.5%. The
latency overheads of encoding and decoding in FlipMin vary
significantly. The coset code with 100% capacity overhead
(RM(1, 3)) incurs 4.09-ns encoding latency and 0.38-ns decod-
ing latency [4], while the coset code with 12.5% capacity
overhead (RM(1, 7)) incurs 12.86-ns encoding latency and
0.59-ns decoding latency [4]. RM(1, 3) and RM(1, 7) belong
to the Reed–Muller code. The Reed–Muller code can be used
to generate the coset. The general form of the Reed–Muller
code is RM(r, m). RM(1, 3) is used to map each 4-bit data
into a set of 16 vectors. Each vector has 8-bit data.

Besides, the tradeoffs exist between different encoding
methods, e.g., Flip-N-Wite and FlipMin. The encoding latency,
decoding latency, bit flip reduction, and capacity overhead
comparisons of Flip-N-Write and FlipMin are shown in
Table II. In Flip-N-Write, N can be set to any values, not
just 2, 4, 8, or 16. Flip-N-Write can use at most 50% addi-
tional capacity as tag bits, while FlipMin can use more than
100% additional capacity. With the same capacity overhead,
FlipMin can reduce more bit flips than Flip-N-Write. FlipMin
can reduce 6.5% more bit flips than Flip-N-Write with the
same 12.5% capacity overhead. In the aspect of latency, the
encoding/decoding process of Flip-N-Write is very simple and
fast. The encoding latency of FlipMin with 12.5% capacity
overhead is about 12.86 ns, which is ten times more than
Flip-N-Write.

IV. DESIGN AND IMPLEMENTATION

A. Design

Data compression techniques can reduce the size of the data
to store, and data encoding methods can expand the size for
reducing bit flips. Compression techniques can work in collab-
oration with encoding method to reduce bit flips. Moreover,

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on September 26,2020 at 09:28:01 UTC from IEEE Xplore. Restrictions apply.

2520 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 10, OCTOBER 2020

Fig. 4. Overview of our scheme.

the sizes of the space saved by compression are various for
different patterns. Encoding methods with different granulari-
ties also consume different capacity. We also propose to select
an encoding method according to the saved space size. For
these highly compressed cache lines, more space is provided
to the encoding schemes, and the encoding schemes can have
a fine-grained granularity and high efficiency. For the slightly
compressed cache lines, the saved space can also be used by
coarse-grained encoding schemes.

1) Overview: The main idea of our scheme is to exploit the
space saved by compression to store the tag bits of data encod-
ing methods. Our scheme works as Fig. 4 describes. For each
cache line, we first use the compression technique to compress
the cache line. Different compression techniques, such as BDI
and FPC, can be used. If the cache line is uncompressible,
we will not encode it because no extra space is provided. If
the cache line is compressible, we will compress it and use
the saved space to store the tag bits. Since different cache
lines have different compressed sizes and can provide various
saved space, a suitable encoding method is chosen accord-
ing to the saved space size for each cache line. The encoding
schemes use the saved space to store the tag bits, and therefore
the encoding scheme does not consume additional capacity.
To efficiently reduce the bit flips, our detailed design has the
following four optimizations.

2) Prefix Consolidation: Compression techniques use
prefixes to indicate the data patterns. We take FPC compres-
sion technique as an example in this section. In the original
FPC compression scheme, each compressed word uses a 3-bit
prefix to indicate the data pattern or compressibility. A cache
line (eight words) requires 24-bit prefixes. The prefixes con-
sume additional 24-bit space. We propose prefix consolidation
to reduce the storage overhead and decompression latency
of prefixes in compression technique. To reduce the capac-
ity overhead of the prefixes, we modify the organization of
prefixes and the data. We use a tag bit (compression tag) to
indicate whether the cache line is compressible or not. If there
is at least one compressible word, the cache line will be con-
sidered as compressible and the tag bit will be set. Otherwise,
the cache line is uncompressible, and the tag bit is reset. For
the compressible cache line, the saved space size is 32 bits
at least. For each word of the compressible cache line, we
still use a 3-bit prefix to indicate the data pattern. The total
number of bits of prefixes in compressible cache line is 24,
which is smaller than 32. Therefore, the size of the compress-
ible cache line with 24-bit prefix will not exceed 512. For
the uncompressible cache lines, we do not use prefixes and
each word is stored without any modification. Through prefix
consolidation, the capacity overhead of compression is reduced
to only one bit.

Fig. 5. Organization of prefixes and eight compressed words for the
compressible cache line.

Prior works [22], [28] propose to store the prefix with each
compressed word. The prefix of a word is stored after the prior
word. We have to decompress the word one by one in this
way, and the sequential decompression of each word causes
accumulated decompression latency. We propose to place the
prefixes together, as shown in Fig. 5. The location of each
compressed word can be located by the first 24-bit prefixes
with parallel decompression.

3) Selective Encoding: To fully exploit the saved space
for reducing the bit flips, we propose selective encod-
ing. Flip-N-Write and FlipMin have some variations. We
use the encoding methods with low encoding overheads to
avoid the IPC performance degradation. All the variations
of Flip-N-Write have low encoding/decoding overheads, and
we can select any encoding scheme from the variations of
Flip-N-Write. FlipMin with RM(1, 3) has moderate encod-
ing/decoding overhead. Compared with Flip-N-Write and
FlipMin with RM(1, 3), FlipMin with RM(1, 7) consumes sig-
nificant latency and energy overheads. The encoding latency
of RM(1, 7) is 12.86 ns, which is 8.6% of the write latency
of PCM. The encoding energy is 63.4 pJ [4], which is three
times the write energy of a PCM cell. Therefore, we do not
use FlipMin with RM(1, 7). The encoding method candidates
we use in this article are FlipMin with RM(1, 3) and all the
variations of Flip-N-Write. In the following pages, FlipMin
with RM(1, 3) is abbreviated to FlipMin, since FlipMin with
RM(1, 7) is not used.

Flip-N-Write and FlipMin have tradeoffs in capacity
overhead and effect. The tag bits of Flip-N-Write are at
most 50% of the data bits, while FlipMin consumes 100%
capacity overhead. When selecting from Flip-N-Write and
FlipMin, we choose Flip-N-Write when the saved space is
small. Flip-N-Write cannot fully use the saved space if the
saved space is more than half of the data bits. We use FlipMin
when the saved space size is larger than the data size. We use
S to represent the size of the space saved by compression and
use D to represent the compressed data size. For a 64-bit word
compressed to 8 bits, S equals 53 (the prefix occupies addi-
tional 3 bits) and D equals 8. For each cache line, S stands
for the saved space size of the eight words, and D is the total
number of bits in the eight compressed words. When S/D
is smaller than 50%, we use Flip-N-Write and select a best-
performing Flip-N-Write according to the saved space size.
We give every D/S data bits one tag bit. For example, if
only one of the eight words is compressible, and the data

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on September 26,2020 at 09:28:01 UTC from IEEE Xplore. Restrictions apply.

FENG et al.: LOW-OVERHEAD ENCODING SCHEME TO EXTEND LIFETIME OF NVMs 2521

Fig. 6. Relationship between the saved space size and the bit flip reduction.

pattern is “011,” the saved space size (S) equals “8” (32-24).
D equals “480” (32 + 64 + 64 + 64 + 64 + 64 + 64 + 64).
The result of D/S is 60. Therefore, we give every 60 data
bits one tag bit. If S/D is between 50% and 100%, the saved
space size will not be enough for FlipMin. We use the most
fine-grained Flip-N-Write, i.e., give every 2 data bits 1 tag bit
in Flip-N-Write. When S/D is greater than 100%, we apply
FlipMin to the data bits. The relationship between the effects
of the encoding methods and the saved space size is illustrated
in Fig. 6. When the saved space size (S) is between 8 and 162,
D/S is between 60 and 2. We give every D/S data bits one
tag bit. When S is between 163 and 243, we give every 2 data
bits one tag bit. When S is between 244 and 488, we use
the FlipMin with 100% capacity overhead. The relationship
between the encoding granularity and theoretical efficiency of
bit flip reduction is shown in (1). In (1), R represents the bit
flip reduction, and N equals the integer portion part of D/S

R =
⎧
⎨

⎩

1−∑N/2
i=0 i× (N+1

i

)
/
(
N × 2N−1

)
8 ≤ S ≤ 162

25% 163 ≤ S ≤ 243
31.2% 244 ≤ S ≤ 488.

(1)

4) Selective Compression: Compression techniques are
designed based on the data features. FPC is based on the obser-
vation that some frequent data patterns can be represented by
a fewer number of bits. Recently proposed BDI compression
technique is designed based on that the differences between
data values in the same cache line are small. BDI uses a base
and several deltas to represent the original cache line. BDI is
a cache line level compression algorithm which can compress
eight different data patterns. The size distribution of the cache
lines compressed by BDI is shown in Fig. 7. The sizes of a
large number of cache lines are on either sides, i.e., the sizes of
the majority of the compressed cache lines are either smaller
than 1 word or larger than 7 words. In the BDI algorithm, no
compressed cache line has the size between 5 and 7 words.

FPC and BDI have different compression characteristics.
FPC compresses the data at the granularity of word. There
is a high probability that at least one of the eight words is
compressible. The compression coverage (the percentage of
compressible cache lines) of FPC may be high. But the prefixes
of the eight compressed words will occupy 24-bit capacity.
The minimum compressed cache line size (with the prefixes)
is 24. On the contrary, BDI compresses the data at the gran-
ularity of a cache line. The data pattern of a cache line is

Fig. 7. Distribution of the sizes of the cache line compressed by BDI.

Fig. 8. Percentage of compressible cache lines.

Fig. 9. Distribution of the average compressed cache line sizes.

indicated by a 3-bit prefix. Therefore, the compression ratio
(original size/compressed size) of BDI is high. The data reg-
ularity requirement of BDI is stricter than FPC. All the eight
words of the compressible cache line must meet the same con-
dition. Therefore, the compression coverage of BDI may be
lower than FPC. If we use both compression schemes to com-
press data, the compression ratio and compression coverage
will be higher, and more space will be provided to data encod-
ing. We propose selective compression (SC) which improves
the compression ratio and compression coverage by selecting
the efficient compression algorithm from FPC and BDI.

Since two different compression techniques are used, SC
can take the advantages of high compression coverage and
high compression ratio. We also analyze the compression ratio
and compression coverage of the three compression schemes
through experiments. Figs. 8 and 9 show the compression cov-
erages and average compressed cache line sizes of the FPC,
BDI, and SC. The experimental setup is given in Table IV. The
compression coverage of FPC is higher than BDI in the bench-
marks of bwaves, cactusADM, milc, astar, omnetpp, sphinx3,

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on September 26,2020 at 09:28:01 UTC from IEEE Xplore. Restrictions apply.

2522 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 10, OCTOBER 2020

Algorithm 1 Selective Compression and Encoding
Require: OldLine, NewLine: the old and new cache lines
Require: P, L: the sizes of the prefix and cache line
Ensure: LE: the encoded new cache line

1: /* Selective compression */
2: LF← FPCCompression(NewLine) � LF is the line compressed

by FPC
3: LB← BDICompression(NewLine) � LB is the line compressed

by BDI
4: LC← size(LF) < size(LB)?LF : LB � LC is the line

compressed by SC
5: /* Selective encoding */
6: D← size(LC) � D is the size of the compressed line
7: S← L− P− D � S is the saved space size
8: if S == 0 then
9: LE← LC

10: else if S < D then
11: LE← Flip− N −WriteEncoding(OldLine, LC);
12: else if S >= D then
13: LE← FlipMinEncoding(OldLine, LC)
14: end if

namd, and h264ref. The average compression coverages of
the 15 benchmarks are 70.6%, 59.8%, and 79.6% in FPC,
BDI, and SC, respectively. SC always has higher compression
coverage than FPC and BDI due to selecting the smaller com-
pressed cache line size. The average compressed cache line
size of BDI is smaller than FPC in the benchmarks of cactu-
sADM, bzip2, xalancbmk, and gromacs. The two compression
schemes have similar compressed sizes in the benchmarks of
sjeng, wrf, leslie3d, sphinx3, namd, h264ref, and libquantum.
The average compressed cache line sizes are 3.7 words, 4.1
words, and 3.2 words in FPC, BDI, and SC, respectively. SC
also has smaller compressed cache line size than FPC and BDI
in all the benchmarks.

When selecting from the two compression techniques, we
need to calculate the number of bit flips of the compression
techniques, compare their values, and find the smaller one.
However, calculating the number of the total bit flips of the
cache line is very slow and incurs high latency overhead. The
average number of bit flips of writing the compressed cache
line is half of the compressed cache line size. To reduce the
overhead of the selection operation, we use the compressed
cache line size to approximately measure the number of bit
flips. We select the compression technique which has smaller
compressed cache line size. There is no need to calculate the
compressed cache line size, because the size can be obtained
directly by the prefixes. We only need to compare the existing
compressed cache line sizes and find the smaller one. The
selective compression and encoding algorithms are shown in
Algorithm 1.

5) Combined With Flip-N-Write: Although selective com-
pression can improve the compression coverage and reduce the
compressed cache line size, some random and irregular data
patterns are still uncompressible. If most of the access patterns
in the application are uncompressible, the proposed technique
will not reduce the write energy. As shown in Figs. 8 and 9,
the milc and bzip2 benchmarks have low compression cover-
ages and high compressed cache line sizes. The saved space
sizes are small in the two benchmarks. To ensure the reduction

Fig. 10. Combination of Flip-N-Write with compression encoding.

Fig. 11. System architecture.

of write energy for these benchmarks, we propose to combine
Flip-N-Write with the compression-encoding scheme. We give
every 32-bit data one tag bit to ensure low capacity overhead.
The capacity overhead of Flip-N-Write is only 3.1%. If we
use Flip-N-Write before compression, the data characteristics
will be destroyed. Therefore, the Flip-N-Write works after
the compression and data encoding scheme. Fig. 10 shows
the combination of compression encoding with Flip-N-Write.
For the compressible cache lines, we apply compression and
encoding first. Then, we use Flip-N-Write to encode the
“encoded cache line.” If the cache line is uncompressible, we
will directly apply Flip-N-Write to the cache line. Although
the Flip-N-Write in this section incurs additional capacity
overhead, it ensures the bit flip reduction for all the cache
lines.

B. Implementation

NVM is used as main memory in this article. When there
is a write access to the NVM device, we use the Encoder to
encode the cache line first. When there is a read access, we
read the stored data and decode the data. The implementation
of our design includes Encoder and Decoder, which are on the
write path and read path, respectively. The system architecture
is shown in Fig. 11. The Encoder and Decoder of our scheme
are implemented in the main memory controller.

1) Encoder: The Encoder attempts to compress the cache
line and use Flip-N-Write or FlipMin to encode the com-
pressed data. The Encoder consists of two parts, i.e., selective
compression and selective encoding, as shown in Fig. 12.
When the memory controller receives a write request, the
cache line is sent to the FPC compression logic and BDI
compression logic to attempt data compression. For the FPC
algorithm, each of the eight words is compared with the data
patterns illustrated in Table I. If none of the eight words is
compressible, this cache line will be uncompressible by FPC.
For the BDI algorithm, the cache line is matched with the
base and several deltas. If the match is successful, the cache
line will be compressible by BDI. If the cache line is either
compressible by FPC or BDI, the cache line will be marked

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on September 26,2020 at 09:28:01 UTC from IEEE Xplore. Restrictions apply.

FENG et al.: LOW-OVERHEAD ENCODING SCHEME TO EXTEND LIFETIME OF NVMs 2523

Fig. 12. Process of the Encoder.

Fig. 13. Process of the Decoder.

as compressible by setting the compression tag. Then, we
compare the compressed cache line sizes of FPC and BDI
and select the compression algorithm which has smaller com-
pressed cache line size. If FPC is applied, the algorithm tag
will be set. Otherwise, the algorithm tag is reset. If the cache
line is uncompressible by both FPC and BDI, the compression
tag will be reset.

For the compressible cache line, the cache line is com-
pressed by either FPC or BDI, and then the saved space size (S)
and compressed data bits size (D) are calculated. Different
encoding methods are applied to the compressed cache line
based on the value of S. If S is smaller than 163, we will
choose Flip-N-Write and give every D/S data bits 1 tag bit.
If S is between 163 and 244, we will choose Flip-N-Write with
1 tag bit for every 2 data bits. If S is greater than 244, we
will select the FlipMin with 100% capacity overhead. After
the selective compression/encoding, all the cache lines are
encoded by Flip-N-Write before they are forwarded to the
write controller.

2) Decoder: Since the cache line has been compressed and
encoded by the Encoder, the Decoder consists of decoding
and decompression. When the NVM module receives a read
request from the memory controller, the Decoder works as
follows. First, we decode the cache line with Flip-N-Write.
The compression tag is used to determine that whether the
cache line is compressed or not. If the cache line is not com-
pressed, it will be sent to the read buffer directly. If the cache

TABLE III
OVERHEAD COMPARISON

line is compressed, the algorithm tag will be used to identify
the compression algorithm. If the value of algorithm tag is
1, the cache line will be decompressed by FPC. For the com-
pressed cache line, the 24-bit prefixes are exploited to calculate
S and D. Then, the encoding method is determined according
to S, and the corresponding decoding method is applied to the
encoded data bits. After decoding, the data bits are decom-
pressed by FPC. Assuming that the prior compression and
encoding methods are FPC and FlipMin, the Decoder works
as Fig. 13 illustrates.

C. Overhead

The Encoder and Decoder incur additional latency and
energy overheads. The implementation consists of three parts,
i.e., compression, encoding, and selecting encoding and com-
pression methods. The average encoding energy is about 11 pJ,
which is about half of the write energy of a PCM cell. The
encoding latency is between 2 and 8 ns. The average encoding
latency is 5 ns, which is 3.3% of the write latency of PCM.
The overhead is small compared with the write energy/latency
of PCM. Besides, the selective compression and encoding
schemes will incur latency/energy overhead only if the cache
line is compressible. The detailed latency and energy over-
heads of compression, encoding, and selection are shown in
Table III. The symbol “−” means that the value is negligible.

1) Compression: The compression schemes include FPC
and BDI. The hardware, energy, and latency overheads of
FPC have been evaluated in prior works [9], [23], [31].
The hardware overhead is similar to 16K PCM cells. The
encoding/decoding energy is 2.1/1.2 pJ [31]. The latencies of
compression and decompression are estimated to be 2 and
1 ns [28]. BDI [10] has low hardware implementation com-
plexity compared with FPC. The compression latency is about
2 ns. Besides, the compression/decompression of BDI can
work in parallel with FPC. Therefore, BDI does not incur
additional compression/decompression latency overhead.

2) Encoding: The encoding and decoding latencies of
Flip-N-Write and FlipMin are shown in Table II. The energy
overhead of Flip-N-Write is negligible [6], and the decod-
ing/encoding energy of FlipMin is 0.3/8.4 pJ [4]. The latency
and energy overheads of FlipMin are evaluated with Synopsys
Design Compiler and IC Compiler based on the Nangate
45-nm semi-custom cell library [4].

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on September 26,2020 at 09:28:01 UTC from IEEE Xplore. Restrictions apply.

2524 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 10, OCTOBER 2020

TABLE IV
SYSTEM CONFIGURATIONS

3) Selecting Compression and Encoding: The proposed
selective compression scheme needs to calculate and compare
the compressed cache line sizes. In BDI, the compressed cache
line size can be obtained directly according to the prefix. In
FPC, the compressed cache line size is the sum of the eight
compressed words. We need to add the sizes of the com-
pressed words. The estimated energy and latency overheads
of selecting compression algorithms are 0.31 pJ and 0.43 ns.
The selective encoding scheme needs to calculate the saved
space size and select an encoding schemes according to the
saved space size. The latency of selecting encoding schemes
is 1.52 ns, and the energy overhead is 1.7 pJ. We get the over-
head values by using Synopsys Design Compiler to synthesize
the logic in 130-nm technology and scaling the results down
to 22-nm technology node. During the decoding process, the
compression algorithm and encoding scheme are identified by
the value of algorithm tag and compression tag. Therefore,
the decoding of selecting compression and encoding does not
incur latency or energy overhead.

V. EXPERIMENTAL SETUP

We use Gem5 [37] to evaluate our schemes, and the main
memory model is based on NVMain [38]. NVMain is a cycle-
level main memory simulator designed to simulate emerging
NVMs at the architectural level. The configuration of the target
system is given in Table IV. The system is based on a four-core
processor. Fifteen benchmarks are used in our experiment. All
these benchmarks are selected from SPEC CPU 2006 [35].

The evaluation section is divided into two parts. In the
first part, we evaluate the effects of different combinations of
encoding schemes and compression techniques. In the second
part, we compare our schemes with existing works.

A. Combining Encoding With Compression

In this section, we evaluate the effects of different com-
binations of encoding schemes and compression algorithms
to show the tradeoffs in encoding and compression. All the
schemes use DCW to reduce the redundant bit flips. The
proposed designs are evaluated in terms of bit flips, energy,
and lifetime. All the experimental results are normalized to
DCW [36]. The following six different schemes are evaluated.

1) FPC + FNW: The space saved by FPC is exploited
to store tag bits of Flip-N-Write. Each cache line is
compressed by FPC first. Then, Flip-N-Write is used
to encode the compressed cache line according to the
saved space size.

2) FPC + FlipMin: The space saved by FPC is used to
store the tag bits of FlipMin. FlipMin is applied when

TABLE V
COMPARISON OF CAPACITY OVERHEAD, BIT FLIPS, ENERGY, AND

LIFETIME (NORMALIZED TO DCW)

the saved space size is larger than the compressed cache
line size.

3) BDI + FNW: Cache lines are compressed by BDI.
Flip-N-Write is used to encode the compressed cache
line.

4) BDI + FlipMin: Cache lines are compressed by BDI.
FlipMin is used to encode the compressed cache line.

5) COEF: FPC is used to compress the cache lines. FlipMin
or Flip-N-Write is used to encode the compressed cache
line according to the saved space size.

6) SELEC: Both FPC and BDI are used to compress the
cache lines. The compressed cache line which has a
smaller size is selected. Then, Flip-N-Write or FlipMin
is used to encode the compressed cache line.

The overview of the comparison of capacity overhead, bit
flips, energy, and lifetime is shown in Table V. The capacity
overhead is defined as the ratio of additional space and main
memory space. For example, SELEC has two tag bits (i.e.,
algorithm tag and compression tag) for each cache line, and
therefore the capacity overhead is 0.4% (2/512). The detailed
bit flips, energy, and lifetime results are shown in the following
sections.

1) Bit Flips: Fig. 14 illustrates the normalized bit flips
for each benchmark. The average bit flip reductions of
FPC + FNW, FPC + FlipMin, BDI + FNW, BDI + FlipMin,
COEF, and SELEC are 2.1%, 8.9%, 9.5%, 3.9%, 15.7%, and
20.7%, respectively. COEF and SELEC can reduce the most
bit flips due to their selective encoding and selective compres-
sion. COEF reduces more bit flips than both FPC + FNW
and FPC + FlipMin because COEF selects the encoding
schemes from Flip-N-Write and FlipMin, and COEF can fully
exploit the saved space. SELEC has fewer bit flips than COEF
because SELEC uses two different compression algorithms.
SELEC can compress more cache lines and provide more
space for efficient data encoding. In the bwaves benchmark,
FPC + FlipMin can reduce 27.8% bit flips compared with
FPC + FNW. The reason is that the sizes of about 90% of
the compressed cache lines are between 0 and 4 words, as
shown in Fig. 1. FlipMin can significant reduce the bit flips of
these cache lines. In the bwaves benchmark, BDI + FNW and
BDI + FlipMin have the similar bit flips. The reason is that the
size distribution of BDI compression is polarized. As shown
in Fig. 7, about 60% of the compressed cache lines have 0-1
word (i.e., the 3-bit prefix of BDI), and about 40% of the cache
lines are uncompressible (between 7 words and 8 words). For
those highly compressed cache lines, both Flip-N-Write and
FlipMin have limited effects. For those uncompressible cache

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on September 26,2020 at 09:28:01 UTC from IEEE Xplore. Restrictions apply.

FENG et al.: LOW-OVERHEAD ENCODING SCHEME TO EXTEND LIFETIME OF NVMs 2525

Fig. 14. Comparison of the normalized bit flips.

Fig. 15. Comparison of the normalized energy.

Fig. 16. Comparison of the normalized lifetime.

lines, Flip-N-Write and FlipMin cannot be applied. Therefore,
BDI+FNW has the similar bit flips to BDI + FlipMin in THE
bwaves benchmark. COEF and SELEC can select the encod-
ing schemes and compression algorithms, and therefore COEF
and SELEC can reduce more bit flips than all the other four
schemes.

In some benchmarks, the bit flips after compression and
encoding increase rather than decrease. For example, in the
astar benchmark, the bit flips increase by 17%, 25%, 6%, and
31% in FPC + FNW, FPC + FlipMin, BDI + FNW, and
BDI + FlipMin, respectively. The reason is twofold. On the
one hand, compression algorithm could destroy the data sim-
ilarity, and leads to more bit flips than DCW [24], [39]. Dirty
cache line may have clean words, and DCW can eliminate the
writes to those clean words. The clean words after compression
are different from the original words, and compression leads
to more bit flips in this case. On the other hand, FlipMin (or
Flip-N-Write) uses additional tag bits and increases the size
of the data to write. The bit flips increase rather than decrease
under specific data patterns [40].

2) Energy: The total energy consumptions of different
schemes are shown in Fig. 15. The total energy consumptions
are reduced by 0.3%, 4.9%, 6.7%, 3.6%, 8.8%, and 13.0% in
FPC + FNW, FPC + FlipMin, BDI + FNW, BDI + FlipMin,
COEF, and SELEC. For NVMs, write energy consumption
dominates the total energy consumption. Therefore, the energy
reduction is nearly the same as the bit flip reduction in most
benchmarks (i.e., cactusADM, milc, wrf, bzip2, xalancbmk,
leslie3d, sphinx3, namd, and gromacs). For other benchmarks,
the energy consumption reductions are smaller than the bit flip
reductions because the write energy contributes partially to the
total energy consumption.

3) Lifetime: The endurance of NVM is limited. After
enduring certain number of bit flips, a cell may fail. To tol-
erate the wearout of cells, error correction [41] and spare
lines [42]–[44] are used. When the number of errors exceeds
the correction capability of ECP [41] or spare lines [42]–[44],
the NVM-based main memory system will fail. For simplicity,
we use the average number of bit flips of cells to approximate
the lifetime. Therefore, the lifetime is inversely proportional

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on September 26,2020 at 09:28:01 UTC from IEEE Xplore. Restrictions apply.

2526 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 10, OCTOBER 2020

Fig. 17. Comparison of the normalized bit flips.

to the number of bit flips, as defined in (2). C is a constant
value for all the schemes.

Lifetime = C × Total Number of Cells

Total Number of Bit Flips
. (2)

Our schemes can reduce the bit flips, and the life-
time is improved. The lifetime improvements are 3.0%,
14.5%, 12.6%, 5.9%, 23.2%, and 31.2% in FPC + FNW,
FPC + FlipMin, BDI + FNW, BDI + FlipMin, COEF, and
SELEC, respectively, as shown in Fig 16. In the bwaves, sjeng,
and omnetpp benchmarks, the lifetime improvements are sig-
nificant in FPC + FlipMin. The main reason is that the high
compression coverage and small compressed size lead to fewer
bit flips in the three benchmarks. COEF and SELEC also
have significant lifetime improvements due to their selective
compression and selective encoding.

The experimental results confirm that SELEC can reduce
the bit flips and improve the lifetime significantly compared
with single encoding scheme or compression algorithm.

B. Compared With Prior Works

In this section, we compare our schemes with five existing
works in terms of bit flips, energy, lifetime and IPC
performance. All the experimental results are normalized to
DCW. The following seven schemes are evaluated.

1) DCW [36]: The redundant bit flips are eliminated.
2) FPC [9]: The cache line is compressed by FPC at the

granularity of 64-bit words.
3) AFNW [22]: The tag bits are assigned to the compressed

data bits. Each 64-bit word has four tag bits in AFNW.
4) Flip-N-Write [6]: The data bits are flipped if flipping

can reduce the bit flips. We give every 8 data bits 1 tag
bit.

5) FlipMin [4]: We use the RM(1, 3) to generate the coset.
Each 4-bit data are mapped into a set of 16 8-bit vec-
tors. The vector which causes the minimum bit flips are
selected.

6) SELEC: Both FPC and BDI are used to compress the
cache lines. The compressed cache line which has a
smaller size is selected. Then, Flip-N-Write or FlipMin
is used to encode the compressed cache line according
to the saved space size.

7) SELECFNW: FPC and BDI are used to compress
the cache lines. Flip-N-Write and FlipMin are used
to encode the compressed cache lines. Besides, the

TABLE VI
COMPARISON OF CAPACITY OVERHEAD, BIT FLIPS, ENERGY, AND

LIFETIME (NORMALIZED TO DCW)

Flip-N-Write with additional 3.1% capacity overhead is
used to reduce the bit flips of the encoded cache lines.

The overview of the comparison of capacity overhead, bit flips,
energy, and lifetime is shown in Table VI.

1) Bit Flips: Fig. 17 illustrates the normalized bit flips for
each benchmark. Compared with DCW, the average bit flip
reductions of FPC, AFNW, Flip-N-Write, FlipMin, SELEC,
and SELECFNW are −5.0%, 6.8%, 19.2%, 48.4%, 20.7%,
and 32.5%, respectively. FPC leads to 5% more bit flips than
DCW due to destroying the data similarity [24], [39]. Besides,
FPC needs 24-bit prefixes per cache line to indicate the data
patterns, and the writes to prefixes result in additional bit flips.
AFNW reduces the bit flips by 6.8% because it adapts the
Flip-N-Write granularity to the compressed cache line size.
FlipMin can reduce the most bit flips because it exploits
the coset code to generate a coset of vectors and selects
the vector which leads to the minimum bit flips. However,
FlipMin has significant capacity overhead (100%). On aver-
age, the proposed SELEC can reduce the similar bit flips
to Flip-N-Write. In the aspect of capacity overhead, SELEC
has very low capacity overhead and saves 12.1% capacity.
SELECFNW further reduces the bit flips by leveraging addi-
tional space to encode the cache lines with Flip-N-Write. On
average, SELECFNW can reduce 11.8% more bit flips than
SELEC. The bit flip reduction of SELECFNW is the highest
in the sphinx3 and h264ref benchmarks. The main reason is
that selective encoding and selective compression can reduce
bit flips, and a low-overhead Flip-N-Write further enhances
the bit flip reduction.

2) Energy: The total energy consumptions of dif-
ferent schemes are shown in Fig. 18. The average
energy reductions of FPC, AFNW, Flip-N-Write, FlipMin,
SELEC, and SELECFNW are −3.2%, 4.2%, 12.5%, 34.2%,

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on September 26,2020 at 09:28:01 UTC from IEEE Xplore. Restrictions apply.

FENG et al.: LOW-OVERHEAD ENCODING SCHEME TO EXTEND LIFETIME OF NVMs 2527

Fig. 18. Comparison of the normalized energy.

Fig. 19. Comparison of the normalized lifetime.

13.0%, and 22.6%, respectively. In the SELECFNW scheme,
the energy reduction is the most in the sphinx3 benchmark,
which is about 58.5%. The energy reduction is the least in
the benchmark libquantum. The reason is that the libquan-
tum benchmark has a large amount of redundant cache lines.
Although the number of write requests is large, the number
of bit flips is very small. The write energy is only a small
part of the total energy consumption. For most benchmarks,
the energy reduction is similar to the bit flip reduction.

3) Lifetime: The lifetime comparison is shown in Fig. 19.
The improvements are −4.5%, 14.9%, 40.1%, 292.6%, 31.2%,
and 69.9% in FPC, AFNW, Flip-N-Write, FlipMin, SELEC,
and SELECFNW, respectively. The lifetime decreases in FPC
due to the increase of bit flips. The lifetime improvement of
FlipMin is the highest. The improvement comes from two
aspects. On the one hand, FlipMin can significantly reduce
the bit flips. On the other hand, FlipMin has additional 100%
capacity. The bit flips are spread across twice the main
memory capacity. Therefore, the average writes which cells
endure are reduced.

4) IPC Performance: We compare SELECFNW with the
original DCW scheme to evaluate the IPC performance. When
there is a read access, the cache line needs to be decoded in
SELECFNW. The decoding of SELECFNW consists of the
decoding of Flip-N-Write, FlipMin, BDI, or FPC. The decod-
ing latency is about 1 ns, which is 2% of the read latency of
PCM-based main memory. The decoding process will work
only if the cache line is compressed. The encoding latency is
estimated to be 5 ns. We add the encoding latency to the write
latency. The write latency of SELECFNW is 155(150+5) ns.
Fig. 20 shows the comparison of the IPC performance. On
average, the IPC performance of SELECFNW degrades 1.0%

Fig. 20. Comparison of the normalized IPC performance.

due to the encoding latency. For most benchmarks, the IPC
performance nearly has no degradation.

VI. CONCLUSION

NVMs suffer from limited write endurance and high write
energy. This article proposes to extend the lifetime of NVMs
by combining the data compression techniques with data
encoding methods. We exploit the space saved by compres-
sion to store the tag bits of data encoding methods. Based
on the observations that the size of the space saved by each
compressed cache line varies and different encoding meth-
ods have different tradeoffs between capacity overhead and
effect, we select the best-performing data encoding methods
according to the size of the space saved by compression.
Based on the observation that different compression algorithms
can compress different data patterns, we further enhance the
compression coverage and compression ratio by dynamically
selecting the compression algorithm which leads to the smaller
compressed cache line size. To ensure the bit flip reduction
of uncompressible cache lines, we enable the encoding of

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on September 26,2020 at 09:28:01 UTC from IEEE Xplore. Restrictions apply.

2528 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 10, OCTOBER 2020

Flip-N-Write by allowing an additional capacity overhead of
about 3.5%. The experimental results show that the proposed
scheme can reduce the bit flips by 32.5%, decrease the energy
consumption by 22.6% and improve the lifetime by 69.9%
with 3.5% capacity overhead.

REFERENCES

[1] S. Mittal, J. S. Vetter, and D. Li, “A survey of architectural approaches
for managing embedded DRAM and non-volatile on-chip caches,” IEEE
Trans. Parallel Distrib. Syst., vol. 26, no. 6, pp. 1524–1537, Jun. 2015.

[2] H. A. Khouzani, F. S. Hosseini, and C. Yang, “Segment and con-
flict aware page allocation and migration in DRAM-PCM hybrid main
memory,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol. 36, no. 9, pp. 1458–1470, Sep. 2017.

[3] S. Shirinzadeh, M. Soeken, P.-E. Gaillardon, G. De Micheli, and
R. Drechsler, “Endurance management for resistive logic-in-memory
computing architectures,” in Proc. Design Autom. Test Europe Conf.
Exhibit. (DATE), 2017, pp. 1092–1097.

[4] A. N. Jacobvitz, R. Calderbank, and D. J. Sorin, “Coset coding to extend
the lifetime of memory,” in Proc. IEEE 19th Int. Symp. High Perform.
Comput. Archit. (HPCA), Shenzhen, China, 2013, pp. 222–233.

[5] R. Maddah, S. M. Seyedzadeh, and R. Melhem, “CAFO: Cost aware
flip optimization for asymmetric memories,” in Proc. Int. Symp. High
Perform. Comput. Archit. (HPCA), Burlingame, CA, USA, 2015,
pp. 320–330.

[6] S. Cho and H. Lee, “Flip-N-write: A simple deterministic technique
to improve PRAM write performance, energy and endurance,” in
Proc. 42nd Annu. IEEE/ACM Int. Symp. Microarchit., New York, NY,
USA, 2009, pp. 347–357.

[7] S. M. Seyedzadeh, R. Maddah, A. Jones, and R. Melhem, “PRES:
Pseudo-random encoding scheme to increase the bit flip reduction
in the memory,” in Proc. 52nd Annu. Design Autom. Conf. (DAC),
San Francisco, CA, USA, 2015, pp. 1–6.

[8] M. Jalili and H. Sarbazi-Azad, “Captopril: Reducing the pressure of bit
flips on hot locations in non-volatile main memories,” in Proc. Design
Autom. Test Europe Conf. Exhibit. (DATE), Dresden, Germany, 2016,
pp. 1116–1119.

[9] A. R. Alameldeen and D. A. Wood, “Frequent pattern compression: A
significance-based compression scheme for l2 caches,” Dept. Comput.
Sci., Univ. Wisconsin-Madison, Madison, WI, USA, Rep. 1500, 2004.

[10] G. Pekhimenko, V. Seshadri, O. Mutlu, M. A. Kozuch, P. B. Gibbons,
and T. C. Mowry, “Base-delta-immediate compression: Practical data
compression for on-chip caches,” in Proc. 21st Int. Conf. Parallel Archit.
Compilation Tech. (PACT), 2012, pp. 377–388.

[11] H. A. Khouzani, Y. Xue, and C. Yang, “Fully exploiting PCM write
capacity within near zero cost through segment-based page allocation,”
ACM J. Emerg. Technol. Comput. Syst. (JETC), vol. 12, no. 4, p. 31,
2016.

[12] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger, “Architecting phase change
memory as a scalable dram alternative,” in Proc. 36th Annu. Int. Symp.
Comput. Archit., 2009, pp. 2–13.

[13] W. S. Zhao et al., “Design and analysis of crossbar architecture based
on complementary resistive switching non-volatile memory cells,” J.
Parallel Distrib. Comput., vol. 74, no. 6, pp. 2484–2496, 2014.

[14] H. Y. Lee et al., “Evidence and solution of over-RESET problem
for HfOX based resistive memory with sub-ns switching speed and
high endurance,” in Proc. Int. Electron Devices Meeting (IEDM),
San Francisco, CA, USA, 2010, pp. 1–4.

[15] X. Luo et al., “Enhancing lifetime of NVM-based main memory with
bit shifting and flipping,” in Proc. IEEE 20th Int. Conf. Embedded Real-
Time Comput. Syst. Appl. (RTCSA), 2014, pp. 1–7.

[16] A. Alsuwaiyan and K. Mohanram, “MFNW: An MLC/TLC flip-N-write
architecture,” ACM J. Emerg. Technol. Comput. Syst. (JETC), vol. 14,
no. 2, p. 28, 2018.

[17] J. Xu, D. Feng, W. Tong, J. Liu, and W. Zhou, “Encoding separately: An
energy-efficient write scheme for MLC STT-RAM,” in Proc. Int. Conf.
Comput. Design (ICCD), Boston, MA, USA, 2017, pp. 581–584.

[18] J. Wang, X. Dong, G. Sun, D. Niu, and Y. Xie, “Energy-efficient
multi-level cell phase-change memory system with data encoding,” in
Proc. Int. Conf. Comput. Design (ICCD), Amherst, MA, USA, 2011,
pp. 175–182.

[19] M. Zhao et al., “State asymmetry driven state remapping in phase
change memory,” IEEE Trans. Comput.-Aided Design Integr. Circuits
Syst., vol. 36, no. 1, pp. 27–40, Jan. 2017.

[20] X. Zang, X. Li, L. Dou, Y. Sun, and M. Zhao, “Energy optimization
for multi-level cell non-volatile memory using state remapping,”
Microprocess. Microsyst., vol. 53, pp. 202–212, Aug. 2017.

[21] D. B. Dgien, P. M. Palangappa, N. A. Hunter, J. Li, and K. Mohanram,
“Compression architecture for bit-write reduction in non-volatile
memory technologies,” in Proc. IEEE/ACM Int. Symp. Nanoscale
Archit., Paris, France, 2014, pp. 51–56.

[22] P. M. Palangappa and K. Mohanram, “Flip-mirror-rotate: An architecture
for bit-write reduction and wear leveling in non-volatile memories,” in
Proc. 25th Ed. Great Lakes Symp. VLSI, 2015, pp. 221–224.

[23] L. Jiang, Y. Zhang, and J. Yang, “Mitigating write disturbance in super-
dense phase change memories,” in Proc. 44th Annu. IEEE/IFIP Int. Conf.
Depend. Syst. Netw. (DSN), Atlanta, GA, USA, 2014, pp. 216–227.

[24] A. Jadidi, M. Arjomand, M. K. Tavana, D. R. Kaeli, M. T. Kandemir,
and C. R. Das, “Exploring the potential for collaborative data compres-
sion and hard-error tolerance in PCM memories,” in Proc. 47th Annu.
IEEE/IFIP Int. Conf. Depend. Syst. Netw. (DSN), Denver, CO, USA,
2017, pp. 85–96.

[25] J. Xu, D. Feng, Y. Hua, W. Tong, J. Liu, and C. Li, “Extending the life-
time of NVMS with compression,” in Proc. Design Autom. Test Europe
Conf. Exhibit. (DATE), Dresden, Germany, 2018, pp. 1604–1609.

[26] Y. Guo, Y. Hua, and P. Zuo, “A latency-optimized and energy-efficient
write scheme in NVM-based main memory,” IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., vol. 39, no. 1, pp. 62–74, Jan. 2020.

[27] J. Xu, D. Feng, Y. Hua, W. Tong, J. Liu, C. Li, and W. Zhou, “Improving
performance of TLC RRAM with compression-ratio-aware data encod-
ing,” in Proc. Int. Conf. Comput. Design (ICCD), Boston, MA, USA,
2017, pp. 573–580.

[28] P. M. Palangappa and K. Mohanram, “CompEX++: Compression-
expansion coding for energy, latency, and lifetime improvements in
MLC/TLC NVMS,” ACM Trans. Archit. Code Optim., vol. 14, no. 1,
Apr. 2017, Art. no. 10.

[29] S. Seyedzadeh, A. Jones, and R. Melhem, “Enabling fine-grain restricted
coset coding through word-level compression for PCM,” in Proc. IEEE
Int. Symp. High Perform. Comput. Archit. (HPCA), 2018, pp. 350–361.

[30] S. Asadi, A. M. H. Monazzah, H. Farbeh, and S. G. Miremadi, “WIPE:
Wearout informed pattern elimination to improve the endurance of
NVM-based caches,” in Proc. 22nd Asia South Pac. Design Autom. Conf.
(ASP-DAC), 2017, pp. 188–193.

[31] L. Jiang, B. Zhao, Y. Zhang, J. Yang, and B. R. Childers, “Improving
write operations in MLC phase change memory,” in Proc. Int. Symp.
High Perform. Comput. Archit. (HPCA), New Orleans, LA, USA, 2012,
pp. 1–10.

[32] M. Arjomand, A. Jadidi, A. Shafiee, and H. Sarbazi-Azad, “A morphable
phase change memory architecture considering frequent zero values,” in
Proc. Int. Conf. Comput. Design (ICCD), Amherst, MA, USA, 2011,
pp. 373–380.

[33] L. Jiang, Y. Zhang, and J. Yang, “ER: Elastic RESET for low power and
long endurance MLC based phase change memory,” in Proc. ACM/IEEE
Int. Symp. Low Power Electron. Design (ISLPED), 2012, pp. 39–44.

[34] H. G. Lee, S. Baek, J. Kim, and C. Nicopoulos, “A compression-based
hybrid MLC/SLC management technique for phase-change memory
systems,” in Proc. IEEE Comput. Soc. Annu. Symp. VLSI (VLSI),
Amherst, MA, USA, 2012, pp. 386–391.

[35] J. L. Henning, “SPEC CPU2006 benchmark descriptions,” ACM
SIGARCH Comput. Archit. News, vol. 34, no. 4, pp. 1–17, 2006.

[36] B.-D. Yang, J.-E. Lee, J.-S. Kim, J. Cho, S.-Y. Lee, and B.-G. Yu, “A low
power phase-change random access memory using a data-comparison
write scheme,” in Proc. IEEE Int. Symp. Circuits Syst., New Orleans,
LA, USA, 2007, pp. 3014–3017.

[37] N. Binkert et al., “The gem5 simulator,” ACM SIGARCH Comput. Archit.
News, vol. 39, no. 2, pp. 1–7, 2011.

[38] M. Poremba, T. Zhang, and Y. Xie, “NVmain 2.0: A user-friendly
memory simulator to model (non-)volatile memory systems,” IEEE
Comput. Archit. Lett., vol. 14, no. 2, pp. 140–143, Jul.–Dec. 2015.

[39] J. Kong and H. Zhou, “Improving privacy and lifetime of PCM-based
main memory,” in Proc. IEEE/IFIP Int. Conf. Depend. Syst. Netw.
(DSN), 2010, pp. 333–342.

[40] J. Xu et al., “Adaptive granularity encoding for energy-efficient non-
volatile main memory,” in Proc. 56th Annu. Design Autom. Conf., 2019,
p. 114.

[41] S. Schechter, G. H. Loh, K. Strauss, and D. Burger, “Use ECP, not
ECC, for hard failures in resistive memories,” in Proc. 37th Annu.
Int. Symp. Comput. Archit., 2010, pp. 141–152. [Online]. Available:
http://doi.acm.org/10.1145/1815961.1815980

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on September 26,2020 at 09:28:01 UTC from IEEE Xplore. Restrictions apply.

FENG et al.: LOW-OVERHEAD ENCODING SCHEME TO EXTEND LIFETIME OF NVMs 2529

[42] J. Xu et al., “An efficient spare-line replacement scheme to enhance
NVM security,” in Proc. 56th Annu. Design Autom. Conf., Las Vegas,
NV, USA, 2019, p. 91.

[43] M. K. Qureshi, J. Karidis, M. Franceschini, V. Srinivasan, L. Lastras,
and B. Abali, “Enhancing lifetime and security of PCM-based main
memory with start-gap wear leveling,” in Proc. 42nd Annu. IEEE/ACM
Int. Symp. Microarchit., 2009, pp. 14–23.

[44] N. H. Seong, D. H. Woo, and H.-H. S. Lee, “Security refresh: Prevent
malicious wear-out and increase durability for phase-change memory
with dynamically randomized address mapping,” in Proc. 37th Annu.
Int. Symp. Comput. Archit., 2010, pp. 383–394.

Dan Feng (Member, IEEE) received the B.E., M.E.,
and Ph.D. degrees in computer science and technol-
ogy from the Huazhong University of Science and
Technology (HUST), Wuhan, China, in 1991, 1994,
and 1997, respectively.

She is a Professor and the Dean of the School
of Computer Science and Technology, HUST. She
has more than 100 publications in major jour-
nals and international conferences, including the
IEEE TRANSACTIONS ON COMPUTERS, the IEEE
TRANSACTIONS ON PARALLEL AND DISTRIBUTED

SYSTEMS, ACM-TOS, FAST, USENIX ATC, EuroSys, ICDCS, HPDC, SC,
ICS, IPDPS, DAC, and DATE. Her research interests include computer archi-
tecture, nonvolatile memory technology, distributed and parallel file system,
and massive storage system.

Prof. Feng has served as the program committees of multiple international
conferences, including SC in 2011 and 2013 and MSST in 2012 and 2015. She
is a member of the Association for Computing Machinery and the Chair of
Information Storage Technology Committee of Chinese Computer Academy.

Jie Xu received the B.E. degree from the School
of Optical and Electronic Information, Huazhong
University of Science and Technology, Wuhan,
China, in 2014, where he is currently pursuing the
Ph.D. degree in computer architecture.

He publishes several papers in major journals and
international conferences, including FGCS, ICCD,
DATE, DAC, and MSST. His research interest
includes embedded development on FPGA and
nonvolatile memory.

Yu Hua (Senior Member, IEEE) received the
B.E. and Ph.D. degrees in computer science from
Wuhan University, Wuhan, China, in 2001 and 2005,
respectively.

He is a Professor with the Huazhong University
of Science and Technology, Wuhan. He has
more than 100 papers to his credit in major
journals and international conferences, includ-
ing the IEEE TRANSACTIONS ON COMPUTERS,
the IEEE TRANSACTIONS ON PARALLEL AND

DISTRIBUTED SYSTEMS, OSDI, MICRO, USENIX
FAST, USENIX ATC, ACM SoCC, SC, HPDC, ICDCS, IPDPS, and MSST.
He serves for multiple international conferences, including ASPLOS, SOSP,
USENIX ATC, ICS, RTSS, SoCC, ICDCS, INFOCOM, IPDPS, DAC, MSST,
and DATE. His research interests include file systems, cloud storage systems,
nonvolatile memory, and big data analytics.

Prof. Hua is the Distinguished Member of CCF, a Senior Member of ACM,
and a member of USENIX.

Wei Tong received the B.E., M.E., and Ph.D.
degrees from the Huazhong University of Science
and Technology (HUST), Wuhan, China, in 1999,
2002, and 2011, respectively.

She is an Associate Professor with the Wuhan
National Laboratory for Optoelectronics, HUST.
She has more than 20 publications in journals
and international conferences, including the IEEE
TRANSACTIONS ON COMPUTERS, ACM TACO,
DAC, DATE, ICCD, and ICPP. Her present research
interests include computer architecture, nonvolatile

memory and storage, and software-defined storage.

Jingning Liu received the B.E. degree in com-
puter science and technology from the Huazhong
University of Science and Technology (HUST),
Wuhan, China, in 1982.

She is a Professor with HUST and engaged in
researching and teaching of computer system archi-
tecture. She has over 20 publications in journals and
international conferences, including ACM TACO,
NAS, MSST, and ICA3PP. Her research interests
include computer storage network system, high-
speed interface and channel technology, embedded
system, and FPGA design.

Chunyan Li received the B.E. degree in computer
science and technology from the China University
of Geosciences, Wuhan, China, in 2016. She is
currently pursuing the M.S. degree in computer
architecture with the Huazhong University of
Science and Technology, Wuhan.

Her research interests include nonvolatile
memories and distributed file systems.

Yiran Chen (Fellow, IEEE) received the B.S and
M.S. degrees from Tsinghua University, Beijing,
China, and the Ph.D. degree from Purdue University,
West Lafayette, IN, USA, in 2005.

After five years in industry, he joined the
University of Pittsburgh, Pittsburgh, PA, USA, in
2010 as an Assistant Professor and then promoted
to an Associate Professor with tenure in 2014, held
Bicentennial Alumni Faculty Fellow. He is currently
a Tenured Associate Professor with the Department
of Electrical and Computer Engineering, Duke

University, Durham, NC, USA, and serving as the Director of NSF Industry-
University Cooperative Research Center for Alternative Sustainable and
Intelligent Computing and the Co-Director of Duke Center for Evolutionary
Intelligence, focusing on the research of new memory and storage systems,
machine learning and neuromorphic computing, and mobile computing
systems. He has published one book and more than 350 technical publications
and has been granted 93 U.S. patents.

Dr. Chen is a recipient of the NSF CAREER Award, the ACM SIGDA
Outstanding New Faculty Award, and the Humboldt Research Fellowship
for Experienced Researchers. He received 6 best paper awards and 12 best
paper nominations from international conferences. He serves or served as an
Associate Editor of several IEEE and ACM transactions/journals and served
on the technical and organization committees of more than 50 international
conferences. He is a Distinguished Member of ACM and a Distinguished
Lecturer of IEEE CEDA.

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on September 26,2020 at 09:28:01 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

